Search tips
Search criteria

Results 1-25 (736)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Novel age-dependent learning deficits in a mouse model of Alzheimer’s disease: implications for translational research 
Neurobiology of aging  2009;32(7):1273-1285.
Computational modeling predicts that the hippocampus plays an important role in the ability to apply previously learned information to novel problems and situations (referred to as the ability to generalize information or simply as ‘transfer learning’). These predictions have been tested in humans using a computer-based task on which individuals with hippocampal damage are able to learn a series of complex discriminations with two stimulus features (shape and color), but are impaired in their ability to transfer this information to newly configured problems in which one of the features is altered. This deficit occurs despite the fact that the feature predictive of the reward (the relevant information) is not changed. The goal of the current study was to develop a mouse analog of transfer learning and to determine if this new task was sensitive to pathological changes in a mouse model of AD. We describe a task in which mice were able to learn a series of concurrent discriminations that contained two stimulus features (odor and digging media) and could transfer this learned information to new problems in which the irrelevant feature in each discrimination pair was altered. Moreover, we report age-dependent deficits specific to transfer learning in APP+PS1 mice relative to nontransgenic littermates. The robust impairment in transfer learning may be more sensitive to AD-like pathology than traditional cognitive assessments in that no deficits were observed in the APP+PS1 mice on the widely used Morris water maze task. These data describe a novel and sensitive paradigm to evaluate mnemonic decline in AD mouse models that has unique translational advantages over standard species-specific cognitive assessments (e.g. water maze for rodent and delayed paragraph recall for humans).
PMCID: PMC4334376  PMID: 19720431
aging; AD; APP+PS1; hippocampus; transfer Learning; Spatial Learning; cognitive decline
2.  [No title available] 
PMCID: PMC3830580  PMID: 24080174
3.  [No title available] 
PMCID: PMC3830604  PMID: 24011541
4.  [No title available] 
PMCID: PMC3832124  PMID: 24054992
5.  [No title available] 
PMCID: PMC3844543  PMID: 24041968
6.  [No title available] 
PMCID: PMC3859300  PMID: 24011543
7.  [No title available] 
PMCID: PMC3977862  PMID: 24080173
8.  The analysis of C9orf72 repeat expansions in a large series of clinically and pathologically diagnosed cases with atypical parkinsonism☆ 
Neurobiology of Aging  2015;36(2):1221.e1-1221.e6.
A GGGGCC repeat expansion in the C9orf72 gene was recently identified as a major cause of familial and sporadic amyotrophic lateral sclerosis and frontotemporal dementia. There is suggestion that these expansions may be a rare cause of parkinsonian disorders such as progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal degeneration (CBD). Screening the C9orf72 gene in 37 patients with features of corticobasal syndrome (CBS) detected an expansion in 3 patients, confirmed by Southern blotting. In a series of 22 patients with clinically diagnosed PSP, we found 1 patient with an intermediate repeat length. We also screened for the C9orf72 expansion in a large series of neuropathologically confirmed samples with MSA (n = 96), PSP (n = 177), and CBD (n = 18). Patients were found with no more than 22 GGGGCC repeats. Although these results still need to be confirmed in a larger cohort of CBS and/or CBD patients, these data suggest that in the presence of a family history and/or motor neuron disease features, patients with CBS or clinical PSP should be screened for the C9orf72 repeat expansion. In addition, we confirm that the C9orf72 expansions are not associated with pathologically confirmed MSA, PSP, or CBD in a large series of cases.
PMCID: PMC4321829  PMID: 25308964
C9orf72; Parkinsonism; Multiple system atrophy (MSA); Progressive supranuclear palsy (PSP); Corticobasal degeneration (CBD) and corticobasal syndrome (CBS)
9.  White matter hyperintensities and normal-appearing white matter integrity in the aging brain 
Neurobiology of Aging  2015;36(2):909-918.
White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10−9 m2s−1 (area under curve, 0.982; 95% CI, 0.975–0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe.
PMCID: PMC4321830  PMID: 25457555
Aging; White matter hyperintensities; Normal-appearing white matter; Multimodal MRI
10.  Axonal transport declines with age in two distinct phases separated by a period of relative stability☆ 
Neurobiology of Aging  2015;36(2):971-981.
Axonal transport is critical for supplying newly synthesized proteins, organelles, mRNAs, and other cargoes from neuronal cell bodies into axons. Its impairment in many neurodegenerative conditions appears likely to contribute to pathogenesis. Axonal transport also declines during normal aging, but little is known about the timing of these changes, or about the effect of aging on specific cargoes in individual axons. This is important for understanding mechanisms of age-related axon loss and age-related axonal disorders. Here we use fluorescence live imaging of peripheral nerve and central nervous system tissue explants to investigate vesicular and mitochondrial axonal transport. Interestingly, we identify 2 distinct periods of change, 1 period during young adulthood and the other in old age, separated by a relatively stable plateau during most of adult life. We also find that after tibial nerve regeneration, even in old animals, neurons are able to support higher transport rates of each cargo for a prolonged period. Thus, the age-related decline in axonal transport is not an inevitable consequence of either aging neurons or an aging systemic milieu.
PMCID: PMC4321880  PMID: 25443288
Axonal transport; Aging; Nicotinamide mononucleotide Adenylyltransferase 2; Mitochondrial transport; Axon regeneration; Fluorescence live imaging
11.  Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer’s disease☆ 
Neurobiology of aging  2009;32(3):539-540.
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with characteristic neuropathological changes of the brain. Great efforts have been undertaken to determine the progression of the disease and to monitor therapeutic interventions. Especially, the analysis of blood plasma had yielded incongruent results. Recently, Ray et al. identified changes of 18 signaling proteins leading to an accuracy of 90% in the diagnosis of AD. The aim of the present study was to examine 16 of these signaling proteins by quantitative Searchlight multiplex ELISA in order to determine their sensitivity and specificity in our plasma samples from AD, mild cognitive impairment (MCI), depression with and without cognitive impairment and healthy subjects. Quantitative analysis revealed an increased concentration in Biocoll isolated plasma of 5 out of these 16 proteins in MCI and AD patients compared to healthy subjects: EGF, GDNF and MIP1δ (in AD), MIP4 (in MCI) and RANTES (in MCI and AD). ROC analysis predicted a sensitivity of 65–75% and a specificity of 52–63% when comparing healthy controls versus MCI or AD. Depression without any significant cognitive deficits did not cause any significant changes. Depressed patients with significant cognitive impairment were not different from MCI patients. In conclusion, we detected a number of altered proteins that may be related to a disease specific pathophysiology. However, the overall expression pattern of plasma proteins could not be established as a biomarker to differentiate MCI from AD or from depression.
PMCID: PMC4311051  PMID: 19395124
Diagnosis; Blood; Plasma; Biomarker; Alzheimer; Mild cognitive impairment; Dementia; Multiplex ELISA
12.  Effects of age on navigation strategy 
Neurobiology of aging  2010;33(1):202.e15-202.e22.
Age differences in navigation strategies have been demonstrated in animals, with aged animals more likely to prefer an egocentric (route) strategy and younger animals more likely to prefer an allocentric (place) strategy. Using a novel virtual Y-maze strategy assessment (vYSA), the present study demonstrated substantial age differences in strategy preference in humans. Older adults overwhelmingly preferred an egocentric strategy, while younger adults were equally distributed between egocentric and allocentric preference. A preference for allocentric strategy on the Y-maze strategy assessment was found to benefit performance on an independent assessment (virtual Morris water task) only in younger adults. These results establish baseline age differences in spatial strategies and suggest this may impact performance on other spatial navigation assessments. The results are interpreted within the framework of age differences in hippocampal structure and function.
PMCID: PMC4283776  PMID: 20832911
Navigation; Strategy; Aging; Age; Egocentric; Allocentric
13.  Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults 
Neurobiology of aging  2013;35(6):1396-1403.
Cardiovascular (CV) risk factors, such as hypertension, diabetes, and hyperlipidemia are associated with cognitive impairment and risk of dementia in older adults. However, the mechanisms linking them are not clear. This study aims to investigate the association between aggregate CV risk, assessed by the Framingham general cardiovascular risk profile, and functional brain activation in a group of community-dwelling older adults. Sixty participants (mean age: 64.6 years) from the Brain Health Study, a nested study of the Baltimore Experience Corps Trial, underwent functional magnetic resonance imaging using the Flanker task. We found that participants with higher CV risk had greater task-related activation in the left inferior parietal region, and this increased activation was associated with poorer task performance. Our results provide insights into the neural systems underlying the relationship between CV risk and executive function. Increased activation of the inferior parietal region may offer a pathway through which CV risk increases risk for cognitive impairment.
PMCID: PMC4282177  PMID: 24439485
Cardiovascular risk; Framingham risk score; fMRI; Brain function; Executive function; Older adults
14.  Blood pressure decrease correlates with tau pathology and memory decline in hypertensive elderly 
Neurobiology of aging  2013;35(1):64-71.
In hypertension, cerebral blood flow regulation limits are changed, and the threshold for blood pressure at which perfusion is safely maintained is higher. This shift may increase the brain's vulnerability to lower blood pressure in subjects with vascular disease. We investigated whether longitudinal reduction in mean arterial pressure (MAP) was related to changes in CSF biomarkers of Alzheimer's disease in a group of cognitively healthy elderly with and without hypertension (HTN). The relationships between MAP, memory decline and hippocampal atrophy were also examined. Seventy-seven subjects (age 63.4±9.4, range 44-86 years; education 16.9±2.1, range 10-22 years; 60% women) were assessed twice, 2±0.5 years apart. At both time points, all subjects underwent full medical and neuropsychological evaluations, lumbar punctures and MRI examinations. Twenty-five subjects had HTN. Hypertensive and normotensive subjects did not differ in their CSF biomarkers, hippocampal volumes or memory scores at baseline. In the entire study group, the increase in p-tau181 was associated with a decline in verbal episodic memory (ß=−.30, p=.01) and hippocampal volume reduction (ß=−.27, p=.02). However, longitudinal decrease in MAP was related to memory decline (β=0.50, p=.01) and an increase in p-tau181 (β=−0.50, p=.01) only in subjects with hypertension. Our findings suggest that the hypertensive group may be sensitive to blood pressure reductions.
PMCID: PMC3799812  PMID: 23969178
15.  Event-related potential index of age-related differences in memory processes in adults with Down syndrome 
Neurobiology of aging  2013;35(1):10.1016/j.neurobiolaging.2013.07.024.
A major goal of aging research is to identify early markers of age-related cognitive decline. Persons with Down syndrome (DS) experience accelerated aging and high risks for dementia, making them a valuable albeit understudied model for testing such markers. This study examined event-related potential (ERP) indices of visual memory in younger (19–25 years) and older (35–40 years) adults with DS using a passive viewing paradigm that did not require memorization or behavioral responses. ERPs were recorded in response to unfamiliar urban and nature scenes, with some images presented once and others repeated multiple times. Within 600 to 900 milliseconds after stimulus onset, repeated stimuli elicited more positive amplitudes in younger participants, indicating stimilus recognition. ERPs of older adults did not show such increases, suggesting reduced memory functioning. ERP indices were unrelated to participants' intellectual functioning, but did correlate with age and caregiver-reported lethargy/withdrawal behaviors. Passive ERP measures of memory processes are sensitive to early stages of cognitive decline in DS and are promising markers of cognitive risk for future aging studies.
PMCID: PMC3849808  PMID: 23993703
Aging; Down syndrome; ERP; Learning; Memory
16.  L-type Ca2+ currents at CA1 synapses, but not CA3 or dentate granule neuron synapses, are increased in 3xTgAD mice in an age-dependent manner 
Neurobiology of aging  2013;35(1):10.1016/j.neurobiolaging.2013.07.007.
Abnormal neuronal excitability and impaired synaptic plasticity might occur before the degeneration and death of neurons in Alzheimer’s disease (AD). To elucidate potential biophysical alterations underlying aberrant neuronal network activity in AD, we performed whole-cell patch clamp analyses of L-type (nifedipine-sensitive) Ca2+ currents (L-VGCC), 4–aminopyridine-sensitive K+ currents, and AMPA (2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid) and NMDA (N-methyl-D-aspartate) currents in CA1, CA3, and dentate granule neurons in hippocampal slices from young, middle-age, and old 3xTgAD mice and age-matched wild type mice. 3xTgAD mice develop progressive widespread accumulation of amyloid b-peptide, and selective hyperphosphorylated tau pathology in hippocampal CA1 neurons, which are associated with cognitive deficits, but independent of overt neuronal degeneration. An age-related elevation of L-type Ca2+ channel current density occurred in CA1 neurons in 3xTgAD mice, but not in wild type mice, with the magnitude being significantly greater in older 3xTgAD mice. The NMDA current was also significantly elevated in CA1 neurons of old 3xTgAD mice compared with in old wild type mice. There were no differences in the amplitude of K+ or AMPA currents in CA1 neurons of 3xTgAD mice compared with wild type mice at any age. There were no significant differences in Ca2+, K+, AMPA, or NMDA currents in CA3 and dentate neurons from 3xTgAD mice compared with wild type mice at any age. Our results reveal an age-related increase of L-VGCC density in CA1 neurons, but not in CA3 or dentate granule neurons, of 3xTgAD mice. These findings suggest a potential contribution of altered L-VGCC to the selective vulnerability of CA1 neurons to tau pathology in the 3xTgAD mice and to their degeneration in AD patients.
PMCID: PMC3864587  PMID: 23932880
3xTgAD mice; Aging; L-type Ca2+ currents; CA1
17.  Different susceptibility of medial temporal lobe and basal ganglia atrophy rates to vascular risk factors 
Neurobiology of aging  2013;35(1):72-78.
Atrophy of medial temporal lobe (MTL) and basal ganglia (BG) are characteristic of various neurodegenerative diseases in older people. In search of potentially modifiable factors that lead to atrophy in these structures, we studied the association of vascular risk factors to atrophy of MTL and BG in 368 non-demented men and women [b. 1907–1935] who participated in the Age, Gene/Environment, Susceptibility - Reykjavik Study. A fully automated segmentation pipeline estimated volumes of MTL and BG from whole brain MRI performed at baseline and 2.4 years later. Linear regression models showed higher systolic and diastolic blood pressures and the presence of Apo E ε4 were independently associated with increased atrophy of MTL but no association of vascular risk factors with atrophy of BG. The different susceptibility of MTL and BG atrophy to the presence of vascular risk factors suggests the relatively preserved perfusion of BG when vascular risk factors are present.
PMCID: PMC3802531  PMID: 23992618
Medial temporal lobe; hippocampus; basal ganglia; thalamus; atrophy; aging; vascular risk factors
18.  The protective effect of LRRK2 p.R1398H on risk of Parkinson’s disease is independent of MAPT and SNCA variants 
Neurobiology of aging  2013;35(1):10.1016/j.neurobiolaging.2013.07.013.
The best validated susceptibility variants for Parkinson’s disease (PD) are located in the alpha-synuclein (SNCA) and microtubule-associated protein tau (MAPT) genes. Recently, a protective p.N551K-R1398H-K1423K haplotype in the leucine-rich repeat kinase 2 (LRRK2) gene was identified, with p.R1398H appearing to be the most likely functional variant. To date, the consistency of the protective effect of LRRK2 p.R1398H across MAPT and SNCA variant genotypes has not been assessed. To address this, we examined four SNCA variants (rs181489, rs356219, rs11931074, rs2583988), the MAPT H1-haplotype defining variant rs1052553, and LRRK2 p.R1398H (rs7133914) in Caucasian (N=10,322) and Asian (N=2,289) series. There was no evidence of an interaction of LRRK2 p.R1398H with MAPT or SNCA variants (all P≥0.10); the protective effect of p.R1398H was observed at similar magnitude across MAPT and SNCA genotypes, and the risk effects of MAPT and SNCA variants were observed consistently for LRRK2 p.R1398H genotypes. Our results indicate that the association of LRRK2 p.R1398H with PD is independent of SNCA and MAPT variants, and vice versa, in Caucasian and Asian populations.
PMCID: PMC3829604  PMID: 23962496
Parkinson disease; LRRK2; SNCA; MAPT; interaction; genetics
19.  SAMP8 mice have altered hippocampal gene expression in LTP, phosphatidylinositol signaling, and endocytosis pathways 
Neurobiology of aging  2013;35(1):10.1016/j.neurobiolaging.2013.07.018.
The senescence-accelerated mouse (SAMP8) strain exhibits decreased learning and memory and increased amyloid beta peptide (Aβ) accumulation at 12 months. To detect differences in gene expression in SAMP8 mice, we used a Control mouse that was a 50% cross between SAMP8 and CD-1 mice and which showed no memory deficits (50% SAMs). We then compared gene expression in the hippocampus of 4 month and 12 month old SAMP8 and Control mice using Affymetrix gene arrays. At 12 months, but not at 4 months, pathway analysis revealed significant differences in the Long Term Potentiation (LTP) (6 genes), Phosphatidylinositol Signaling (6 genes), and Endocytosis (10 genes) pathways. The changes in LTP included MAPK signaling (N-ras, CREB binding protein, protein phosphatase inhibitor 1) and Ca-dependent signaling (ITP receptors 1 and 2 and phospholipase C). Changes in phosphatidylinositol signaling genes suggested altered signaling through PI3-kinase, and Western blotting revealed phosphorylation changes in AKT and 70S6K. Changes in the Endocytosis pathway involved genes related to clathrin-mediated endocytosis (dynamin and clathrin). Endocytosis is required for receptor recycling, is involved in Aβ metabolism, and is regulated by phosphatidylinositol signaling. In summary, these studies demonstrate altered genes expression in three SAMP8 hippocampal pathways associated with memory formation and consolidation. These pathways may provide new therapeutic targets in addition to targeting Aβ metabolism itself.
PMCID: PMC3839577  PMID: 23969180
SAMP8 mouse; hippocampal gene expression; memory loss; long term potentiation; phosphatidylinositol signaling; clathrin-mediated endocytosis
20.  Genetic background influences age-related decline in visual and nonvisual retinal responses, circadian rhythms, and sleep☆ 
Neurobiology of Aging  2015;36(1):380-393.
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep.
PMCID: PMC4270439  PMID: 25179226
Aging; Circadian; Sleep; Light input; Mouse strain
21.  Dietary (−)-epicatechin as a potent inhibitor of βγ-secretase amyloid precursor protein processing☆ 
Neurobiology of Aging  2015;36(1):178-187.
Flavonoids, a group of dietary polyphenols have been shown to possess cognitive health benefits. Epidemiologic evidence suggests that they could play a role in risk reduction in dementia. Amyloid precursor protein processing and the subsequent generation of amyloid beta (Aβ) are central to the pathogenesis of Alzheimer's disease, as soluble, oligomeric Aβ is thought to be the toxic species driving disease progression. We undertook an in vitro screen to identify flavonoids with bioactivity at βγ-mediated amyloid precursor protein processing, which lead to identification of a number of flavonoids bioactive at 100 nM. Because of known bioavailability, we investigated the catechin family further and identified epigallocatechin and (−)-epicatechin as potent (nanomolar) inhibitors of amyloidogenic processing. Supporting this finding, we have shown reduced Aβ pathology and Aβ levels following short term, a 21-day oral delivery of (−)-epicatechin in 7-month-old TASTPM mice. Further, in vitro mechanistic studies suggest this is likely because of indirect BACE1 inhibition. Taken together, our results suggest that orally delivered (−)-epicatechin may be a potential prophylactic for Alzheimer's disease.
PMCID: PMC4270442  PMID: 25316600
Flavanol; Flavonoid; Alzheimer's disease; TASTPM; BACE1; Amyloid pathology; Aβ; Dietary polyphenolic; Dementia; APP processing; Catechin
22.  Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion☆ 
Neurobiology of Aging  2015;36(1):546.e1-546.e7.
An expanded hexanucleotide repeat in the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Although 0–30 hexanucleotide repeats are present in the general population, expansions >500 repeats are associated with C9ALS/FTD. Large C9ALS/FTD expansions share a common haplotype and whether these expansions derive from a single founder or occur more frequently on a predisposing haplotype is yet to be determined and is relevant to disease pathomechanisms. Furthermore, although cases carrying 50–200 repeats have been described, their role and the pathogenic threshold of the expansions remain to be identified and carry importance for diagnostics and genetic counseling. We present clinical and genetic data from a UK ALS cohort and report the detailed molecular study of an atypical somatically unstable expansion of 90 repeats. Our results across different tissues provide evidence for the pathogenicity of this repeat number by showing they can somatically expand in the central nervous system to the well characterized pathogenic range. Our results support the occurrence of multiple expansion events for C9ALS/FTD.
PMCID: PMC4270445  PMID: 25179228
Frontotemporal dementia; Somatic instability; Amyotrophic lateral sclerosis
23.  Quantitative electroencephalogram utility in predicting conversion of mild cognitive impairment to dementia with Lewy bodies☆ 
Neurobiology of Aging  2015;36(1):434-445.
Mild cognitive impairment (MCI) as a precursor of dementia with Lewy bodies (DLB) is the focus of recent research, trying to explore the early mechanisms and possible biomarkers of DLB. Quantitative electroencephalogram (QEEG) methods are able to differentiate early DLB from Alzheimer's disease (AD). The aim of the present study was to assess whether QEEG abnormalities, characterized by dominant frequency <8 Hz and dominant frequency variability >1.5 Hz, typical of early DLB, are already present at the stage of MCI and to evaluate whether EEG abnormalities can predict the development of DLB. Forty-seven MCI subjects were followed for 3 years. EEG recordings were obtained at admission and at the end of the study. At the end of follow-up, 20 subjects had developed probable DLB (MCI-DLB), 14 had probable AD (MCI-AD), 8 did not convert to dementia, 5 developed a non-AD/DLB dementia. One hundred percent of MCI-DLB showed EEG abnormalities at admission. Ninety three percent of MCI-AD maintained a normal EEG throughout the study. QEEG may represent a powerful tool to predict the progression from MCI to DLB with a sensitivity and specificity close to 100%.
•We studied in mild cognitive impairment (MCI) subjects the predictive value of electroencephalogram (EEG) alterations for the development of dementia with Lewy bodies (DLB).•One hundred percent of MCI subjects converted to DLB already had EEG alterations typical of DLB (dominant frequency <8 Hz and dominant frequency variability ≥1.5 Hz) at admission to the study.•Quantitative EEG may represent a powerful tool to predict the progression from MCI to DLB.
PMCID: PMC4270449  PMID: 25129239
Mild cognitive impairment; Dementia with Lewy bodies; Quantitative EEG
24.  Brain white matter integrity and cortisol in older men: the Lothian Birth Cohort 1936☆ 
Neurobiology of Aging  2015;36(1):257-264.
Elevated glucocorticoid (GC) levels are hypothesized to be deleterious to some brain regions, including white matter (WM). Older age is accompanied by increased between-participant variation in GC levels, yet relationships between WM integrity and cortisol levels in older humans are underexplored. Moreover, it is unclear whether GC-WM associations might be general or pathway specific. We analyzed relationships between salivary cortisol (diurnal and reactive) and general measures of brain WM hyperintensity (WMH) volume, fractional anisotropy (gFA), and mean diffusivity (gMD) in 90 males, aged 73 years. Significant associations were predominantly found between cortisol measures and WMHs and gMD but not gFA. Higher cortisol at the start of a mild cognitive stressor was associated with higher WMH and gMD. Higher cortisol at the end was associated with greater WMHs. A constant or increasing cortisol level during cognitive testing was associated with lower gMD. Tract-specific bases of these associations implicated anterior thalamic radiation, uncinate, and arcuate and inferior longitudinal fasciculi. The cognitive sequelae of these relationships, above other covariates, are a priority for future study.
•We correlated salivary cortisol and brain white matter (WM) measures in older males.•Cortisol was measured diurnally and in reaction to a cognitive challenge.•Diffusion tensor magnetic resonance imaging (fractional anisotropy and mean diffusivity) and total hyperintensity volume measured WM integrity.•WM-cortisol relations were found for mean diffusivity and hyperintensity volume but not fractional anisotropy.•Higher cortisol in response to cognitive stressor denoted lower WM integrity.
PMCID: PMC4274312  PMID: 25066239
Cortisol; Glucocorticoid; White matter; Aging; Brain structure; Tractography
25.  Measuring brain atrophy with a generalized formulation of the boundary shift integral☆ 
Neurobiology of Aging  2015;36(Suppl 1):S81-S90.
Brain atrophy measured using structural magnetic resonance imaging (MRI) has been widely used as an imaging biomarker for disease diagnosis and tracking of pathologic progression in neurodegenerative diseases. In this work, we present a generalized and extended formulation of the boundary shift integral (gBSI) using probabilistic segmentations to estimate anatomic changes between 2 time points. This method adaptively estimates a non-binary exclusive OR region of interest from probabilistic brain segmentations of the baseline and repeat scans to better localize and capture the brain atrophy. We evaluate the proposed method by comparing the sample size requirements for a hypothetical clinical trial of Alzheimer's disease to that needed for the current implementation of BSI as well as a fuzzy implementation of BSI. The gBSI method results in a modest but reduced sample size, providing increased sensitivity to disease changes through the use of the probabilistic exclusive OR region.
PMCID: PMC4288791  PMID: 25264346
boundary shift integral; Alzheimer's disease; Clinical trials; MRI; Biomarker

Results 1-25 (736)