Search tips
Search criteria

Results 1-25 (120)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  RANK-mediated signaling network and cancer metastasis 
Cancer metastasis reviews  2014;33(0):497-509.
Cancer metastasis is highly inefficient and complex. Common features of metastatic cancer cells have been observed using cancer cell lines and genetically reconstituted mouse and human tumor xenograft models. These include cancer cell interaction with the tumor microenvironment, and the ability of cancer cells to sense extracellular stimuli and adapt to adverse growth conditions. This review summarizes the coordinated response of cancer cells to soluble growth factors, such as RANKL, by a unique forward feedback mechanism employing coordinated upregulation of RANKL and c-Met with downregulation of androgen receptor. The RANK-mediated signal network was found to drive epithelial to mesenchymal transition in prostate cancer cells, promote osteomimicry and the ability of prostate cancer cells to assume stem cell and neuroendocrine phenotypes, and confer the ability of prostate cancer cells to home to bone. Prostate cancer cells with activated RANK-mediated signal network were observed to recruit and even transform the non-tumorigenic prostate cancer cells to participate in bone and soft tissue colonization. The coordinated regulation of cancer cell invasion and metastasis by the forward feedback mechanism involving RANKL, c-Met, transcription factors and VEGF-neuropilin could offer new therapeutic opportunities to target prostate cancer bone and soft tissue metastases.
PMCID: PMC4087108  PMID: 24398859
Osteomimicry; β2-microglobulin; signal amplification; transcription factors; cooperation in metastasis; cancer dormancy
2.  AR function in promoting metastatic prostate cancer 
Cancer metastasis reviews  2014;33(0):399-411.
Prostate cancer (PCa) remains a leading cause of cancer-related death in the USA. While localized lesions are effectively treated through radical prostatectomy and/or radiation therapy, treatment for metastatic disease leverages the addiction of these tumors on the androgen receptor (AR) signaling axis for growth and disease progression. Though initially effective, tumors resistant to AR-directed therapeutics ultimately arise (a stage of the disease known as castration-resistant prostate cancer) and are responsible for PCa-specific mortality. Importantly, an abundance of clinical and preclinical evidence strongly implicates AR signaling cascades in the development of metastatic disease in both early and late stages, and thus a concerted effort has been made to delineate the AR-specific programs that facilitate progression to metastatic PCa. A multitude of downstream AR targets as well as critical AR cofactors have been identified which impinge upon both the AR pathway as well as associated metastatic phenotypes. This review will highlight the functional significance of these pathways to disseminated disease and define the molecular underpinnings behind these unique, AR-driven, metastatic signatures.
PMCID: PMC4452946  PMID: 24425228
Androgen; Androgen receptor (AR); Prostate cancer (PCa); Castration-resistant prostate cancer; CRPC; Metastasis; Cistrome
3.  Recent Progress on Nutraceutical Research in Prostate Cancer 
Cancer metastasis reviews  2014;33(0):629-640.
Recently, nutraceuticals have received increasing attention as the agents for cancer prevention and supplement with conventional therapy. Prostate Cancer (PCa) is most frequently diagnosed cancer and second leading cause of cancer-related death in men in US. Growing evidences from epidemiological studies, in vitro experimental studies, animal studies, and clinical trials have shown that nutraceuticals could be very useful for the prevention and treatment of PCa. Several nutraceuticals including isoflavone, indole-3-carbinol, 3,3’-diindolylmethane, lycopene, (-)-epigallocatechin-3-gallate, and curcumin are known to down-regulate the signal transductions in AR, Akt, NF-κB, and other signal transduction pathways which are vital for the development of PCa and the progression of PCa from androgen-sensitive to castrate-resistant PCa. Therefore, nutraceutical treatment in combination with conventional therapeutics could achieve better treatment outcome in prostate cancer therapy. Interestingly, some nutraceuticals could regulate the function of cancer stem cell (CSC) related miRNAs and associated molecules, leading to the inhibition of prostatic CSCs which are responsible for drug-resistance, tumor progression, and recurrence of PCa. Hence, nutraceuticals may serve as powerful agents for the prevention of PCa progression and they could also be useful in combination with chemotherapeutics or radiotherapy. Such strategy could become a promising newer approach for the treatment of metastatic PCa with better treatment outcome by improving overall survival.
PMCID: PMC4074449  PMID: 24375392
nutraceuticals; prostate cancer; AR; Akt; NF-κB; cancer stem cell
4.  Integrating new discoveries into the “vicious cycle” paradigm of prostate to bone metastases 
Cancer metastasis reviews  2014;33(0):511-525.
In prostate to bone metastases, the “vicious cycle” paradigm has been traditionally used to illustrate how metastases manipulate the bone forming osteoblasts and resorbing osteoclasts in order to yield factors that facilitate the growth and establishment. However, recent advances have illustrated that the cycle is far more complex than this simple interpretation. In this review, we will discuss the role of exosomes and hematopoietic/mesenchymal stem cells facilitate the establishment and activation of prostate metastases and, how cells including such as myeloid derived suppressor cells, macrophages, T-cells and nerve cells contribute to the momentum of the vicious cycle. The increased complexity of the tumor-bone microenvironment requires a systems level approach. The evolution of computational models to interrogate the tumor-bone microenvironment is also discussed and the application of this integrated approach should allow for the development of effective therapies to treat and cure prostate to bone metastases.
PMCID: PMC4096318  PMID: 24414228
Prostate cancer; Bone metastasis; Stem Cells; Immune Cells; Mathematical modeling; Vicious Cycle
5.  Mouse Models of Prostate Cancer: Picking the Best Model for the Question 
Cancer metastasis reviews  2014;33(0):377-397.
When the NIH Mouse Models of Human Cancer Consortium (MMCC) initiated the Prostate Steering Committee 15 years ago, there were no genetically engineered mouse (GEM) models of prostate cancer (PCa). Today, a PubMed search for “prostate cancer mouse model” yields 3,200 publications and this list continues to grow. The first generation of GEM utilized the newly discovered and characterized probasin (PB) promoter driving viral oncogenes such as SV40 large T antigen to yield the LADY and TRAMP models. As the PCa research field has matured, the second generation of models has incorporated the single and multiple molecular changes observed in human disease, such as loss of PTEN and over-expression of Myc. Application of these models has revealed that mice are particularly resistant to developing invasive PCa, and once they achieve invasive disease, the PCa rarely resembles human disease. Nevertheless, these models and their application have provided vital information on human PCa progression. The aim of this review is to provide a brief primer on mouse and human prostate histology and pathology, provide descriptions of mouse models, as well as attempt to answer the age old question: Which GEM model of PCa is the best for my research question?
PMCID: PMC4108581  PMID: 24452759
Mouse models; prostate cancer; TRAMP; LADY; PTEN; Myc
6.  Antibody Based Imaging Strategies of Cancer 
Cancer metastasis reviews  2014;33(0):809-822.
Although mainly developed for preclinical research and therapeutic use, antibodies have high antigen specificity, which can be used as a courier to selectively deliver a diagnostic probe or therapeutic agent to cancer. It is generally accepted that the optimal antigen for imaging will depend on both the expression in the tumor relative to normal tissue and the homogeneity of expression throughout the tumor mass and between patients. For the purpose of diagnostic imaging, novel antibodies can be developed to target antigens for disease detection, or current FDA-approved antibodies can be repurposed with the covalent addition of an imaging probe. Reuse of therapeutic antibodies for diagnostic purposes reduces translational costs since the safety profile of the antibody is well defined and the agent is already available under conditions suitable for human use. In this review, we will explore a wide range of antibodies and imaging modalities that are being translated to the clinic for cancer identification and surgical treatment.
PMCID: PMC4116453  PMID: 24913898
antibody; imaging; cancer
7.  Immunotherapy for Prostate Cancer – Recent Developments and Future Challenges 
Cancer metastasis reviews  2014;33(0):641-655.
Since the approval of sipuleucel-T for men with metastatic castrate resistant prostate cancer in 2010, great strides in the development of anti-cancer immunotherapies have been made. Current drug development in this area has focused primarily on antigen specific [i.e. cancer vaccines and antibody based therapies)] or checkpoint inhibitor therapies, with the checkpoint inhibitors perhaps gaining the most attention as of late. Indeed, drugs blocking the inhibitory signal generated by the engagement of cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) found on T-cells has emerged as potent means to combat the immunosuppressive milieu. The anti-CTLA-4 monoclonal antibody ipilimumab has already been approved in advanced melanoma and two phase III trials evaluating ipilimumab in men with metastatic castrate-resistant prostate cancer are underway. A phase III trial evaluating ProstVac-VF, a poxvirus-based therapeutic prostate cancer vaccine, is also underway. While there has been reason for encouragement over the past few years, many questions regarding the use of immunotherapies remain. Namely it is unclear what stage of disease is most likely to benefit from these approaches, how best to incorporate said treatments with each other and into our current treatment regimens and which therapy is most appropriate for which disease. Herein we review some of the recent advances in immunotherapy as related to the treatment of prostate cancer and outline some of the challenges that lie ahead.
PMCID: PMC4116461  PMID: 24477411
8.  Optimal first-line chemotherapeutic treatment in patients with locally advanced or metastatic esophagogastric carcinoma: triplet versus doublet chemotherapy: a systematic literature review and meta-analysis 
Cancer Metastasis Reviews  2015;34(3):429-441.
There is a debate whether triplet or doublet chemotherapy should be used as a first-line treatment in patients with advanced or metastatic esophagogastric cancer. Therefore, here we will review the available literature to assess the efficacy and safety of triplet versus doublet chemotherapy as a first-line treatment in patients with advanced esophagogastric cancer. We searched MEDLINE, Embase, and CENTRAL (Cochrane Central Register of Controlled Trials) between 1980 and March 2015 for randomized controlled phase II and III trials comparing triplet with doublet chemotherapy and abstracts of major oncology meetings from 1990 to 2014. Twenty-one studies with a total of 3475 participants were included in the meta-analysis for overall survival. An improvement in overall survival (OS) (hazard ratio (HR) 0.90, 95 % confidence interval (CI) 0.83–0.97) and progression-free survival (PFS) (HR 0.80, 95 % CI 0.69–0.93) was observed in favor of triplet. In addition, the use of triplet was associated with better objective response rate (ORR) (risk ratio 1.25, 95 % CI 1.09–1.44) compared to doublet. The risks of grade 3–4 thrombocytopenia (6.2 vs 3.8 %), infection (10.2 vs 6.4 %), and mucositis (9.7 vs 4.7 %) were statistically significantly increased with triplet compared to doublet. This review shows that first-line triplet therapy is superior to doublet therapy in patients with advanced esophagogastric cancer. However, the survival benefit is limited and the risks of grade 3–4 thrombocytopenia, infection, and mucositis are increased.
Electronic supplementary material
The online version of this article (doi:10.1007/s10555-015-9576-y) contains supplementary material, which is available to authorized users.
PMCID: PMC4573655  PMID: 26267802
First-line treatment; Triplet chemotherapy; Doublet chemotherapy; Palliative chemotherapy; Esophageal cancer; Gastric cancer
9.  Tumor stroma derived biomarkers in cancer 
Cancer metastasis reviews  2009;28(0):177-183.
In recent years the importance of the tumor stroma for the development, promotion and invasion of cancer is becoming increasingly clear. Besides a malignantly transformed cancer cell, tumors also contains many other cell types, including endothelial cells, fibroblasts and cells of the immune system. These cells together with the cancer cells produce the sum extracellular matrix (ECM) of the tumor. The ECM and the non-malignant cells of the tumor are defined as the “tumor stroma”. Just as the malignant cell itself can be the source of substances that can be used as biomarkers of cancer, the tumor stroma contains factors that potentially can be used as biomarkers when treating patients with cancer. In this review we will discuss the role of the tumor stroma as a source of new cancer biomarkers. This concept highlights a novel view of cancer and treats them as organized organs. Additionally, this further stresses the importance of including factors related to the tumor stroma into the diagnostic and therapeutic equation of cancer.
PMCID: PMC4476244  PMID: 19259624
Cancer; Biomarker; Stroma; Collagen
10.  Stroma Cells in Tumor Microenvironment and Breast Cancer 
Cancer metastasis reviews  2013;32(0):303-315.
Cancer is a systemic disease, encompassing multiple components of both tumor cells themselves and host stromal cells. It is now clear that stromal cells in the tumor microenvironment play an important role in cancer development. Molecular events through which reactive stromal cells affect cancer cells can be defined so that biomarkers and therapeutic targets can be identified. Cancer-associated fibroblasts (CAFs) make up the bulk of cancer stroma and affect the tumor microenvironment such that they promote cancer initiation, angiogenesis, invasion and metastasis. In breast cancer, CAFs not only promote tumor progression, but also induce therapeutic resistances. Accordingly, targeting CAFs provides a novel way to control tumors with therapeutic resistances. This review summarizes the current understanding of tumor stroma in breast cancer with a particular emphasis on the role of CAFs and the therapeutic implications of CAFs. The effects of other stromal components such as endothelial cells, macrophages and adipocytes in breast cancer are also discussed. Finally, we describe the biologic markers to sort patients into a specific and confirmed subtype for personalized treatment.
PMCID: PMC4432936  PMID: 23114846
Stroma cells; Tumor microenvironment; Cancer-associated fibroblasts (CAFs); Breast cancer
11.  Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring 
Cancer Metastasis Reviews  2015;34(1):145-155.
Breast cancer affects approximately 12 % women worldwide and results in 14 % of all cancer-related fatalities. Breast cancer is commonly categorized into one of four main subtypes (luminal A, luminal B, human epidermal growth factor receptor 2 (HER2) positive and basal), indicating molecular characteristics and informing treatment regimes. The most severe form of breast cancer is metastasis, when the tumour spreads from the breast tissue to other parts of the body. Significantly, the primary tumour subtype affects rates and sites of metastasis. Currently, up to 5 % of patients present with incurable metastasis, with an additional 10–15 % of patients going on to develop metastasis within 3 years of diagnosis. MicroRNAs (miRNAs) are short 21–25 long nucleotides that have been shown to significantly affect gene expression. Currently, >2000 miRNAs have been identified and significantly, specific miRNAs have been found associated with diseases states. Importantly, miRNAs are found circulating in the blood, presenting an opportunity to use these circulating disease-related miRNAs as biomarkers. Clearly, the identification of circulating miRNA specific to metastatic breast cancer presents a unique opportunity for early disease identification and for monitoring disease burden. Currently however, few groups have identified miRNA associated with metastatic breast cancer. Here, we review the literature surrounding the identification of metastatic miRNA in breast cancer patients, highlighting key areas where miRNA biomarker discovery could be beneficial, identifying key concepts, recognizing critical areas requiring further research and discussing potential problems.
PMCID: PMC4368851  PMID: 25721950
miRNA; Breast cancer; Metastatic; Biomarker; Metastatic sites; Metastatic rates; Subtype
12.  HER2 expression status in diverse cancers: review of results from 37,992 patients 
Cancer Metastasis Reviews  2015;34(1):157-164.
Human epidermal growth factor receptor 2 (HER2) amplification/overexpression is an effective therapeutic target in breast and gastric cancer. Although HER2 positivity has been reported in other malignancies, previous studies generally focused on one cancer type, making it challenging to compare HER2 positivity across studies/malignancies. Herein, we examined 37,992 patient samples for HER2 expression (+/− amplification) in a single laboratory. All 37,992 patients were tested by immunohistochemistry (IHC); 21,642 of them were also examined for HER2 amplification with either fluorescent in situ hybridization (FISH) (11,670 patients) or chromogenic in situ hybridization (CISH) (9,972 patients); 18,262 patients had tumors other than breast or gastric cancer. All tissues were analyzed in a Clinical Laboratory Improvement Amendments (CLIA) laboratory (Caris Life Sciences) at the request of referring physicians. HER2 protein overexpression was found in 2.7 % of samples. Over-expressed HER2 was detected predominantly in malignancies of epithelial origin; for cancers derived from mesenchyme, neuroendocrine tissue, central nervous system, and kidney, HER2 expression and amplification were remarkably rare or non-existent. Bladder carcinomas, gallbladder, extrahepatic cholangiocarcinomas, cervical, uterine, and testicular cancers showed HER2 positivity rates of 12.4, 9.8, 6.3, 3.9, 3.0, and 2.4 %, respectively. HER2 overexpression and/or amplification is frequently found across tumor types. These observations may have significant therapeutic implications in cancers not traditionally thought to benefit from anti-HER2 therapies.
Electronic supplementary material
The online version of this article (doi:10.1007/s10555-015-9552-6) contains supplementary material, which is available to authorized users.
PMCID: PMC4368842  PMID: 25712293
HER2 overexpression; Cancer; IHC; FISH; HER2 amplification
13.  Dormancy in solid Tumors: Implications for Prostate Cancer 
Cancer metastasis reviews  2013;32(0):10.1007/s10555-013-9422-z.
In cancer dormancy, residual tumor cells persist in a patient with no apparent clinical symptoms, only to potentially become clinically relevant at a later date. In prostate cancer (PCa), the primary tumor is often removed and many patients experience a prolonged period (>5 years) with no evidence of disease before recurrence. These characteristics make PCa an excellent candidate for the study of tumor cell dormancy. However, the mechanisms that constitute PCa dormancy have not been clearly defined. Additionally, the definition of tumor cell dormancy varies in the literature. Therefore, we have separated tumor cell dormancy in this review into three categories: (A) Micrometastatic dormancy - A group of tumor cells that cannot increase in number due to a restrictive proliferation/apoptosis equilibrium. (B) Angiogenic dormancy- A Group of tumor cells that cannot expand beyond the formation of a micrometastasis due to a lack of angiogenic potential. (C) Conditional dormancy- An individual cell or a very small number of cells that cannot proliferate without the appropriate cues from the microenvironment, but do not require angiogenesis to do so. This review aims to identify currently known markers, mechanisms and models of tumor dormancy, in particular as they relate to PCa, and highlight current opportunities for advancement in our understanding of clinical cancer dormancy.
PMCID: PMC3796576  PMID: 23612741
Dormancy; disseminated tumor cells; prostate cancer; metastasis
14.  Aneuploidy and chromosomal instability: a vicious cycle driving cellular evolution and cancer genome chaos 
Cancer metastasis reviews  2013;32(0):10.1007/s10555-013-9436-6.
Aneuploidy and chromosomal instability frequently co-exist, and aneuploidy is recognized as a direct outcome of chromosomal instability. However, chromosomal instability is widely viewed as a consequence of mutations in genes involved in DNA replication, chromosome segregation and cell cycle checkpoints. Telomere attrition and presence of extra centrosomes have also been recognized as causative for errors in genomic transmission. Here, we examine recent studies suggesting that aneuploidy itself can be responsible for the procreation of chromosomal instability. Evidence from both yeast and mammalian experimental models suggest that changes in chromosome copy number can cause changes in dosage of the products of many genes located on aneuploid chromosomes. These effects on gene expression can alter the balanced stoichiometry of various protein complexes, causing perturbations of their functions. Therefore, phenotypic consequences of aneuploidy will include chromosomal instability if the balanced stoichiometry of protein machineries responsible for accurate chromosome segregation is affected enough to perturb the function. The degree of chromosomal instability will depend on specific karyotypic changes, which may be due to dosage imbalances of specific genes or lack of scaling between chromosome segregation load and the capacity of the mitotic system. We propose that the relationship between aneuploidy and chromosomal instability can be envisioned as a “vicious cycle”, where aneuploidy potentiates chromosomal instability leading to further karyotype diversity in the affected population.
PMCID: PMC3825812  PMID: 23709119
15.  Exosomes in Cancer Development, Metastasis and Drug Resistance: A Comprehensive Review 
Cancer metastasis reviews  2013;32(0):10.1007/s10555-013-9441-9.
Trafficking of biological material across membranes is an evolutionary conserved mechanism and is part of any normal cell homeostasis. Such transport is comprised of active, passive, export through microparticles and vesicular transport (exosomes) that collectively maintain proper compartmentalization of important micro and macromolecules. In pathological states, such as cancer, aberrant activity of export machinery results in expulsion of a number of key proteins and microRNAs resulting in their misexpression. Exosome mediated expulsion of intracellular drugs could be another barrier in the proper action of most of the commonly used therapeutics, targeted agents and their intracellular metabolites. Over the last decade, a number of studies have revealed that exosomes cross-talk and/or influence major tumor related pathways such as hypoxia driven EMT, cancer stemness, angiogenesis and metastasis involving many cell types within the tumor microenvironment. Emerging evidence suggest that exosome secreted proteins can also propel fibroblast growth, resulting in Desmoplastic reaction (DR); a major barrier in effective cancer drug delivery. This comprehensive review highlights the advancements in the understanding of the biology of exosomes secretions and the consequence on cancer drug resistance. We propose that the successful combination of cancer treatments to tackle exosome mediated drug resistance requires an interdisciplinary understanding of these cellular exclusion mechanisms, and how secreted biomolecules are involved in cellular cross-talk within the tumor microenvironment.
PMCID: PMC3843988  PMID: 23709120
Exosomes; Export Mechanisms; Cancer Drug Resistance; microRNAs
16.  Do mutator mutations fuel tumorigenesis? 
Cancer metastasis reviews  2013;32(0):353-361.
The mutator phenotype hypothesis proposes that the mutation rate of normal cells is insufficient to account for the large number of mutations found in human cancers. Consequently, human tumors exhibit an elevated mutation rate that increases the likelihood of a tumor acquiring advantageous mutations. The hypothesis predicts that tumors are composed of cells harboring hundreds of thousands of mutations, as opposed to a small number of specific driver mutations, and that malignant cells within a tumor therefore constitute a highly heterogeneous population. As a result, drugs targeting specific mutated driver genes or even pathways of mutated driver genes will have only limited anticancer potential. In addition, because the tumor is composed of such a diverse cell population, tumor cells harboring drug-resistant mutations will exist prior to the administration of any chemotherapeutic agent. We present recent evidence in support of the mutator phenotype hypothesis, major arguments against this concept, and discuss the clinical consequences of tumor evolution fueled by an elevated mutation rate. We also consider the therapeutic possibility of altering the rate of mutation accumulation. Most significantly, we contend that there is a need to fundamentally reconsider current approaches to personalized cancer therapy. We propose that targeting cellular pathways that alter the rate of mutation accumulation in tumors will ultimately prove more effective than attempting to identify and target mutant driver genes or driver pathways.
PMCID: PMC3987827  PMID: 23592419
Mutator phenotype; Mutation; Heterogeneity; Cancer genome sequencing; Tumor evolution
17.  Chemokines in tumor angiogenesis and metastasis 
Cancer metastasis reviews  2007;26(0):453-467.
Chemokines are a large group of low molecular weight cytokines that are known to selectively attract and activate different cell types. Although the primary function of chemokines is well recognized as leukocyte attractants, recent evidences indicate that they also play a role in number of tumor-related processes, such as growth, angiogenesis and metastasis. Chemokines activate cells through cell surface seven trans-membranes, G-protein-coupled receptors (GPCR). The role played by chemokines and their receptors in tumor pathophysiology is complex as some chemokines favor tumor growth and metastasis, while others may enhance anti-tumor immunity. These diverse functions of chemokines establish them as key mediators between the tumor cells and their microenvironment and play critical role in tumor progression and metastasis. In this review, we present some of the recent advances in chemokine research with special emphasis on its role in tumor angiogenesis and metastasis.
PMCID: PMC4237067  PMID: 17828470
Chemokines; Tumor growth; Angiogenesis; Metastasis; Tumor microenvironment
18.  The role of epithelial plasticity in prostate cancer dissemination and treatment resistance 
Cancer metastasis reviews  2014;33(0):441-468.
Nearly 30,000 men die annually in the USA of prostate cancer, nearly uniformly from metastatic dissemination. Despite recent advances in hormonal, immunologic, bone-targeted, and cytotoxic chemotherapies, treatment resistance and further dissemination are inevitable in men with metastatic disease. Emerging data suggests that the phenomenon of epithelial plasticity, encompassing both reversible mesenchymal transitions and acquisition of stemness traits, may underlie this lethal biology of dissemination and treatment resistance. Understanding the molecular underpinnings of this cellular plasticity from preclinical models of prostate cancer and from biomarker studies of human metastatic prostate cancer has provided clues to novel therapeutic approaches that may delay or prevent metastatic disease and lethality over time. This review will discuss the preclinical and clinical evidence for epithelial plasticity in this rapidly changing field and relate this to clinical phenotype and resistance in prostate cancer while suggesting novel therapeutic approaches.
PMCID: PMC4230790  PMID: 24414193
Epithelial plasticity; Prostate cancer; Metastasis; Epithelial–mesenchymal transition; Dissemination; Stem cell
19.  Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy 
Cancer Metastasis Reviews  2014;33(4):1095-1108.
Much effort is currently devoted to developing patient-specific cancer therapy based on molecular characterization of tumors. In particular, this approach seeks to identify driver mutations that can be blocked through small molecular inhibitors. However, this approach is limited by extensive intratumoral genetic heterogeneity, and, not surprisingly, even dramatic initial responses are typically of limited duration as resistant tumor clones rapidly emerge and proliferate. We propose an alternative approach based on observations that while tumor evolution produces genetic divergence, it is also associated with striking phenotypic convergence that loosely correspond to the well-known cancer “hallmarks”. These convergent properties can be described as driver phenotypes and may be more consistently and robustly expressed than genetic targets. To this purpose, it is necessary to identify strategies that are critical for cancer progression and metastases, and it is likely that these driver phenotypes will be closely related to cancer “hallmarks”. It appears that an antiacidic approach, by targetting a driver phenotype in tumors, may be thought as a future strategy against tumors in either preventing the occurrence of cancer or treating tumor patients with multiple aims, including the improvement of efficacy of existing therapies, possibly reducing their systemic side effects, and controlling tumor growth, progression, and metastasis. This may be achieved with existing molecules such as proton pump inhibitors (PPIs) and buffers such as sodium bicarbonate, citrate, or TRIS.
PMCID: PMC4244550  PMID: 25376898
Acidity; Cancer; Microenvironment; pH gradient; Proton export mechanisms; Proton pump inhibitors
20.  Towards an understanding of the structure and function of MTA1 
Cancer Metastasis Reviews  2014;33(4):857-867.
Gene expression is controlled through the recruitment of large coregulator complexes to specific gene loci to regulate chromatin structure by modifying epigenetic marks on DNA and histones. Metastasis-associated protein 1 (MTA1) is an essential component of the nucleosome remodelling and deacetylase (NuRD) complex that acts as a scaffold protein to assemble enzymatic activity and nucleosome targeting proteins. MTA1 consists of four characterised domains, a number of interaction motifs, and regions that are predicted to be intrinsically disordered. The ELM2-SANT domain is one of the best-characterised regions of MTA1, which recruits histone deacetylase 1 (HDAC1) and activates the enzyme in the presence of inositol phosphate. MTA1 is highly upregulated in several types of aggressive tumours and is therefore a possible target for cancer therapy. In this review, we summarise the structure and function of the four domains of MTA1 and discuss the possible functions of less well-characterised regions of the protein.
PMCID: PMC4244562  PMID: 25352341
Metastasis associated protein 1; Corepressor complexes; Chromatin; Inositol phosphate; Transcriptional regulation
21.  MTA1—a stress response protein: a master regulator of gene expression and cancer cell behavior 
Cancer Metastasis Reviews  2014;33(4):1001-1009.
Gene mutation’s role in initiating carcinogenesis has been controversial, but it is consensually accepted that both carcinogenesis and cancer metastasis are gene-regulated processes. MTA1, a metastasis-associated protein, has been extensively researched, especially regarding its role in cancer metastasis. In this review, I try to elucidate MTA1’s role in both carcinogenesis and metastasis from a different angle. I propose that MTA1 is a stress response protein that is upregulated in various stress-related situations such as heat shock, hypoxia, and ironic radiation. Cancer cells are mostly living in a stressful environment of hypoxia, lack of nutrition, and immune reaction attacks. To cope with all these stresses, MTA1 expression is upregulated, plays a role of master regulator of gene expression, and helps cancer cells to survive and migrate out of their original dwelling.
PMCID: PMC4244563  PMID: 25332145
MTA1; Stress protein; Carcinogenesis; Metastasis; Hypoxia; Immune stress; Epithelial stem cell misplacement; Apoptosis
22.  Why anti-Bcl-2 clinical trials fail: a solution 
Cancer metastasis reviews  2014;33(1):285-294.
The alteration in expression of B cell lymphoma-2 (Bcl-2) family of protein members in cancer is involved mainly in the regulation of apoptosis. Bcl-2 family proteins are currently used as major targets in the development of methods to improve treatment outcomes for cancer patients that underwent clinical trials. Although many agents have been developed for targeting Bcl-2 in the past decade, some previous attempts to target Bcl-2 have not resulted in beneficial clinical outcome for reasons unknown. Here, we propose that this was due in part for not considering the cellular level of a different antiapoptotic protein, i.e., galectin-3 (Gal-3). Gal-3 is a member of the β-galactoside binding protein family and a multifunctional oncogenic protein which regulates cell growth, cell adhesion, cell proliferation, angiogenesis, and apoptosis. Gal-3 is the sole protein that contains the NWGR anti-death motif of the Bcl-2 family and inhibits cell apoptosis induced by chemotherapeutic agents through phosphorylation, translocation and regulation of survival signaling pathways. It is now established that Gal-3 is a candidate target protein to suppress antiapoptotic activity and anticancer drug resistance. In this review, we describe the role and relevance of Gal-3 and Bcl-2 protein family in the regulation of apoptosis and propose a novel combination therapy modality. Combination therapy that targets Gal-3 could be essential for improvement of the efficacy of Bcl-2 targeting therapy in cancers and should be studied in future clinical trials. Otherwise, not considering Gal-3 cellular level could lead to trial failure.
PMCID: PMC4058422  PMID: 24338002
Apoptosis; Bcl-2; Galectin-3; Therapy
23.  Platelets and cancer: a casual or causal relationship: revisited 
Cancer metastasis reviews  2014;33(1):231-269.
Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as “First Responders” during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.
PMCID: PMC4186918  PMID: 24696047
Platelet; TCIPA; Metastasis; Thrombosis; Extravasation; CTC
24.  The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis 
Cancer metastasis reviews  2011;30(0):397-408.
Thromboxane A2 (TXA2) is a biologically active metabolite of arachidonic acid formed by the action of the terminal synthase, thromboxane A2 synthase (TXA2S), on prostaglandin endoperoxide (PGH2). TXA2 is responsible for multiple biological processes through its cell surface receptor, the T-prostanoid (TP) receptor. Thromboxane A2 synthase and TP are the two necessary components for the functioning of this potent bioactive lipid. Thromboxane A2 is widely implicated in a range of cardiovascular diseases, owing to its acute and chronic effects in promoting platelet aggregation, vasoconstriction, and proliferation. In recent years, additional functional roles for both TXA2S and TP in cancer progression have been indicated. Increased cyclooxygenase (COX)-2 expression has been described in a variety of human cancers, which has focused attention on TXA2 as a downstream metabolite of the COX-2-derived PGH2. Several studies suggest potential involvement of TXA2S and TP in tumor progression, especially tumor cell proliferation, migration, and invasion that are key steps in cancer progression. In addition, the regulation of neovascularization by TP has been identified as a potent source of control during oncogenesis. There have been several recent reviews of TXA2S and TP but thus far none have discussed its role in cancer progression and metastasis in depth. This review will focus on some of the more recent findings and advances with a significant emphasis on understanding the functional role of TXA2S and TP in cancer progression and metastasis.
PMCID: PMC4175445  PMID: 22037941
Thromboxane synthase; Thromboxane receptor; Cyclooxygenase; Cancer progression; Metastasis; Angiogenesis; Cell migration; Apoptosis
25.  Bone marrow fat: linking adipocyte-induced inflammation with skeletal metastases 
Cancer metastasis reviews  2014;33(0):527-543.
Adipocytes are important but underappreciated components of bone marrow microenvironment, and their numbers greatly increase with age, obesity, and associated metabolic pathologies. Age and obesity are also significant risk factors for development of metastatic prostate cancer. Adipocytes are metabolically active cells that secrete adipokines, growth factors, and inflammatory mediators; influence behavior and function of neighboring cells; and have a potential to disturb local milleu and dysregulate normal bone homeostasis. Increased marrow adiposity has been linked to bone marrow inflammation and osteoporosis of the bone, but its effects on growth and progression of prostate tumors that have metastasized to the skeleton are currently not known. This review focuses on fat-bone relationship in a context of normal bone homeostasis and metastatic tumor growth in bone. We discuss effects of marrow fat cells on bone metabolism, hematopoiesis, and inflammation. Special attention is given to CCL2- and COX-2-driven pathways and their potential as therapeutic targets for bone metastatic disease.
PMCID: PMC4154371  PMID: 24398857
Prostate cancer; Bone metastasis; Adipocytes; Inflammation; COX-2; CCL2

Results 1-25 (120)