Search tips
Search criteria

Results 1-25 (9316)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Exposure Assessment in the National Children’s Study: Introduction 
Environmental Health Perspectives  2005;113(8):1076-1082.
The science of exposure assessment is relatively new and evolving rapidly with the advancement of sophisticated methods for specific measurements at the picogram per gram level or lower in a variety of environmental and biologic matrices. Without this measurement capability, environmental health studies rely on questionnaires or other indirect means as the primary method to assess individual exposures. Although we use indirect methods, they are seldom used as stand-alone tools. Analyses of environmental and biologic samples have allowed us to get more precise data on exposure pathways, from sources to concentrations, to routes, to exposure, to doses. They also often allow a better estimation of the absorbed dose and its relation to potential adverse health outcomes in individuals and in populations. Here, we make note of various environmental agents and how best to assess exposure to them in the National Children’s Study—a longitudinal epidemiologic study of children’s health. Criteria for the analytical method of choice are discussed with particular emphasis on the need for long-term quality control and quality assurance measures.
PMCID: PMC1280352  PMID: 16079082
biomonitoring; environmental monitoring questionnaire; exposure assessment; limit of detection; National Children’s Study
4.  The Beat 
Environmental Health Perspectives  2005;113(8):A517-A519.
PMCID: PMC1280380
6.  Differential Gene Expression in Normal Human Mammary Epithelial Cells Treated with Malathion Monitored by DNA Microarrays 
Environmental Health Perspectives  2005;113(8):1046-1051.
Organophosphate pesticides are a major source of occupational exposure in the United States. Moreover, malathion has been sprayed over major urban populations in an effort to control mosquitoes carrying West Nile virus. Previous research, reviewed by the U.S. Environmental Protection Agency, on the genotoxicity and carcinogenicity of malathion has been inconclusive, although malathion is a known endocrine disruptor. Here, interindividual variations and commonality of gene expression signatures have been studied in normal human mammary epithelial cells from four women undergoing reduction mammoplasty. The cell strains were obtained from the discarded tissues through the Cooperative Human Tissue Network (sponsors: National Cancer Institute and National Disease Research Interchange). Interindividual variation of gene expression patterns in response to malathion was observed in various clustering patterns for the four cell strains. Further clustering identified three genes with increased expression after treatment in all four cell strains. These genes were two aldo–keto reductases (AKR1C1 and AKR1C2) and an estrogen-responsive gene (EBBP). Decreased expression of six RNA species was seen at various time points in all cell strains analyzed: plasminogen activator (PLAT), centromere protein F (CPF), replication factor C (RFC3), thymidylate synthetase (TYMS), a putative mitotic checkpoint kinase (BUB1), and a gene of unknown function (GenBank accession no. AI859865). Expression changes in all these genes, detected by DNA microarrays, have been verified by real-time polymerase chain reaction. Differential changes in expression of these genes may yield biomarkers that provide insight into interindividual variation in malathion toxicity.
PMCID: PMC1280347  PMID: 16079077
DNA microarray; gene expression; malathion; pesticide; toxicology
7.  Fellowships, Grants, & Awards 
Environmental Health Perspectives  2005;113(8):A546-A547.
PMCID: PMC1280372
10.  Better Bonding with Beans 
Environmental Health Perspectives  2005;113(8):A538-A541.
PMCID: PMC1280368  PMID: 16079056
12.  Growth Spurt for EDC Recognition 
Environmental Health Perspectives  2005;113(8):A522-A524.
PMCID: PMC1280363  PMID: 16106568
13.  Sharing Solutions for Childhood Obesity 
Environmental Health Perspectives  2005;113(8):A520-A522.
PMCID: PMC1280362  PMID: 16079053
14.  Pollutant Particles Produce Vasoconstriction and Enhance MAPK Signaling via Angiotensin Type I Receptor 
Environmental Health Perspectives  2005;113(8):1009-1014.
Exposure to particulate matter (PM) is associated with acute cardiovascular mortality and morbidity, but the mechanisms are not entirely clear. In this study, we hypothesized that PM may activate the angiotensin type 1 receptor (AT1R), a G protein-coupled receptor that regulates inflammation and vascular function. We investigated the acute effects of St. Louis, Missouri, urban particles (UPs; Standard Reference Material 1648) on the constriction of isolated rat pulmonary artery rings and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinases (MAPKs) in human pulmonary artery endothelial cells with or without losartan, an antagonist of AT1R. UPs at 1–100 μg/mL induced acute vaso-constriction in pulmonary artery. UPs also produced a time- and dose-dependent increase in phosphorylation of ERK1/2 and p38 MAPK. Losartan pretreatment inhibited both the vasoconstriction and the activation of ERK1/2 and p38. The water-soluble fraction of UPs was sufficient for inducing ERK1/2 and p38 phosphorylation, which was also losartan inhibitable. Copper and vanadium, two soluble transition metals contained in UPs, induced pulmonary vasoconstriction and phosphorylation of ERK1/2 and p38, but only the phosphorylation of p38 was inhibited by losartan. The UP-induced activation of ERK1/2 and p38 was attenuated by captopril, an angiotensin-converting enzyme inhibitor. These results indicate that activation of the local renin–angiotensin system may play an important role in cardiovascular effects induced by PM.
PMCID: PMC1280341  PMID: 16079071
air pollutant; angiotensin II; angiotensin-converting enzyme; copper; ERK; p38; vanadium
20.  Seasonal Variations in Air Pollution Particle-Induced Inflammatory Mediator Release and Oxidative Stress 
Environmental Health Perspectives  2005;113(8):1032-1038.
Health effects associated with particulate matter (PM) show seasonal variations. We hypothesized that these heterogeneous effects may be attributed partly to the differences in the elemental composition of PM. Normal human bronchial epithelial (NHBE) cells and alveolar macrophages (AMs) were exposed to equal mass of coarse [PM with aerodynamic diameter of 2.5–10 μm (PM2.5–10)], fine (PM2.5), and ultrafine (PM < 0.1) ambient PM from Chapel Hill, North Carolina, during October 2001 (fall) and January (winter), April (spring), and July (summer) 2002. Production of interleukin (IL)-8, IL-6, and reactive oxygen species (ROS) was measured. Coarse PM was more potent in inducing cytokines, but not ROSs, than was fine or ultrafine PM. In AMs, the October coarse PM was the most potent stimulator for IL-6 release, whereas the July PM consistently stimulated the highest ROS production measured by dichlorofluorescein acetate and dihydrorhodamine 123 (DHR). In NHBE cells, the January and the October PM were consistently the strongest stimulators for IL-8 and ROS, respectively. The July PM increased only ROS measured by DHR. PM had minimal effects on chemiluminescence. Principal-component analysis on elemental constituents of PM of all size fractions identified two factors, Cr/Al/Si/Ti/Fe/Cu and Zn/As/V/Ni/Pb/Se, with only the first factor correlating with IL-6/IL-8 release. Among the elements in the first factor, Fe and Si correlated with IL-6 release, whereas Cr correlated with IL-8 release. These positive correlations were confirmed in additional experiments with PM from all 12 months. These results indicate that elemental constituents of PM may in part account for the seasonal variations in PM-induced adverse health effects related to lung inflammation.
PMCID: PMC1280345  PMID: 16079075
air pollutant; interleukin-6; interleukin-8; reactive oxygen species
21.  Exposure Assessment Implications for the Design and Implementation of the National Children’s Study 
Environmental Health Perspectives  2005;113(8):1108-1115.
Examining the influence of environmental exposures on various health indices is a critical component of the planned National Children’s Study (NCS). An ideal strategy for the exposure monitoring component of the NCS is to measure indoor and outdoor concentrations and personal exposures of children to a variety of pollutants, including ambient particulate and gaseous pollutants, biologic agents, persistent organics, nonpersistent organics (e.g., pesticides), inorganic chemicals (e.g., metals), and others. However, because of the large sample size of the study (~ 100,000 children), it is not feasible to assess every possible exposure of each child. We envision that cost-effective strategies for gathering the necessary exposure-related information with minimum burden to participants, such as broad administration of product-use questionnaires and diaries, would likely be considered in designing the exposure component of the NCS. In general a biologic (e.g., blood, urine, hair, saliva) measure could be the dosimeter of choice for many of the persistent and for some of the nonpersistent organic pollutants. Biologic specimens, such as blood, can also indicate long-term internal dose to various metals, including lead and mercury. Environmental measures, on the other hand, provide pathway/source-specific exposure estimates to many of the environmental agents, including those where biologic measurements are not currently feasible (e.g., for particulate matter and for some gaseous criteria pollutants). However, these may be burdensome and costly to either collect or analyze and may not actually indicate the absorbed dose. Thus, an important technical and logistical challenge for the NCS is to develop an appropriate study design with adequate statistical power that will permit detection of exposure-related health effects, based on an optimum set of exposure measurement methods. We anticipate that low-cost, low-burden methods such as questionnaires and screening type assessments of environmental and biologic samples could be employed, when exposures at different critical life stages of vulnerability can be reliably estimated by these simpler methods. However, when reliability and statistical power considerations dictate the need for collecting more specific exposure information, more extensive environmental, biologic, and personal exposure measurements should be obtained from various “validation” subsets of the NCS population that include children who are in different life stages. This strategy of differential exposure measurement design may allow the exposure–response relationships to be tested on the whole cohort by incorporating the information on the relationship between different types of exposure measures (i.e., ranging from simple to more complex) derived from the detailed validation subsamples.
PMCID: PMC1280356  PMID: 16079086
biomonitoring; environmental; epidemiologic study design; exposure assessment; measurement; National Children’s Study; questionnaires
23.  Erratum 
PMCID: PMC1280378
25.  Effects of Environmental Agents on the Attainment of Puberty: Considerations When Assessing Exposure to Environmental Chemicals in the National Children’s Study 
Environmental Health Perspectives  2005;113(8):1100-1107.
The apparent decline in the age at puberty in the United States raises a general level of concern because of the potential clinical and social consequences of such an event. Nutritional status, genetic predisposition (race/ethnicity), and environmental chemicals are associated with altered age at puberty. The Exposure to Chemical Agents Working Group of the National Children’s Study (NCS) presents an approach to assess exposure for chemicals that may affect the age of maturity in children. The process involves conducting the assessment by life stages (i.e., in utero, postnatal, peripubertal), adopting a general categorization of the environmental chemicals by biologic persistence, and collecting and storing biologic specimens that are most likely to yield meaningful information. The analysis of environmental samples and use of questionnaire data are essential in the assessment of chemicals that cannot be measured in biologic specimens, and they can assist in the evaluation of exposure to nonpersistent chemicals. Food and dietary data may be used to determine the extent to which nutrients and chemicals from this pathway contribute to the variance in the timing of puberty. Additional research is necessary in several of these areas and is ongoing. The NCS is uniquely poised to evaluate the effects of environmental chemicals on the age at puberty, and the above approach will allow the NCS to accomplish this task.
PMCID: PMC1280355  PMID: 16079085
children; environmental chemicals; exposure assessment; hormonally active agents; National Children’s Study; puberty

Results 1-25 (9316)