Search tips
Search criteria

Results 1-21 (21)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Antioxidant Treatment Limits Neuroinflammation in Experimental Glaucoma 
Besides primary neurotoxicity, oxidative stress may compromise the glial immune regulation and shift the immune homeostasis toward neurodegenerative inflammation in glaucoma. We tested this hypothesis through the analysis of neuroinflammatory and neurodegenerative outcomes in mouse glaucoma using two experimental paradigms of decreased or increased oxidative stress.
The first experimental paradigm tested the effects of Tempol, a multifunctional antioxidant, given through osmotic mini-pumps for drug delivery by constant infusion. Following a 6-week treatment period after microbead/viscoelastic injection-induced ocular hypertension, retina and optic nerve samples were analyzed for markers of oxidative stress and cytokine profiles using specific bioassays. We also analyzed a redox-sensitive transcriptional regulator of neuroinflammation, namely NF-κB. The second paradigm included a similar analysis of the effects of overloaded oxidative stress on retina and optic nerve inflammation in mice knockout for a major antioxidant enzyme (SOD1−/−).
Increased antioxidant capacity and decreased protein carbonyls and HNE adducts with Tempol treatment verified the drug delivery and biological function. Among a range of cytokines measured, proinflammatory cytokines, including IL-1, IL-2, IFN-γ, and TNF-α, exhibited more than 2-fold decreased titers in Tempol-treated ocular hypertensive eyes. Antioxidant treatment also resulted in a prominent decrease in NF-κB activation in the ocular hypertensive retina and optic nerve. Although pharmacological treatment limiting the oxidative stress resulted in decreased neuroinflammation, ocular hypertension–induced neuroinflammatory responses were increased in SOD1−/− mice with defective antioxidant response.
These findings support the oxidative stress–related mechanisms of neuroinflammation and the potential of antioxidant treatment as an immunomodulation strategy for neuroprotection in glaucoma.
PMCID: PMC4855827  PMID: 27127934
glaucoma; immunomodulation; neurodegeneration; neuroinflammation; neuroprotection; oxidative stress
2.  Proteomics Analysis of Molecular Risk Factors in the Ocular Hypertensive Human Retina 
To better understand ocular hypertension–induced early molecular alterations that may determine the initiation of neurodegeneration in human glaucoma, this study analyzed retinal proteomic alterations in the ocular hypertensive human retina.
Retina samples were obtained from six human donors with ocular hypertension (without glaucomatous injury) and six age- and sex-matched normotensive controls. Retinal proteins were analyzed by two-dimensional LC-MS/MS (liquid chromatography and linear ion trap mass spectrometry) using oxygen isotope labeling for relative quantification of protein expression. Proteomics data were validated by Western blot and immunohistochemical analyses of selected proteins.
Out of over 2000 retinal proteins quantified, hundreds exhibited over 2-fold increased or decreased expression in ocular hypertensive samples relative to normotensive controls. Bioinformatics linked the proteomics datasets to various pathways important for maintenance of cellular homeostasis in the ocular hypertensive retina. Upregulated proteins included various heat shock proteins, ubiquitin proteasome pathway components, antioxidants, and DNA repair enzymes, while many proteins involved in mitochondrial oxidative phosphorylation exhibited downregulation in the ocular hypertensive retina. Despite the altered protein expression reflecting intrinsic adaptive/protective responses against mitochondrial energy failure, oxidative stress, and unfolded proteins, no alterations suggestive of an ongoing cell death process or neuroinflammation were detectable.
This study provides information about ocular hypertension–related molecular risk factors for glaucoma development. Molecular alterations detected in the ocular hypertensive human retina as opposed to previously detected alterations in human donor retinas with clinically manifest glaucoma suggest that proteome alterations determine the individual threshold to tolerate the ocular hypertension–induced tissue stress or convert to glaucomatous neurodegeneration when intrinsic adaptive/protective responses are overwhelmed.
This study presents retinal proteomics data from six human donors with ocular hypertension in comparison to normotensive controls. The presented data reflect ocular hypertension-related molecular risk factors that may potentially distress the physiological equilibrium toward glaucoma development.
PMCID: PMC4566415  PMID: 26348630
ocular hypertension; human retina; proteomics
3.  Scleral fibroblast response to experimental glaucoma in mice 
Molecular Vision  2016;22:82-99.
To study the detailed cellular and molecular changes in the mouse sclera subjected to experimental glaucoma.
Three strains of mice underwent experimental bead-injection glaucoma and were euthanized at 3 days and 1, 3, and 6 weeks. Scleral protein expression was analyzed with liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using 16O/18O labeling for quantification in 1- and 6-week tissues. Sclera protein samples were also analyzed with immunoblotting with specific antibodies to selected proteins. The proportion of proliferating scleral fibroblasts was quantified with Ki67 and 4’,6-diamidino-2-phenylindole (DAPI) labeling, and selected proteins were studied with immunohistochemistry.
Proteomic analysis showed increases in molecules involved in integrin-linked kinase signaling and actin cytoskeleton signaling pathways at 1 and 6 weeks after experimental glaucoma. The peripapillary scleral region had more fibroblasts than equatorial sclera (p=0.001, n=217, multivariable regression models). There was a sixfold increase in proliferating fibroblasts in the experimental glaucoma sclera at 1 week and a threefold rise at 3 and 6 weeks (p=0.0005, univariate regression). Immunoblots confirmed increases for myosin, spectrin, and actinin at 1 week after glaucoma. Thrombospondin-1 (TSP-1), HINT1, vimentin, actinin, and α-smooth muscle actin were increased according to immunohistochemistry.
Scleral fibroblasts in experimental mouse glaucoma show increases in actin cytoskeleton and integrin-related signaling, increases in cell division, and features compatible with myofibroblast transition.
PMCID: PMC4734151  PMID: 26900327
4.  A Decade of the Proteomics Studies of Glaucomatous Neurodegeneration 
Glaucoma is a leading cause of blindness; however, limited understanding of the molecular mechanisms involved in optic nerve degeneration hinders the development of improved treatment strategies. Proteomics techniques that combine the protein chemistry, mass spectrometry, and bioinformatics offer the opportunity to shed light on molecular mechanisms so that new treatment strategies can be developed for immunomodulation, neuroprotection, neurorescue, neuroregeneration, and function gain in glaucoma. The proteomics technologies also hold great promise for biomarker discovery, another important goal of glaucoma research. As much as developing new treatment strategies, molecular biomarkers are strongly needed for early diagnosis of glaucoma, prediction of its prognosis, and monitoring the responses to new treatments. It is now a decade that the proteomics analysis techniques have been using to move glaucoma research forward. This review will focus on valuable applications of proteomics in the field of glaucoma research and highlight the power of this analytical toolbox in translational and clinical research towards better characterization and improved treatment of glaucomatous neurodegeneration and discovery of glaucoma-related molecular biomarkers.
PMCID: PMC4011134  PMID: 24415558
Biomarker; Glaucoma; Neurodegeneration; Proteomics
5.  A Proteomics View of the Molecular Mechanisms and Biomarkers of Glaucomatous Neurodegeneration 
Despite improving understanding of glaucoma, key molecular players of neurodegeneration that can be targeted for treatment of glaucoma, or molecular biomarkers that can be useful for clinical testing, remain unclear. Proteomics technology offers a powerful toolbox to accomplish these important goals of the glaucoma research and is increasingly being applied to identify molecular mechanisms and biomarkers of glaucoma. Recent studies of glaucoma using proteomics analysis techniques have resulted in the lists of differentially expressed proteins in human glaucoma and animal models. The global analysis of protein expression in glaucoma has been followed by cell-specific proteome analysis of retinal ganglion cells and astrocytes. The proteomics data have also guided targeted studies to identify post-translational modifications and protein-protein interactions during glaucomatous neurodegeneration. In addition, recent applications of proteomics have provided a number of potential biomarker candidates. Proteomics technology holds great promise to move glaucoma research forward toward new treatment strategies and biomarker discovery. By reviewing the major proteomics approaches and their applications in the field of glaucoma, this article highlights the power of proteomics in translational and clinical research related to glaucoma and also provides a framework for future research to functionally test the importance of specific molecular pathways and validate candidate biomarkers.
PMCID: PMC3648603  PMID: 23396249
6.  Immune Regulation Towards Immunomodulation for Neuroprotection in Glaucoma 
Although the immune system functions to preserve and restore tissue homeostasis, accumulating risk factors, prolonged glial activation, and sustained release of pro-inflammatory mediators in glaucoma may lead to a failure in the regulation of stress-induced immune response, and innate immune cells, autoreactive T cells, autoantibodies, and excess complement attack may exhibit potent stimuli that harm retinal ganglion cell somas, axons, and synapses. Identification of the cellular and molecular components of immune response pathways can provide immunomodulatory treatment strategies to attenuate neuroinflammation, protect neural tissue from collateral injury, and enhance endogenous recovery processes. This review highlights the current knowledge of molecular mechanisms regulating neuroinflammation in glaucoma.
PMCID: PMC3529855  PMID: 23084793
7.  Immunoproteomic Analysis of Potential Serum Biomarker Candidates in Human Glaucoma 
Evidence supporting the immune system involvement in glaucoma includes increased titers of serum antibodies to retina and optic nerve proteins, although their pathogenic importance remains unclear. This study using an antibody-based proteomics approach aimed to identify disease-related antigens as candidate biomarkers of glaucoma.
Serum samples were collected from 111 patients with primary open-angle glaucoma and an age-matched control group of 49 healthy subjects without glaucoma. For high-throughput characterization of antigens, serum IgG was eluted from five randomly selected glaucomatous samples and analyzed by linear ion trap mass spectrometry (LC-MS/MS). Serum titers of selected biomarker candidates were then measured by specific ELISAs in the whole sample pool (including an additional control group of diabetic retinopathy).
LC-MS/MS analysis of IgG elutes revealed a complex panel of proteins, including those detectable only in glaucomatous samples. Interestingly, many of these antigens corresponded to upregulated retinal proteins previously identified in glaucomatous donors (or that exhibited increased methionine oxidation). Moreover, additional analysis detected a greater immunoreactivity of the patient sera to glaucomatous retinal proteins (or to oxidatively stressed cell culture proteins), thereby suggesting the importance of disease-related protein modifications in autoantibody production/reactivity. As a narrowing-down strategy for selection of initial biomarker candidates, we determined the serum proteins overlapping with the retinal proteins known to be up-regulated in glaucoma. Four of the selected 10 candidates (AIF, cyclic AMP-responsive element binding protein, ephrin type-A receptor, and huntingtin) exhibited higher ELISA titers in the glaucomatous sera.
A number of serum proteins identified by this immunoproteomic study of human glaucoma may represent diseased tissue-related antigens and serve as candidate biomarkers of glaucoma.
This immunoproteomic study identified antigenic targets of serum antibodies in glaucoma and initiated validation studies to assess their value as disease biomarkers. A number of serum proteins presented may represent diseased tissue-specific antigens and serve as candidate biomarkers of glaucoma.
PMCID: PMC3522442  PMID: 23150628
8.  An Astrocyte-Specific Proteomic Approach toInflammatory Responses in Experimental Rat Glaucoma 
To delineate astrocyte-mediated inflammatory processes in glaucoma, we analyzed proteomic responses of retinal astrocytes in an experimental rat model using a cell-specific approach.
IOP elevation was induced in rats by hypertonic saline injections into episcleral veins. Enriched samples of astrocytes were isolated through the immunomagnetic cell selection process established originally for retinal ganglion cell (RGC) sampling. Ocular hypertensive and control samples were collected by pooling from rat eyes matched for the cumulative IOP exposure. Protein expression was analyzed complementarily by quantitative two-dimensional capillary liquid chromatography and linear ion trap mass spectrometry (LC-MS/MS) followed by quantitative Western blot analysis and retinal tissue immunolabeling using specific antibodies to selected proteins.
Following validation of enriched astrocyte samples, LC-MS/MS analysis resulted in the identification of over 2000 proteins with high confidence. Bioinformatic comparison analysis of the high-throughput MS/MS data along with the findings of immunoblotting and immunohistochemistry supported distinct responses of ocular hypertensive astrocytes during the experimental paradigm, which exhibited predominantly cellular activation and immune/inflammatory responses as opposed to activation of cell death signaling in ocular hypertensive RGCs. Inflammatory responses of astrocytes in experimental glaucoma included up-regulation of a number of immune mediators/regulators linked to TNF-α/TNFR signaling, nuclear factor kappa-B (NF-κB) activation, autophagy regulation, and inflammasome assembly.
These findings validate an astrocyte-specific approach to quantitatively identify proteomic alterations in experimental glaucoma, and highlight many immune mediators/regulators characteristic of the inflammatory responses of ocular hypertensive astrocytes. By dissecting the complexity of prior data obtained from whole tissue, this pioneering approach should enable astrocyte responses to be defined and new treatments targeting astrocytes to be developed.
This study introduces an astrocyte-specific approach, validates its sensitivity to quantitatively identify astrocyte responses in experimental rat glaucoma, and highlights various immune mediators/regulators characteristic of the inflammatory responses of ocular hypertensive astrocytes.
PMCID: PMC3392010  PMID: 22570341
9.  The Immune Response in Glaucoma: a Perspective on the Roles of Oxidative Stress 
Experimental eye research  2010;93(2):178-186.
Neurodegenerative insults and glial activation during glaucomatous neurodegeneration initiate an immune response to restore tissue homeostasis and facilitate tissue cleaning and healing. However, increasing risk factors over a chronic and cumulative period may lead to a failure in the regulation of innate and adaptive immune response pathways and represent a route for conversion of the beneficial immunity into a neuroinflammatory degenerative process contributing to disease progression. Oxidative stress developing through the pathogenic cellular processes of glaucoma, along with the aging-related component of oxidative stress, likely plays a critical role in shifting the physiological equilibrium. This review aims to provide a perspective on the complex interplay of cellular events during glaucomatous neurodegeneration by proposing a unifying scheme that integrates oxidative stress-related risk factors with the altered regulation of immune response in glaucoma.
PMCID: PMC2998544  PMID: 20709058
glaucoma; retinal ganglion cell; glia; oxidative stress; immune system; aging
10.  Neurodegenerative and Inflammatory Pathway Components Linked to TNF-α/TNFR1 Signaling in the Glaucomatous Human Retina 
This study identifies upregulated proteins in the glaucomatous human retina exhibiting links to TNF-α/TNFR1 signaling, highlights various signaling molecules and regulators of cell death and immune response pathways, links proteomic and epigenetic alterations, and provides a motivating framework.
This study aimed to determine retinal proteomic alterations in human glaucoma, with particular focus on links to TNF-α/TNFR1 signaling.
Human retinal protein samples were obtained from 20 donors with (n = 10) or without (n = 10) glaucoma. Alterations in protein expression were individually analyzed by quantitative LC-MS/MS. Quantitative Western blot analysis with cleavage or phosphorylation site-specific antibodies was used for data validation, and cellular localization of selected proteins was determined by immunohistochemical analysis of the retina in an additional group of glaucomatous human donor eyes (n = 38) and nonglaucomatous controls (n = 30).
Upregulated retinal proteins in human glaucoma included a number of downstream adaptor/interacting proteins and protein kinases involved in TNF-α/TNFR1 signaling. Bioinformatic analysis of the high-throughput data established extended networks of diverse functional interactions with death-promoting and survival-promoting pathways and mediation of immune response. Upregulated pathways included death receptor-mediated caspase cascade, mitochondrial dysfunction, endoplasmic reticulum stress, calpains leading to apoptotic cell death, NF-κB and JAK/STAT pathways, and inflammasome-assembly mediating inflammation. Interestingly, retinal expression pattern of a regulator molecule, TNFAIP3, exhibited prominent variability between individual samples, and methylation of cytosine nucleotides in the TNFAIP3 promoter was found to be correlated with this variability among glaucomatous donors.
Findings of this study reveal a number of proteins upregulated in the glaucomatous human retina that exhibit many links to TNF-α/TNFR1 signaling. By highlighting various signaling molecules and regulators involved in cell death and immune response pathways and by correlating proteomic findings with epigenetic alterations, these findings provide a framework motivating further research.
PMCID: PMC3208177  PMID: 21917936
11.  TNF-α Signaling in Glaucomatous Neurodegeneration 
Progress in brain research  2008;173:409-421.
Growing evidence supports the role of TNF-α as a mediator of neurodegeneration in glaucoma. Glial production of TNF-α is increased and its death receptor is up-regulated on retinal ganglion cells (RGCs) and optic nerve axons in glaucomatous eyes. This multifunctional cytokine can induce RGC death through receptor-mediated caspase activation, mitochondrial dysfunction, and oxidative stress. Opposing these cell-death promoting signals, binding of TNF receptors can also trigger the activation of survival signals. A critical balance between a variety of intracellular signaling pathways determines the predominant in vivo bioactivity of TNF-α as best exemplified by differential responses of RGCs and glia. In addition to the direct neurotoxicity of TNF-α to RGCs and their axons, potential interplay of TNF-α signaling with other cellular events associated with glaucomatous neurodegeneration may also contribute to secondary neurodegenerative injury. This review focuses on the present evidence supporting the involvement of TNF-α signaling in glaucomatous neurodegeneration and possible treatment targets to provide neuroprotection.
PMCID: PMC3150483  PMID: 18929124
glaucoma; neurodegeneration; retinal ganglion cell; glia; tumor necrosis factor-alpha
12.  Glaucomatous Tissue Stress and the Regulation of Immune Response through Glial Toll-like Receptor Signaling 
Components of glaucomatous tissue stress, including upregulated heat shock proteins and oxidative stress, may serve as an immunostimulatory signal through the glial Toll-like receptors and activate innate and adaptive immune responses in glaucoma.
To determine the regulation of immune system activity associated with Toll-like receptor (TLR) signaling in glaucoma.
Retinal protein samples obtained from human donor eyes with (n = 10) or without (n = 10) glaucoma were analyzed by a quantitative proteomic approach involving mass spectrometry. Cellular localization of TLR2, -3, and -4 was also determined by immunohistochemical analysis of an additional group of human donor eyes with glaucoma (n = 34) and control eyes (n = 20). In addition, in vitro experiments were performed in rat retinal microglia and astrocytes to determine glial TLR expression and immunoregulatory function after exposure to exogenous heat shock proteins (HSPs) and H2O2-induced oxidative stress.
Proteomic analyses of the human retina detected expression and differential regulation of different TLRs in glaucomatous samples. Parallel to the upregulation of TLR signaling, proteomic findings were also consistent with a prominent increase in the expression of HSPs in glaucoma. Immunohistochemical analysis supported upregulated expression of TLRs on both microglia and astrocytes in the glaucomatous retina. In vitro experiments provided additional evidence that HSPs and oxidative stress upregulate glial TLR and MHC class II expression and cytokine production through TLR signaling and stimulate proliferation and cytokine secretion of co-cultured T cells during antigen presentation.
The findings of this study support the upregulation of TLR signaling in human glaucoma, which may be associated with innate and adaptive immune responses. In vitro findings showed that components of glaucomatous tissue stress, including upregulated HSPs and oxidative stress, may initiate the immunostimulatory signaling through glial TLRs.
PMCID: PMC3061506  PMID: 20538986
13.  Oxidative Stress and the Regulation of Complement Activation in Human Glaucoma 
The findings of this study expand the current knowledge of complement activation by presenting new evidence in human glaucoma and support that a potential deficiency in the intrinsic regulation of complement activation, as is evident in the presence of oxidative stress, may lead to uncontrolled complement attack with neurodestructive consequences.
As part of ongoing studies on proteomic alterations during glaucomatous neurodegeneration, this study focused on the complement system.
Human retinal protein samples obtained from donor eyes with (n = 10) or without (n = 10) glaucoma were analyzed by a quantitative proteomic approach using mass spectrometry. Cellular localization of protein expression for different complement components and regulators were also determined by immunohistochemical analysis of an additional group of human donor eyes with glaucoma (n = 34) compared with age-matched control eyes without glaucoma (n = 20). In addition, to determine the regulation of complement factor H (CFH) by oxidative stress, in vitro experiments were performed using rat retinal cell cultures incubated in the presence and absence of an oxidant treatment.
Proteomic analysis detected the expression and differential regulation of several complement components in glaucomatous samples, which included proteins involved in the classical and the lectin pathways of complement activation. In addition, several complement regulatory proteins were detected in the human retinal proteome, and glaucomatous samples exhibited a trend toward downregulation of CFH expression. In vitro experiments revealed that oxidative stress, which was also prominently detectable in the glaucomatous human retinas, downregulated CFH expression in retinal cells.
These findings expand the current knowledge of complement activation by presenting new evidence in human glaucoma and support that despite important roles in tissue cleaning and healing, a potential deficiency in intrinsic regulation of complement activation, as is evident in the presence of oxidative stress, may lead to uncontrolled complement attack with neurodestructive consequences.
PMCID: PMC3066595  PMID: 20484586
14.  Hemoglobin Expression and Regulation in Glaucoma: Insights into Retinal Ganglion Cell Oxygenation 
This paper indicates hemoglobin expression and regulation in the inner retina and optic nerve head. By providing an intrinsic protective mechanism against hypoxic/oxidative injury, this oxygen-binding protein may have important implications in glaucomatous neurodegeneration.
To determine expression, cellular distribution, and regulation of hemoglobin (Hb) in normal and glaucomatous tissues.
Proteomic analysis of Hb expression was conducted on protein samples from ocular hypertensive and control rat eyes and human donor eyes with or without glaucoma. Proteomic findings were validated by quantitative (q)RT-PCR, Western blot analysis, immunohistochemistry, and the analysis of new Hb synthesis in culture. Hypoxic regulation of Hb expression was also studied in primary cultures of rat RGCs and macroglia and after transfer of the glia-conditioned medium to RGCs. The role of erythropoietin (EPO) signaling in Hb induction and cell survival was determined by applying recombinant (r)EPO treatment and performing EPO neutralization experiments by using soluble EPO receptor treatment of hypoxic cultures.
In vivo findings revealed Hb expression in the retina and optic nerve head macroglia and RGCs, suggesting an approximately two-fold upregulation in ocular hypertensive rat eyes and glaucomatous human donor eyes relative to the control eyes. In vitro findings collectively supported that hypoxia boosts glial Hb expression through hypoxia-inducible EPO signaling in an autocrine manner. Based on passive transfer experiments, hypoxia-induced production of glial EPO was also found to upregulate Hb expression in RGCs in a paracrine manner, thereby increasing the hypoxic survival of these neurons.
Findings of this study provide new insights into tissue oxygen transport in the inner retina and optic nerve head through the regulated expression of Hb in macroglia and RGCs. Upregulation of Hb expression appears to be an intrinsic protective mechanism to facilitate cellular oxygenation and may also provide free radical scavenging.
PMCID: PMC2868450  PMID: 19741249
15.  Effect of the Age Cross-Link Breaker Alagebrium on Anterior Segment Physiology, Morphology, and Ocular Age and Rage 
To determine the effects of the advanced glycation end product (AGE) cross-link breaker alagebrium on intraocular pressure (IOP), accommodation (ACC), outflow facility (OF), anterior segment morphology, and ocular AGE and receptors for AGE (RAGE) in older rhesus monkeys.
Six rhesus monkeys (aged 19 to 20 years) received 3 or 4 intracameral and intravitreal (final concentration, 1 mM) injections of alagebrium to one eye over 2.5 to 3 weeks and vehicle to the opposite eye. ACC and OF responses to intramuscular or intravenous pilocarpine were measured at baseline and at 1 to 2 weeks and 2, 4, and 6 months postinjection. IOP was measured prior to all injections, ACC, and OF measurements. Monkeys were euthanized 3 to 6 months after the last injection, the eyes were enucleated, and anterior and posterior segments were examined by electron microscopy or immunohistochemistry.
No significant differences were found in ACC or IOP at any time point after alagebrium treatment. Baseline OF was higher (37.0 ± 6.0%; P ≤ .005) in alagebrium-treated vs control eyes at 6 months postinjection. In 3 monkeys, alagebrium-treated eyes, compared to control eyes, showed greater focal plaque formation, similar to that seen in primary open-angle glaucoma, in the juxtacanalicular meshwork/inner wall of Schlemm’s canal. No changes in anterior segment AGE or RAGE were detectable. However, some areas of the retina and optic nerve head exhibited decreased AGE and increased RAGE immunostaining.
Intraocular injection of AGE cross-link breakers is an unlikely approach for glaucoma therapy. However, it may generate a model for further study of glaucomatous-like plaque formation. Immunohistochemical changes in the posterior segment in response to alagebrium warrant further functional studies.
PMCID: PMC2814573  PMID: 20126491
16.  Phosphorylation-Dependent Interaction with 14-3-3 in the Regulation of Bad Trafficking in Retinal Ganglion Cells 
To focus on the proteomic analysis of 14-3-3 proteins and to determine their cellular localization and functional role during glaucomatous neurodegeneration.
Complementary proteomic approaches were used to identify phosphorylated proteins in a chronic pressure-induced rat model of glaucoma. To detect interacting proteins, specific protein complexes were eluted using coimmunoprecipitation and recombinant protein-based affinity pull-down for subsequent mass spectrometric analysis. Western blot analysis was performed for validation of the proteomic findings, and immunohistochemical analysis of rat eyes and human donor eyes determined the cellular localization of 14-3-3 proteins. In addition, in vivo treatment experiments were conducted using JNK and protein phosphatase inhibitors.
Findings of mass spectrometry, Western blotting, and tissue immunolabeling revealed the presence of different 14-3-3 isotopes in RGCs and their up-regulation and phosphorylation during glaucomatous neurodegeneration. Consecutive experiments through proteomic analysis identified various proteins interacting with 14-3-3, which included calmodulin and a proapoptotic member of the Bcl-2 family, Bad; 14-3-3 was found to keep phospho-Bad sequestered in the cytoplasm. However, this association was disrupted in ocular hypertensive eyes in correlation with Bad dephosphorylation and 14-3-3 phosphorylation, thereby leading to mitochondrial translocation of Bad for apoptotic function. Inhibition of JNK activity and of protein phosphatase activity complementarily secured the 14-3-3-scaffold of Bad in the cytoplasm and preserved optic nerve axons in ocular hypertensive eyes.
Findings of this in vivo study identify that an important protein family associated with checkpoint control pathways, 14-3-3, is involved in cellular signaling during glaucomatous neurodegeneration in a phosphorylation-dependent manner.
PMCID: PMC2494876  PMID: 18296656
17.  Induced Autoimmunity to Heat Shock Proteins Elicits Glaucomatous Loss of Retinal Ganglion Cell Neurons via Activated T Cell-Derived Fas-Ligand 
Glaucomatous optic neuropathy causes blindness through the degeneration of retinal ganglion cells (RGCs) and their axons, which comprise the optic nerve. Glaucoma traditionally is associated with elevated intraocular pressure, but often occurs or may progress with intraocular pressure in the normal range. Like other diseases of the central nervous system, a subset of glaucoma has been proposed to involve an autoimmune component to help explain the loss of RGCs in the absence of elevated intraocular pressure. One hypothesis involves heat shock proteins (HSPs), since increased serum levels of HSP autoantibodies are prominent in some glaucoma patients with normal pressures. In the first direct support of this hypothesis, we found that HSP27 and HSP60 immunization in the Lewis rat induced RGC degeneration and axon loss 1–4 months later in vivo in a pattern with similarities to human glaucoma, including topographic specificity of cell loss. Infiltration of increased numbers of T cells in the retina occurred much earlier, 14–21 days following HSP immunization, and appeared to be transient. In vitro studies found that T cells activated by HSP-immunization induced RGC apoptosis via the release of the inflammatory cytokine FasL, while HSP-immunization induced activation of microglia cells and up-regulation of the FasL receptor in RGCs. In summary, our results suggest that RGC degeneration in glaucoma for selected individuals likely involves failed immunoregulation of the T cell-RGC axis and is thus a disturbance of both pro-apoptotic and protective pathways.
PMCID: PMC2683273  PMID: 19005073
autoimmunity; glaucoma; microglia; T cells; FasL; heat shock proteins
18.  Mechanisms of Immune System Activation in Glaucoma: Oxidative Stress-Stimulated Antigen Presentation by the Retina and Optic Nerve Head Glia 
Evidence supports the immune system activity accompanying glaucomatous neurodegeneration. This study aimed to determine the in vitro effects of reactive oxygen species (ROS) on the phenotype and antigen-presenting function of the retina and optic nerve head glia.
Cultures of rat retina and optic nerve head glia were treated with a mixture of ROS-generating compounds for 24 and 48 hours. Pretreated glial cells were then coincubated with syngeneic CD4+ T cells for 48 hours. ROS generation and cell viability were assessed with the use of dihydroethidium and calcein assays, respectively. Flow cytometry and immunocytochemistry were used to determine major histocompatibility complex (MHC) class II molecules. In addition, functional experiments were performed to determine the proliferation and cytokine secretion of T cells using [3H]-thymidine incorporation and TNF-α assays, respectively.
MHC class II molecules were upregulated on glial cells exposed to ROS. Compared with the control glia, glial cells in ROS-generating systems were found to be more potent inducers of T-cell activation in a cell density- and time-dependent manner, as assessed by increased T-cell proliferation (approximately threefold) and TNF-α secretion (approximately sixfold; P < 0.01). When an ROS scavenging treatment was applied, MHC class II upregulation on glial cells persisted, but antigen-mediated T-cell activation was significantly decreased (P < 0.01), indicating an additional costimulatory function of ROS during antigen presentation.
These in vitro findings support that ROS regulate the immune response by stimulating the antigen-presenting ability of glial cells and functioning as costimulatory molecules for antigen presentation.
PMCID: PMC2494942  PMID: 17251469
19.  Accelerated Aging in Glaucoma: Immunohistochemical Assessment of Advanced Glycation End Products in the Human Retina and Optic Nerve Head 
This study aimed to determine the association between advanced glycation end products (AGEs) and glaucoma based on the known synergism between oxidative stress with AGEs and the evidence of oxidative stress during glaucomatous neurodegeneration.
The extent and cellular localization of immunolabeling for AGEs and their receptor, RAGE, were determined in histologic sections of the retina and optic nerve head obtained from 38 donor eyes with glaucoma and 30 eyes from age-matched donors without glaucoma.
The extent of AGE and RAGE immunolabeling was greater in older than in younger donor eyes. However, compared with age-matched controls, an enhanced accumulation of AGEs and an up-regulation of RAGE were detectable in the glaucomatous retina and optic nerve head. Although some retinal ganglion cells (RGCs) and glia exhibited intracellular immunolabeling for AGEs, increased AGE immunolabeling in glaucomatous eyes was predominantly extracellular and included laminar cribriform plates in the optic nerve head. Some RAGE immunolabeling was detectable on RGCs; however, increased RAGE immunolabeling in glaucomatous eyes was predominant on glial cells, primarily Müller cells.
Given that the generation of AGEs is an age-dependent event, increased AGE accumulation in glaucomatous tissues supports that an accelerated aging process accompanies neurodegeneration in glaucomatous eyes. One of the potential consequences of AGE accumulation in glaucomatous eyes appears to be its contribution to increased rigidity of the lamina cribrosa. The presence of RAGE on RGCs and glia also makes them susceptible to AGE-mediated events through receptor-mediated signaling, which may promote cell death or dysfunction during glaucomatous neurodegeneration.
PMCID: PMC2492883  PMID: 17325164
20.  Glaucoma 
Glaucoma is a chronic neurodegenerative disease of the optic nerve, in which apoptosis of retinal ganglion cells (RGCs) and progressive loss of optic nerve axons result in structural and functional deficits in glaucoma patients. This neurodegenerative disease is indeed a leading cause of blindness in the world. The glaucomatous neurodegenerative environment has been associated with the activation of multiple pathogenic mechanisms for RGC death and axon degeneration. Growing evidence obtained from clinical and experimental studies over the last decade also strongly suggests the involvement of the immune system in this neurodegenerative process. Paradoxically, the roles of the immune system in glaucoma have been described as either neuroprotective or neurodestructive. A balance between beneficial immunity and harmful autoimmune neurodegeneration may ultimately determine the fate of RGCs in response to various stressors in glaucomatous eyes. Based on clinical data in humans, it has been proposed that one form of glaucoma may be an autoimmune neuropathy, in which an individual’s immune response facilitates a somatic and/or axonal degeneration of RGCs by the very system which normally serves to protect it against tissue stress.
PMCID: PMC2491341  PMID: 17264498
21.  Oxidative Stress in Glaucomatous Neurodegeneration: Mechanisms and Consequences 
Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. Although ROS are essential participants in cell signaling and regulation, when their cellular production overwhelms the intrinsic antioxidant capacity, damage to cellular macromolecules such as DNA, proteins, and lipids ensues. Such a state of “oxidative stress” is thought to contribute to the pathogenesis of a number of neurodegenerative diseases. Growing evidence supports the involvement of oxidative stress as a common component of glaucomatous neurodegeneration in different subcellular compartments of retinal ganglion cells (RGCs). Besides the evidence of direct cytotoxic consequences leading to RGC death, it also seems highly possible that ROS are involved in signaling RGC death by acting as a second messenger and/or modulating protein function by redox modifications of downstream effectors through enzymatic oxidation of specific amino acid residues. Different studies provide cumulating evidence, which supports the association of ROS with different aspects of the neurodegenerative process. Oxidative protein modifications during glaucomatous neurodegeneration increase neuronal susceptibility to damage and also lead to glial dysfunction. Oxidative stress-induced dysfunction of glial cells may contribute to spreading neuronal damage by secondary degeneration. Oxidative stress also promotes the accumulation of advanced glycation end products in glaucomatous tissues. It is also evident that oxidative stress takes part in the activation of immune response during glaucomatous neurodegeneration, as ROS stimulate the antigen presenting ability of glial cells and also function as co-stimulatory molecules during antigen presentation. By discussing current evidence, this review provides a broad perspective on cellular mechanisms and potential consequences of oxidative stress in glaucoma.
PMCID: PMC1820838  PMID: 16962364

Results 1-21 (21)