PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (297)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Agonists and antagonists for P2 receptors 
Novartis Foundation symposium  2006;276:58-281.
Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed.
PMCID: PMC4321821  PMID: 16805423
3.  Structurally related nucleotides as selective agonists and antagonists at P2Y1 receptors 
The P2Y1 receptor responds to adenine nucleotides and is present in platelets, heart, smooth muscles prostate, ovary, and brain. A selective antagonist may be useful as an antithrombotic agent. We have analyzed the binding site of this G protein-coupled receptor using ligand design, site-directed mutagenesis, and homology modeling based on rhodopsin. We have designed and synthesized a series of deoxyadenosine 3′,5′-bisphosphate derivatives that act as antagonists, or, in some cases with small structural changes, as agonists or partial agonists. The 2-position accommodates Cl or thioethers, whereas the N6-position is limited to Me or Et. 2′-Substitution with OH or OMe increases agonist efficacy over 2′-H. Using molecular modeling of the binding site, the oxygen atoms of the ribose moiety were predicted to be non-essential, i.e. no specific H-bonds with the receptor protein appear in the model. We have, therefore, substituted this moiety with carbocylics, smaller and larger rings, conformationally constrained rings, and acyclics, with retention of affinity for the receptor. With simplified pharmacophores we are exploring the steric and electronic requirements of the receptor binding site, and the structural basis of receptor activation.
PMCID: PMC4313380  PMID: 11347970
G protein-coupled receptors; Nucleotides; P2Y1; Molecular modeling
4.  Adenosine A3 Receptor Agonists Protect HL-60 and U-937 Cells from Apoptosis Induced by A3 Antagonists 
The effects of novel, selective adenosine (ADO) A3 receptor antagonists of diverse structure on cells of the human HL-60 leukemia and U-937 lymphoma cell lines were examined. Both 3-ethyl 5-benzyl 2-methyl-6-phenyl-4-phenylethynyl-1,4-(±)-dihydropyridine3,5-dicarboxylate (MRS 1191, 0.5µM) and 6-carboxymethyl-5,9-dihydro-9-methyl-2-phenyl-[1,2,4]-triazolo[5,1-a][2,7]naphthyridine (L-249313, 0.5 µM) induced apoptotic cell death and expression of bak protein. Low concentrations of the A3 receptor agonist 2-chloro-N6-(3-iodobenzyl)adenosine-5′-N-methyluxonamide (Cl-IB-MECA, 10 nM or 1 µM) protected against antagonist-induced cell death. At concentrations ≥ 10 µM, the agonist alone produced apoptosis and bak expression in various cell lines. It is suggested that there exists a tonic low level of A3 receptor activation, possibly induced by release of endogenous adenosine, that results in cell protection.
doi:10.1006/bbrc.1997.6290
PMCID: PMC4309999  PMID: 9125172
5.  Synthesis and Anti-Renal Fibrosis Activity of Conformationally Locked Truncated 2-Hexynyl-N6-Substituted-(N)-Methanocarba-nucleosides as A3 Adenosine Receptor Antagonists and Partial Agonists 
Journal of Medicinal Chemistry  2014;57(4):1344-1354.
Truncated N6-substituted-(N)-methanocarba-adenosine derivatives with 2-hexynyl substitution were synthesized to examine parallels with corresponding 4′-thioadenosines. Hydrophobic N6 and/or C2 substituents were tolerated in A3AR binding, but only an unsubstituted 6-amino group with a C2-hexynyl group promoted high hA2AAR affinity. A small hydrophobic alkyl (4b and 4c) or N6-cycloalkyl group (4d) showed excellent binding affinity at the hA3AR and was better than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f–4i did not differ significantly, with Ki values of 7.8–16.0 nM. N6-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis model. Most compounds strongly inhibited TGF-β1-induced collagen I upregulation, and their A3AR binding affinities were proportional to antifibrotic effects; 4b was most potent (IC50 = 0.83 μM), indicating its potential as a good therapeutic candidate for treating renal fibrosis.
doi:10.1021/jm4015313
PMCID: PMC3954500  PMID: 24456490
6.  Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats 
European journal of pharmacology  1996;308(3):311-314.
The hemodynamic effects of the novel, selective adenosine A3 receptor agonist 2-chloro-N6-(3-iodobenzyl)adenosine-5′-N-methyl-carboxamide (2-Cl-IB-MECA) were investigated in conscious rats. Intravenous administration of 200 μg/kg 2-Cl-IB-MECA resulted in a short-lasting hypotension, which was accompanied by a 50–100-fold increase in plasma histamine concentrations. Administration of a second dose of 2-Cl-IB-MECA did not elicit any hemodynamic effects. Also no histamine release was observed after the second dose. The observation of rapid tachyphylaxis in combination with histamine release suggests that mast cell mediator release plays a key role in the hemodynamic effects of adenosine A3 receptor agonists.
PMCID: PMC4287249  PMID: 8858305
Adenosine A3 receptor; Hemodynamics; Histamine release; Tachyphylaxis; 2-Chloro-N6-(3-iodobenzyl)adenosine-5-N-methylcarboxamide (2-Cl-IB-MECA); Rat, conscious
7.  A role for central A3-adenosine receptors Mediation of behavioral depressant effects 
FEBS letters  1993;336(1):57-60.
The behavioral effects of a selective A3 adenosine receptor agonist 3-IB-MECA (N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine) in mice and the localization of radioligand binding sites in mouse brain were examined. Low levels of A3 adenosine receptors were detected in various regions of the mouse brain (hippocampus, cortex, cerebellum, striatum), using a radioiodinated, high-affinity Aragonist radioligand [125I]AB-MECA (N6-(3-iodo-4-aminobenzyl)-5′-N-methylcarboxamidoadenosine). Scatchard analysis in the cerebellum showed that the Kd value for binding to A3 receptors was 1.39 ± 0.04 nM with a Bmax of 14.8 ± 2.1 fmol/mg protein. 3-IB-MECA at 0.1 mg/kg i.p. was a locomotor depressant with> 50% reduction in activity. Although selective A1 or A2a antagonists reversed locomotor depression elicited by selective A1 or A2a agonists, respectively, the behavioral depressant effects of 3-IB-MECA were unaffected. 3-IB-MECA also caused scratching in mice, which was prevented by coadministration of the histamine antagonist cyproheptadine. The demonstration of a marked behavioral effect of A3 receptor activation suggests that the A3 receptor represents a potential new therapeutic target.
PMCID: PMC4287251  PMID: 8262217
Adenosine receptor; Xanthine; Locomotor activity; Histamine; Radioligand binding
8.  Adenosine analogs with covalently attached lipids have enhanced potency at A1-adenosine receptors 
FEBS letters  1987;225(0):97-102.
Chemically functionalized congeners of N6-phenyladenosine and I ,3-dipropyl-8-phenylxanthine have been covalently coupled to fatty acids, diglyceridcs, and a phospholipid. The lipid-drug conjugates inhibit R-[3H]-phenylisopropyladenosinc binding to A1-adcnosine receptors in rat cerebral cortex membranes. A xanthinepbosphatidylethanolaminc conjugate bound with a K1 value of 19 nM. Various xanthine esters of low potency are potential prod rugs. Amides of an adenosine amine congener (ADA C) with 18-carbon fatty acids exhibited Ki values at A1-adenosine receptors of 70 pM, representing a 130-fold enhancement over the affinity of the corresponding acetyl amide. The very high affinity of adenosine-lipid conjugates may be due to stabilization of these adducts in the phospholipid microenvironment of the receptor protein.
PMCID: PMC4287258  PMID: 3691809
Lipid; Adenosine receptor; Xanthine; Adenosine derivative; Lipid-drug conjugate; Prodrug
9.  Enhancement of Glucose Uptake in Mouse Skeletal Muscle Cells and Adipocytes by P2Y6 Receptor Agonists 
PLoS ONE  2014;9(12):e116203.
Glucose uptake by peripheral tissues such as skeletal muscles and adipocytes is important in the maintenance of glucose homeostasis. We previously demonstrated that P2Y6 receptor (P2Y6R) agonists protect pancreatic islet cells from apoptosis and stimulate glucose-dependent insulin release. Here, we investigated the effects of P2Y6R activation on glucose uptake in insulin target tissues. An agonist of the P2Y6R, P1-(5′-uridine)-P3-(5′-N4-methoxycytidine)-triphosphate (MRS2957), significantly increased the uptake of [3H]2-deoxyglucose in mouse C2C12 myotubes and 3T3-L1 adipocytes, and this stimulation was significantly decreased by a selective P2Y6R antagonist N,N″-1,4-butanediyl-bis[N′-(3-isothiocyanatophenyl)thiourea] (MRS2578). Pre-incubation with Compound C (an inhibitor of 5′-AMP-activated protein kinase, AMPK), or AMPK siRNA abolished the stimulatory effect of MRS2957 on glucose uptake. Also, MRS2957 (60 min incubation) increased recruitment of the facilitated glucose transporter-4 (GLUT4) to the cell membrane, which was blocked by MRS2578. Treatment of C2C12 myotubes with MRS2957 induced significant phosphorylation of AMPK, which increase GLUT4 expression through histone deacetylase (HDAC)5 signaling. Glucose uptake in primary mouse adipocytes from wild-type mice was stimulated upon P2Y6R activation by either MRS2957 or native agonist UDP, and the P2Y6R effect was antagonized by MRS2578. However, in adipocytes from P2Y6R-knockout mice P2Y6R agonists had no effect on glucose uptake, and there was no change in the glucose uptake by insulin. Our results indicate that the P2Y6R promotes glucose metabolism in peripheral tissues, which may be mediated through AMPK signaling.
doi:10.1371/journal.pone.0116203
PMCID: PMC4280206  PMID: 25549240
10.  Crystal structures of the A2A adenosine receptor and their use in medicinal chemistry 
New insights into drug design are derived from the X-ray crystallographic structures of G protein-coupled receptors (GPCRs), and the adenosine receptors (ARs) are at the forefront of this effort. The 3D knowledge of receptor binding and activation promises to enable drug discovery for GPCRs in general, and specifically for the ARs. The predictability of modeling based on the X-ray structures of the A2AAR has been well demonstrated in the identification, design and modification of both known and novel AR agonists and antagonists. It is expected that structure-based design of drugs acting through ARs will provide new avenues to clinically useful agents.
doi:10.1186/2193-9616-1-22
PMCID: PMC3956660  PMID: 24660138
G protein-coupled receptors; Adenosine receptors; Crystal structures; Modeling; Computer-aided drug discovery
11.  The A3 Adenosine Receptor Mediates Cell Spreading, Reorganization of Actin Cytoskeleton, and Distribution of Bcl-xL: Studies in Human Astroglioma Cells 
The pathophysiological role of the adenosine A3 receptor in the central nervous system is largely unknown. We have investigated the effects of the selective A3 receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine, Cl-IB-MECA, in cells of the astroglial lineage (human astrocytoma ADF cells). A marked reorganization of the cytoskeleton, with appearance of stress fibers and numerous cell protrusions, was found following exposure of cells to low (nM) concentrations of Cl-IB-MECA. These “trophic” effects were accompanied by induction of the expression of Rho, a small GTP-binding protein, which was virtually absent in control cells, and by changes of the intracellular distribution of the antiapoptotic protein Bcl-xL, that, in agonist-exposed cells, became specifically associated to cell protrusions. This is the first demonstration that the intracellular organization of Bcl-xL can be modulated by the activation of a G-protein-coupled membrane receptor, such as the A3 adenosine receptor. Moreover, modulation of the astrocytic cytoskeleton by adenosine may have intriguing implications in both nervous system development and in the response of the brain to trauma and ischemia.
doi:10.1006/bbrc.1997.7705
PMCID: PMC4248308  PMID: 9425266
12.  TRIFUNCTIONAL LIGANDS: A RADIOIODINATED HIGH AFFINITY ACYLATING ANTAGONIST FOR THE A1 ADENOSINE RECEPTOR 
Pharmacology communications  1992;1(2):145-154.
A new xanthine (adenosine antagonist) radioligand that binds covalently to A1-adenosine receptors was prepared and used as a receptor probe. BH-DITC-XAC was synthesized via a trifunctional aryl diisothiocyanate crosslinker. containing the p-hydroxyphenylpropionyl group for radioiodination. The xanthine competed against agonist or antagonist A1 receptor radioligands in bovine brain membranes with an IC50, of 40nM. 125I-BH-DITC-XAC, prepared directly by the chloramine T method and purified by HPLC. bound specifically to A1 receptors. This binding was inhibited in the presence of the adenosine agonists R-PIA, S-PIA. and NECA in a dose dependent manner and with the order of potency characteristic of bovine A1 receptors. Incubation of affinity purified bovine A1-receptors with 125I-BH-DITC-XAC (0.8 nM) for 2 hours resulted in the specific and clean labelling of a polypeptide band corresponding to MW 36,000, identical to that previously found for the A1 receptor.
PMCID: PMC4217529  PMID: 25374448
xanthines; adenosine receptors; affinity labeling; radioiodination
13.  Agonist-bound structure of the human P2Y12 receptor 
Nature  2014;509(7498):119-122.
The P2Y12 receptor (P2Y12R), one of eight members of the P2YR family expressed in humans, has been identified as one of the most prominent clinical drug targets for inhibition of platelet aggregation. Consequently, extensive mutagenesis and modeling studies of the P2Y12R have revealed many aspects of agonist/antagonist binding1-4. However, the details of agonist and antagonist recognition and function at the P2Y12R remain poorly understood at the molecular level. Here, we report the structures of the human P2Y12R in complex with a full agonist 2-methylthio-adenosine-5′-diphosphate (2MeSADP, a close analogue of endogenous agonist ADP) at 2.5 Å resolution, and the corresponding ATP derivative 2-methylthio-adenosine-5′-triphosphate (2MeSATP) at 3.1 Å resolution. Analysis of these structures, together with the structure of the P2Y12R with antagonist ethyl 6-(4-((benzylsulfonyl)carbamoyl)piperidin-1-yl)-5-cyano-2-methylnicotinate (AZD1283)5, reveals dramatic conformational changes between nucleotide and non-nucleotide ligand complexes in the extracellular regions, providing the first insight into a different ligand binding landscape in the δ-group of class A G protein-coupled receptors (GPCRs). Agonist and non-nucleotide antagonist adopt different orientations in the P2Y12R, with only partially overlapped binding pockets. The agonist-bound P2Y12R structure answers long-standing ambiguities surrounding P2Y12R-agonist recognition, and reveals interactions with several residues that had not been reported to be involved in agonist binding. As a first example of a GPCR where agonist access to the binding pocket requires large scale rearrangements in the highly malleable extracellular region, the structural studies therefore will provide invaluable insight into the pharmacology and mechanisms of action of agonists and different classes of antagonists for the P2Y12R and potentially for other closely related P2YRs.
doi:10.1038/nature13288
PMCID: PMC4128917  PMID: 24784220
14.  A3 Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect: In Vivo Studies and Molecular Mechanism of Action 
Mediators of Inflammation  2014;2014:708746.
The A3 adenosine receptor (A3AR) is overexpressed in inflammatory cells and in the peripheral blood mononuclear cells of individuals with inflammatory conditions. Agonists to the A3AR are known to induce specific anti-inflammatory effects upon chronic treatment. LUF6000 is an allosteric compound known to modulate the A3AR and render the endogenous ligand adenosine to bind to the receptor with higher affinity. The advantage of allosteric modulators is their capability to target specifically areas where adenosine levels are increased such as inflammatory and tumor sites, whereas normal body cells and tissues are refractory to the allosteric modulators due to low adenosine levels. LUF6000 administration induced anti-inflammatory effect in 3 experimental animal models of rat adjuvant induced arthritis, monoiodoacetate induced osteoarthritis, and concanavalin A induced liver inflammation in mice. The molecular mechanism of action points to deregulation of signaling proteins including PI3K, IKK, IκB, Jak-2, and STAT-1, resulting in decreased levels of NF-κB, known to mediate inflammatory effects. Moreover, LUF6000 induced a slight stimulatory effect on the number of normal white blood cells and neutrophils. The anti-inflammatory effect of LUF6000, mechanism of action, and the differential effects on inflammatory and normal cells position this allosteric modulator as an attractive and unique drug candidate.
doi:10.1155/2014/708746
PMCID: PMC4211160  PMID: 25374446
16.  The role of activated adenosine receptors in degranulation of human LAD2 mast cells 
Purinergic Signalling  2014;10(3):465-475.
Mast cell degranulation triggers hypersensitivity reactions at the body–environment interface. Adenosine modulates degranulation, but enhancement and inhibition have both been reported. Which of four adenosine receptors (ARs) mediate modulation, and how, remains uncertain. Also uncertain is whether adenosine reaches mast cell ARs by autocrine ATP release and ecto-enzymatic conversion. Uncertainties partly reflect species and cell heterogeneity, circumvented here by focusing on homogeneous human LAD2 cells. Quantitative PCR detected expression of A2A, A2B, and A3, but not A1, ARs. Nonselective activation of ARs with increasing NECA monotonically enhanced immunologically or C3a-stimulated degranulation. NECA alone stimulated degranulation slightly. Selective AR antagonists did not affect C3a-stimulated degranulation. NECA's enhancement of C3a-triggered degranulation was partially inhibited by separate application of each selective antagonist, and abolished by simultaneous addition of antagonists to the three ARs. Only the A2A antagonist separately inhibited NECA's enhancement of immunologically stimulated degranulation, which was abolished by simultaneous addition of the three selective antagonists. Immunological or C3a activation did not stimulate ATP release. NECA also enhanced immunologically triggered degranulation of mouse bone marrow derived mast cells (BMMCs), which was partially reduced only by simultaneous addition of the three antagonists or by the nonselective antagonist CGS15943. BMMCs also expressed A2A, A2B, and A3 ARs. but not A1AR detectably. We conclude that (a) A1AR is unnecessary for LAD2 degranulation or AR enhancement; (b) A2A, A2B, and A3 ARs all contribute to pharmacologic AR enhancement of LAD2 and BMMC degranulation; and (c) LAD2 cells depend on microenvironmental adenosine to trigger AR modulation.
doi:10.1007/s11302-014-9409-4
PMCID: PMC4152452  PMID: 24595664
FcεRI; C3a; A2A; A2B; A3; ATP release
17.  NEW BASE-ALTERED ADENOSINE ANALOGUES: SYNTHESIS AND AFFINITY AT ADENOSINE A1 and A2A RECEPTORS 
N6-Substituted adenosine analogues containing cyclic hydrazines or chiral hydroxy (ar)alkyl groups, designed to interact with the S2 and S3 receptor subregions, have been synthesized and their binding to the adenosine A1 and A2A receptors have been investigated. Examples of both types of compounds were found to exhibit highly selective binding (Ki in low nM range) to the rat A1 receptor.
doi:10.1016/S0960-894X(97)10177-9
PMCID: PMC4138058  PMID: 25147430
18.  Rational Design of Sulfonated A3 Adenosine Receptor-Selective Nucleosides as Pharmacological Tools to Study Chronic Neuropathic Pain 
Journal of medicinal chemistry  2013;56(14):10.1021/jm4007966.
(N)-Methanocarba (bicyclo[3.1.0]hexane)-adenosine derivatives were probed for sites of charged sulfonate substitution, which precludes diffusion across biological membranes, e.g. blood brain barrier. Molecular modeling predicted that sulfonate groups on C2-phenylethynyl substituents would provide high affinity at both mouse (m) and human (h) A3 adenosine receptors (ARs), while a N6-p-sulfo-phenylethyl substituent would determine higher hA3AR vs. mA3AR affinity. These modeling predictions, based on steric fitting of the binding cavity and crucial interactions with key residues, were confirmed by binding/efficacy studies of synthesized sulfonates. N6-3-Chlorobenzyl-2-(3-sulfophenylethynyl) derivative 7 (MRS5841) bound selectively to h/m A3ARs (Ki hA3AR 1.9 nM) as agonist, while corresponding p-sulfo isomer 6 (MRS5701) displayed mixed A1/A3AR agonism. Both nucleosides administered i.p. reduced mouse chronic neuropathic pain that was ascribed to either A3 or A1/A3ARs using A3AR genetic deletion. Thus, rational design methods based on A3AR homology models successfully predicted sites for sulfonate incorporation, for delineating adenosine’s CNS vs. peripheral actions.
doi:10.1021/jm4007966
PMCID: PMC3858399  PMID: 23789857
Molecular modeling; G protein-coupled receptor; neuropathic pain; purines; radioligand binding; adenosine receptor
19.  DOPAMINE D2 RECEPTOR-MEDIATED MODULATION OF ADENOSINE A2A RECEPTOR AGONIST BINDING WITHIN THE A2AR/D2R OLIGOMER FRAMEWORK 
Neurochemistry international  2013;63(1):42-46.
The molecular interaction between adenosine A2A and dopamine D2 receptors (A2ARs and D2Rs, respectively) within an oligomeric complex has been postulated to play a pivotal role in the adenosine-dopamine interplay in the central nervous system, in both normal and pathological conditions (e.g. Parkinson’s disease). While the effects of A2AR challenge on D2R functioning have been largely studied, the reverse condition is still unexplored, a fact that might have impact in therapeutics. Here, we aimed to examine in a real-time mode the D2R-mediated allosteric modulation of A2AR binding when an A2AR/D2R oligomer is established. Thus, we synthesized fluorescent A2AR agonists and evaluated, by means of a flow cytometry homogeneous no-wash assay and a real-time fluorescence resonance energy transfer (FRET)-based approach, the effects on A2AR binding of distinct antiparkinsonian drugs in current clinical use (i.e. pramipexole, rotigotine and apomorphine). Our results provided evidence for the existence of a differential D2R-mediated negative allosteric modulation on A2AR agonist binding that was oligomer-formation dependent, and with apomorphine being the best antiparkinsonian drug attenuating A2AR agonist binding. Overall, the here-developed methods were found valid to prospect the ability of drugs acting on D2Rs to modulate A2AR binding, thus featuring as possible helpful tools for the preliminary selection of D2R-like candidate drugs in the management of Parkinson’s disease.
doi:10.1016/j.neuint.2013.04.006
PMCID: PMC3705641  PMID: 23619397
A2AR; D2R; Parkinson’s disease; receptor-receptor allosterism; antiparkinsonian drugs
20.  The therapeutic effect of 2-cyclohexylthio-AMP in heart failure 
Aim
to investigate the therapeutic effect of 2-cyclohexylthio-AMP in mice with heart failure (HF).
Methods
2-cyclohexylthio-AMP was dissolved in PBS and infused in mice with ischemic heart failure after permanent left coronary (LAD) ligation and in calsequestrin (CSQ) mice with heart failure. Myocardial function ex vivo was determined in the working heart model. Cardiac function in vivo was assessed by echocardiography.
Results
Injection of 2-cyclohexylthio-AMP induced a dose-dependent increase in +dP/dt, −dP/dt and LVDevP in normal WT mice and in CSQ mice with HF using the ex vivo working heart model. Spontaneous heart rate did not change after injection of 2-cyclohexylthio-AMP. Compared with normal saline treaded mice, chronic infusion of 2-cyclohexylthio-AMP in mice with ischemic HF after left coronary artery (LAD) ligation and in CSQ mice resulted in improved +dP/dt, −dP/dt, LVDevP and fractional shortening, restored the β-adrenergic response and decreased heart weight/body weight ratios.
Conclusion
2-Cyclohexylthio-AMP improved the cardiac contractile performance and rescued mice from heart failure. This salutary action may result from reduction of myocardial hypertrophy and the restoration of the β-adrenergic response in both LAD ligation and CSQ mice models of heart failure. That this agent can increase contractile performance without heart rate increase should be desirable in heart failure therapy.
doi:10.1097/FJC.0b013e31828e8758
PMCID: PMC3676730  PMID: 23474842
heart failure; P2X4 receptor; cardiac contractility; purines; ischemia
21.  2012 Philip S. Portoghese Medicinal Chemistry Lectureship: Structure-Based Approaches to Ligands for G Protein-Coupled Adenosine and P2Y Receptors, From Small Molecules to Nanoconjugates +  
Journal of medicinal chemistry  2013;56(10):3749-3767.
Adenosine receptor (ARs) and P2Y receptors (P2YRs) that respond to extracellular nucleosides/tides are associated with new directions for therapeutics. The X-ray structures of the A 2A AR complexes with agonists and antagonists are examined in relationship to the G protein-coupled receptor (GPCR) superfamily and applied to drug discovery. Much of the data on AR ligand structure from early SAR studies, now is explainable from the A 2A AR X-ray crystallography. The ligand-receptor interactions in related GPCR complexes can be identified by means of modeling approaches, e.g. molecular docking. Thus, molecular recognition in binding and activation processes has been studied effectively using homology modeling and applied to ligand design. Virtual screening has yielded new nonnucleoside AR antagonists, and existing ligands have been improved with knowledge of the receptor interactions. New agonists are being explored for CNS and peripheral therapeutics based on in vivo activity, such as chronic neuropathic pain. Ligands for receptors more distantly related to the X-ray template, i.e. P2YRs, have been introduced and are mainly used as pharmacological tools for elucidating the physiological role of extracellular nucleotides. Other ligand tools for drug discovery include fluorescent probes, radioactive probes, multivalent probes, and functionalized nanoparticles.
doi:10.1021/jm400422s
PMCID: PMC3701956  PMID: 23597047
G protein-coupled receptor ;  purines ;  molecular modeling ;  adenosine receptor ;  P2Y receptor
22.  Structural Probing of Off-Target G Protein-Coupled Receptor Activities within a Series of Adenosine/Adenine Congeners 
PLoS ONE  2014;9(5):e97858.
We studied patterns of off-target receptor interactions, mostly at G protein-coupled receptors (GPCRs) in the µM range, of nucleoside derivatives that are highly engineered for nM interaction with adenosine receptors (ARs). Because of the considerable interest of using AR ligands for treating diseases of the CNS, we used the Psychoactive Drug Screening Program (PDSP) for probing promiscuity of these adenosine/adenine congeners at 41 diverse receptors, channels and a transporter. The step-wise truncation of rigidified, trisubstituted (at N6, C2, and 5′ positions) nucleosides revealed unanticipated interactions mainly with biogenic amine receptors, such as adrenergic receptors and serotonergic receptors, with affinities as high as 61 nM. The unmasking of consistent sets of structure activity relationship (SAR) at novel sites suggested similarities between receptor families in molecular recognition. Extensive molecular modeling of the GPCRs affected suggested binding modes of the ligands that supported the patterns of SAR at individual receptors. In some cases, the ligand docking mode closely resembled AR binding and in other cases the ligand assumed different orientations. The recognition patterns for different GPCRs were clustered according to which substituent groups were tolerated and explained in light of the complementarity with the receptor binding site. Thus, some likely off-target interactions, a concern for secondary drug effects, can be predicted for analogues of this set of substructures, aiding the design of additional structural analogues that either eliminate or accentuate certain off-target activities. Moreover, similar analyses could be performed for unrelated structural families for other GPCRs.
doi:10.1371/journal.pone.0097858
PMCID: PMC4032265  PMID: 24859150
23.  Characterization by Flow Cytometry of Fluorescent, Selective Agonist Probes of the A3 Adenosine Receptor 
Biochemical pharmacology  2013;85(8):1171-1181.
Various fluorescent nucleoside agonists of the A3 adenosine receptor (AR) were compared as high affinity probes using radioligands and flow cytometry (FCM). They contained a fluorophore linked through the C2 or N6 position and rigid A3AR-enhancing (N)-methanocarba modification. A hydrophobic C2-(1-pyrenyl) derivative MRS5704 bound nonselectively. C2-Tethered cyanine5-dye labeled MRS5218 bound selectively to hA3AR expressed in whole CHO cells and membranes. By FCM, binding was A3AR-mediated (blocked by A3AR antagonist, at least half through internalization), with t1/2 for association 38 min in mA3AR-HEK293 cells; 26.4 min in sucrose-treated hA3AR-CHO cells (Kd 31 nM). Membrane binding indicated moderate mA3AR affinity, but not selectivity. Specific accumulation of fluorescence (50 nM MRS5218) occurred in cells expressing mA3AR, but not other mouse ARs. Evidence was provided suggesting that MRS5218 detects endogenous expression of the A3AR in the human promyelocytic leukemic HL-60 cell line. Therefore, MRS5218 promises to be a useful tool for characterizing the A3AR.
doi:10.1016/j.bcp.2013.01.021
PMCID: PMC3604185  PMID: 23376019
purines; fluorescence; G protein-coupled receptor; A3 adenosine receptor; flow cytometry
24.  AMP-ACTIVATED PROTEIN KINASE AS REGULATOR OF P2Y6 RECEPTOR-INDUCED INSULIN SECRETION IN MOUSE PANCREATIC β-CELLS 
Biochemical pharmacology  2013;85(7):991-998.
5’-AMP-activated protein kinase (AMPK) and its pharmacological modulators have been targeted for treating type 2 diabetes. Extracellular uridine 5’-diphosphate (UDP) activates P2Y6 receptors (P2Y6Rs) in pancreatic β-cells to release insulin and reduce apoptosis, which would benefit diabetes. Here, we studied the role of P2Y6R in activation of AMPK in MIN6 mouse pancreatic β-cells and insulin secretion. Treatment with a potent P2Y6R dinucleotide agonist MRS2957 (500 nM) activated AMPK, which was blocked by P2Y6R-selective antagonist MRS2578. Also, MRS2957 induced phosphorylation of acetyl-coenzyme A carboxylase (ACC), a marker of AMPK activity. Calcium chelator BAPTA-AM, calmodulin-dependent protein kinase kinase (CaMKK) inhibitor STO-069 and IP3 receptor antagonist 2-APB attenuated P2Y6R-mediated AMPK phosphorylation revealing involvement of intracellular Ca2+ pathways. P2Y6R agonist induced insulin secretion at high glucose, which was reduced by AMPK siRNA. Thus, P2Y6R has a crucial role in β-cell function, suggesting its potential as a therapeutic target in diabetes.
doi:10.1016/j.bcp.2012.11.029
PMCID: PMC3594329  PMID: 23333427
nucleotides; G protein-coupled receptor; insulin; AMPK; diabetes; P2Y6 receptor
25.  Allosteric Modulation of A3 Adenosine Receptors by a Series of 3-(2-Pyridinyl)isoquinoline Derivatives 
Molecular pharmacology  2001;60(5):1057-1063.
Allosteric modulators of A1 and A2A adenosine receptors have been described; however, for the A3 adenosine receptor, neither an allosteric site nor a compound with allosteric effects has been described. In this study, the allosteric modulation of human A3 adenosine receptors by a series of 3-(2-pyridinyl)isoquinoline derivatives was investigated by examining their effects on the dissociation of the agonist radioligand, [125I]N6-(4-amino-3-iodobenzyl)-5′ -N-methylcarboxamidoadenosine (I-AB-MECA), from the receptor. Several 3-(2-pyridinyl)isoquinoline derivatives, including VUF5455, VUF8502, VUF8504, and VUF8507, slowed the dissociation of the agonist radioligand [125I]I-AB-MECA in a concentration-dependent manner, suggesting an allosteric interaction. These compounds had no effect on the dissociation of the radiolabeled antagonist [3H]PSB-11 from the A3 adenosine receptor, suggesting a selective enhancement of agonist binding. By comparison, compounds of similar structure (VUF8501, VUF8503, VUF8505), the classical adenosine receptor antagonist CGS15943 and the A1 receptor allosteric enhancer PD81723 did not significantly influence the dissociation rate of [125I]I-AB-MECA. The effect of agonist on forskolin-induced cAMP production was significantly enhanced by VUF5455. When the subtype-selectivity of the allosteric enhancement was tested the compounds had no effect on the dissociation of either [3H]N6-[(R)-phenylisopropyl]adenosine from the A1 adenosine receptor or [3H]CGS21680 from the A2A adenosine receptor. Probing of structure-activity relationships suggested that a carbonyl group is essential for allosterism but preferred only for competitive antagonism. The presence of a 7-methyl group decreased the competitive binding affinity without a major loss of the allosteric enhancing activity, suggesting that the structural requirements for allosteric enhancement might be distinct from those for competitive antagonism.
PMCID: PMC3953614  PMID: 11641434

Results 1-25 (297)