Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Laser ablation of Dbx1 neurons in the pre-Bötzinger complex stops inspiratory rhythm and impairs output in neonatal mice 
eLife  2014;3:e03427.
To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here, we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ∼15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states.
eLife digest
Our first breath, moments after we are born, is the result of a pattern of activity in our brain that started in the embryo and will continue almost effortlessly until we die. Like other rhythmic activities, such as walking and swimming, breathing originates from circuits of neurons in the brain that generate patterns. These circuits pass messages to other cells that translate them into the physical movements required to take a breath. Interrupting these patterns by injury or illness can lead to breathing disorders or cause death.
Previous studies have identified a class of neuron, which all express a specific gene, that is necessary for breathing. Mice born without this class of cell failed to ever take a breath and died at birth. These neurons are found in part of the brainstem and can continue to generate rhythm even when this section of the brainstem is removed from newborn mice and cut into very thin slices. However, it is unclear how many of these neurons are needed to maintain a breathing rhythm.
Wang et al. used a laser to destroy the breathing rhythm-generating neurons in these slices one at a time and found that the rhythm of breathing in (i.e., inspiration) stopped after ∼15% of the neurons were destroyed. This suggests that a high percentage of these neurons must be maintained for breathing to continue normally.
Wang et al. also discovered that destroying the rhythm-generating neurons reduced the strength of the signals sent from the brainstem to trigger the movements that cause breathing in. This suggests that the same class of neurons also sends messages to the muscles involved in breathing; it was previously thought that a separate class of cell in the same part of the brain sent these messages.
Studies involving live animals are now needed to confirm the results. If confirmed, the findings may be used to develop new treatments for a number of breathing disorders. Medications that boost the signals sent to the muscles by these neurons might be useful for treating sleep apnea. Wang et al. also suggest that medications that boost rhythm generation might be useful for premature infants with breathing difficulties and people with drug-induced breathing problems. Moreover, finding ways to maintain breathing rhythms with fewer of these neurons may help those with neurodegenerative disorders, which cause cells in the brain to be lost.
PMCID: PMC4129438  PMID: 25027440
respiration; breathing; central pattern generator; two-photon microscopy; preBötzinger complex; mouse
2.  Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice 
eLife  2014;3:e02265.
All motor behaviors require precise temporal coordination of different muscle groups. Breathing, for example, involves the sequential activation of numerous muscles hypothesized to be driven by a primary respiratory oscillator, the preBötzinger Complex, and at least one other as-yet unidentified rhythmogenic population. We tested the roles of Atoh1-, Phox2b-, and Dbx1-derived neurons (three groups that have known roles in respiration) in the generation and coordination of respiratory output. We found that Dbx1-derived neurons are necessary for all respiratory behaviors, whereas independent but coupled respiratory rhythms persist from at least three different motor pools after eliminating or silencing Phox2b- or Atoh1-expressing hindbrain neurons. Without Atoh1 neurons, however, the motor pools become temporally disorganized and coupling between independent respiratory oscillators decreases. We propose Atoh1 neurons tune the sequential activation of independent oscillators essential for the fine control of different muscles during breathing.
eLife digest
A healthy adult at rest will breathe in and out around 20 times per minute. Each breath requires a complex series of coordinated muscle activity. Inhalation begins with the opening of the airway followed by the contraction of the diaphragm and the intercostal muscles between the ribs, causing the chest cavity to expand. As the lungs increase in volume, the pressure inside them drops and air is drawn in. Relaxation of the diaphragm and intercostal muscles compresses the lungs, causing us to exhale.
Breathing is driven by the brainstem and it cannot be suppressed indefinitely: holding your breath eventually triggers a reflex that forces breathing to resume. The region of the brainstem that controls breathing is called the preBötzinger Complex. However, there is increasing evidence that a second region in the brainstem is also involved. This region, which is called the retrotrapezoid nucleus/parafacial respiratory group, consists of three types of excitatory neurons—Dbx1 neurons, Phox2b neurons, and Atoh1 neurons—but their roles had not been clear. Now, using multiple lines of genetically modified mice, Tupal et al. have teased apart the roles of these three cell types.
These experiments showed that the Dbx1 neurons—which are also found in the preBötzinger Complex—have an essential role in sending the signals from the brain that drive the different muscle activities needed to breathe. The Phox2b neurons modulate breathing based on the level of carbon dioxide in the blood. Atoh1 neurons help control the sequence of respiratory muscle activity during a breath, probably by selectively inhibiting different populations of Dbx1 neurons.
The work of Tupal et al. indicates that distinct populations of neurons within the brainstem independently control two different aspects of breathing: the generation of breathing rhythms, and the coordination of these rhythms. Given that many other physiological processes involve rhythmic activity patterns, this model may help us to understand how the brain generates and controls complex behaviors more generally.
PMCID: PMC4060005  PMID: 24842997
breathing; central pattern generator; PreBötzinger Complex; oscillator; transcription; mouse
3.  Identification of the pre‐Bötzinger complex inspiratory center in calibrated “sandwich” slices from newborn mice with fluorescent Dbx1 interneurons 
Physiological Reports  2014;2(8):e12111.
Inspiratory active pre‐Bötzinger complex (preBötC) networks produce the neural rhythm that initiates and controls breathing movements. We previously identified the preBötC in the newborn rat brainstem and established anatomically defined transverse slices in which the preBötC remains active when exposed at one surface. This follow‐up study uses a neonatal mouse model in which the preBötC as well as a genetically defined class of respiratory interneurons can be identified and selectively targeted for physiological recordings. The population of glutamatergic interneurons whose precursors express the transcription factor Dbx1 putatively comprises the core respiratory rhythmogenic circuit. Here, we used intersectional mouse genetics to identify the brainstem distribution of Dbx1‐derived neurons in the context of observable respiratory marker structures. This reference brainstem atlas enabled online histology for generating calibrated sandwich slices to identify the preBötC location, which was heretofore unspecified for perinatal mice. Sensitivity to opioids ensured that slice rhythms originated from preBötC neurons and not parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN) cells because opioids depress preBötC, but not pFRG/RTN rhythms. We found that the preBötC is centered ~0.4 mm caudal to the facial motor nucleus in this Cre/lox reporter mouse during postnatal days 0–4. Our findings provide the essential basis for future optically guided electrophysiological and fluorescence imaging‐based studies, as well as the application of other Cre‐dependent tools to record or manipulate respiratory rhythmogenic neurons. These resources will ultimately help elucidate the mechanisms that promote respiratory‐related oscillations of preBötC Dbx1‐derived neurons and thus breathing.
Breathing movements emanate from Dbx1‐derived interneurons of the brainstem pre‐Bötzinger complex (preBötC). We generated a histology atlas of the medulla in newborn Dbx1 Cre/lox reporter mice and performed physiological tests to pinpoint the preBötC location and map the Dbx1 neuron distribution, which will facilitate neurobiological studies of respiratory rhythm generation.
PMCID: PMC4246597  PMID: 25138790
Breathing; central pattern generator; respiration
4.  Understanding the rhythm of breathing: so near yet so far 
Annual review of physiology  2012;75:423-452.
Understanding the mechanisms leading from DNA to molecules to neurons to networks to behavior is a major goal for neuroscience, but largely out of reach for many fundamental and interesting behaviors. The neural control of breathing may be a rare exception, presenting a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to rapidly and slowly changing conditions, and how particular dysfunctions result in disease. Why can we assert this? First and foremost, the functions of breathing are clearly definable, starting with its regulatory job of maintaining blood (and brain) O2, CO2 and pH; failure is not an option. Breathing is also an essential component of many vocal and emotive behaviors including, e.g., crying, laughing, singing, and sniffing, and must be coordinated with such vital behaviors as suckling and swallowing, even at birth. Second, the regulated variables, O2, CO2 and pH (and temperature in non-primate mammals), are continuous and are readily and precisely quantifiable, as is ventilation itself along with the underlying rhythmic motor activity, i.e., respiratory muscle EMGs. Third, we breathe all the time, except for short breaks as during breath-holding (which can be especially long in diving or hibernating mammals) or sleep apnea. Mammals (including humans) breathe in all behavioral states, e.g., sleep-wake, rest, exercise, panic, or fear, during anesthesia and even following decerebration. Moreover, essential aspects of the neural mechanisms driving breathing, including rhythmicity, are present at levels of reduction down to a medullary slice. Fourth, the relevant circuits exhibit a remarkable combination of extraordinary reliability, starting ex utero with the first air breath – intermittent breathing movements actually start in utero during the third trimester – and continuing for as many as ~109 breaths, as well as considerable lability, responding rapidly (in less than one second) and with considerable precision, over an order of magnitude in metabolic demand for O2 (~0.25 to ~5 liters of O2/min). Breathing does indeed persist! Finally, breathing is genetically determined to work at birth, with a well-defined developmental program underlying a neuroanatomical organization with apparent segregation of function, i.e., rhythmogenesis is separate from motor pattern (burst shape and coordination) generation. Importantly, single human gene mutations can affect breathing, and several neurodegenerative disorders compromise breathing by direct effects on brainstem respiratory circuits (See below).
PMCID: PMC3671763  PMID: 23121137
5.  Synaptically Activated Burst-Generating Conductances Underlie a Group-Pacemaker Mechanism for Respiratory Rhythm Generation in Mammals 
Progress in Brain Research  2010;187:111-136.
Breathing, chewing and walking are critical life-sustaining behaviors in mammals that consist essentially of simple rhythmic movements. Breathing movements in particular involve the diaphragm, thorax, and airways but emanate from a network in the lower brain stem. This network can be studied in reduced preparations in vitro and using simplified mathematical models that make testable predictions. An iterative approach that employs both in vitro and in silico models has ruled out canonical mechanisms for respiratory rhythm that involve reciprocal inhibition and pacemaker properties. We present an alternative model in which emergent network properties play the key rhythmogenic role. Specifically, we show evidence that synaptically activated burst-generating conductances – which are only available in the context of network activity – engender robust periodic bursts in respiratory neurons. Because the cellular burst-generating mechanism is linked to network synaptic drive we dub this type of system a group pacemaker.
PMCID: PMC3370336  PMID: 21111204
preBötzinger Complex; pre-Bötzinger Complex; central pattern generator (CPG); metabotropic glutamate receptors; calcium-activated nonspecific cation current; mathematical models; emergent network properties; breathing
6.  Interactions of persistent sodium and calcium-activated nonspecific cationic currents yield dynamically distinct bursting regimes in a model of respiratory neurons 
The preBötzinger complex (preBötC) is a heterogeneous neuronal network within the mammalian brainstem that has been experimentally found to generate robust, synchronous bursts that drive the inspiratory phase of the respiratory rhythm. The persistent sodium (NaP) current is observed in every preBötC neuron, and significant modeling effort has characterized its contribution to square-wave bursting in the preBötC. Recent experimental work demonstrated that neurons within the preBötC are endowed with a calcium-activated nonspecific cationic (CAN) current that is activated by a signaling cascade initiated by glutamate. In a preBötC model, the CAN current was shown to promote robust bursts that experience depolarization block (DB bursts). We consider a self-coupled model neuron, which we represent as a single compartment based on our experimental finding of electrotonic compactness, under variation of gNaP, the conductance of the NaP current, and gCAN, the conductance of the CAN current. Varying these two conductances yields a spectrum of activity patterns, including quiescence, tonic activity, square-wave bursting, DB bursting, and a novel mixture of square-wave and DB bursts, which match well with activity that we observe in experimental preparations. We elucidate the mechanisms underlying these dynamics, as well as the transitions between these regimes and the occurrence of bistability, by applying the mathematical tools of bifurcation analysis and slow-fast decomposition. Based on the prevalence of NaP and CAN currents, we expect that the generalizable framework for modeling their interactions that we present may be relevant to the rhythmicity of other brain areas beyond the preBötC as well.
PMCID: PMC3370680  PMID: 21234794
Respiration; preBötzinger complex; Central pattern generator; Bifurcation analysis; Bursting; Slow-fast decomposition
7.  Dendritic calcium activity precedes inspiratory bursts in preBötzinger Complex neurons 
Medullary interneurons of the preBötzinger Complex (preBötC) assemble excitatory networks that produce inspiratory related neural rhythms, but the importance of somatodendritic conductances in rhythm generation is still incompletely understood. Synaptic input may cause Ca2+ accumulation post-synaptically to evoke a Ca2+-activated inward current that contributes to inspiratory burst generation. We measured Ca2+ transients by two-photon imaging dendrites while recording neuronal somata electrophysiologically. Dendritic Ca2+ accumulation frequently precedes inspiratory bursts, particularly at recording sites 50–300 μm distal from the soma. Pre-inspiratory Ca2+ transients occur in ‘hotspots’, not ubiquitously, in dendrites. Ca2+ activity propagates orthodromically toward the soma (and antidromically to more distal regions of the dendrite), at rapid rates (300–700 μm/s). These high propagation rates suggest that dendritic Ca2+ activates an inward current to electrotonically depolarize the soma, rather than propagate as a regenerative Ca2+ wave. These data provide new evidence that respiratory rhythmogenesis may depend on dendritic burst-generating conductances activated in the context of network activity.
PMCID: PMC3075810  PMID: 21248126
8.  Developmental Origin of preBötzinger Complex Respiratory Neurons 
A subset of preBötzinger Complex (preBötC) neurokinin 1 receptor (NK1R) and somatostatin peptide (SST) expressing neurons are necessary for breathing in adult rats, in vivo. Their developmental origins and relationship to other preBötC glutamatergic neurons are unknown. Here we show, in mice, that the “core” of preBötC SST+/NK1R+/SST 2a receptor+ (SST2aR) neurons, are derived from Dbx1 expressing progenitors. We also show Dbx1 derived neurons heterogeneously co-express NK1R and SST2aR within and beyond the borders of preBötC. More striking, we find that nearly all non-catecholaminergic glutamatergic neurons of the ventrolateral medulla (VLM) are also Dbx1 derived. PreBötC SST+ neurons are born between E9.5 and E11.5 in the same proportion as non-SST expressing neurons. Additionally, preBötC Dbx1 neurons are respiratory-modulated and show an early inspiratory phase of firing in rhythmically active slice preparations. Loss of Dbx1 eliminates all glutamatergic neurons from the respiratory VLM including preBötC NK1R+/SST+ neurons. Dbx1 mutant mice do not express any spontaneous respiratory behaviors in vivo. Moreover, they do not generate rhythmic inspiratory activity in isolated en bloc preparations even after acidic or serotonergic stimulation. These data indicate preBötC core neurons represent a subset of a larger, more heterogeneous population of VLM Dbx1 derived neurons. These data indicate Dbx1 derived neurons are essential for the expression and, we hypothesize, are responsible for the generation of respiratory behavior both in vitro and in vivo.
PMCID: PMC3056489  PMID: 21048147
preBötzinger Complex; transcription factor; development; rhythm generation; central pattern generator; breathing; glutamatergic
9.  Looking for inspiration: new perspectives on respiratory rhythm 
Recent experiments in vivo and in vitro have advanced our understanding of the sites and mechanisms involved in mammalian respiratory rhythm generation. Here we evaluate and interpret the new evidence for two separate brainstem respiratory oscillators and for the essential role of emergent network properties in rhythm generation. Lesion studies suggest that respiratory cell death might explain morbidity and mortality associated with neurodegenerative disorders and ageing.
PMCID: PMC2819067  PMID: 16495944
10.  Outward Currents Contributing to Inspiratory Burst Termination in preBötzinger Complex Neurons of Neonatal Mice Studied in Vitro 
We studied preBötzinger Complex (preBötC) inspiratory interneurons to determine the cellular mechanisms that influence burst termination in a mammalian central pattern generator. Neonatal mouse slice preparations that retain preBötC neurons generate respiratory motor rhythms in vitro. Inspiratory-related bursts rely on inward currents that flux Na+, thus outward currents coupled to Na+ accumulation are logical candidates for assisting in, or causing, burst termination. We examined Na+/K+ ATPase electrogenic pump current (Ipump), Na+-dependent K+ current (IK–Na), and ATP-dependent K+ current (IK–ATP). The pharmacological blockade of Ipump, IK–Na, or IK–ATP caused pathological depolarization akin to a burst that cannot terminate, which impeded respiratory rhythm generation and reversibly stopped motor output. By simulating inspiratory bursts with current-step commands in synaptically isolated preBötC neurons, we determined that each current generates approximately 3–8 mV of transient post-burst hyperpolarization that decays in 50–1600 ms. Ipump, IK–Na, and – to a lesser extent – IK–ATP contribute to terminating inspiratory bursts in the context of respiratory rhythm generation by responding to activity dependent cues such as Na+ accumulation.
PMCID: PMC2999835  PMID: 21151816
central pattern generation; breathing; respiration; brainstem; rhythmic networks; Na/K ATPase; sodium-dependent potassium current; ATP-dependent potassium current

Results 1-10 (10)