PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Expanding Repertoire In The Oculomotor Periphery: Selective Compartmental Function In Rectus Extraocular Muscles 
Since connective tissue pulleys implement Listing's law by systematically changing rectus extraocular muscle (EOM) pulling directions, non-Listing's law gaze-dependence of the vestibulo-ocular reflex is currently inexplicable. Differential activation of compartments within rectus EOMs may endow the ocular motor system with more behavioral diversity than previously supposed. Innervation to horizontal, but not vertical, rectus EOMs of mammals is segregated into superior and inferior compartments. Magnetic resonance imaging in normal subjects demonstrates contractile changes in the lateral rectus (LR) inferior, but not superior, compartment during ocular counter-rolling (OCR) induced by head tilt. In human orbits ipsilesional to unilateral superior oblique palsy, neither LR compartment exhibits contractile change during head tilt, although the inferior compartment contracts normally in contralesional orbits. This suggests that differential compartmental LR contraction assists normal OCR. Computational simulation suggests that differential compartmental action in horizontal rectus EOMs could achieve more force than required by vertical fusional vergence.
doi:10.1111/j.1749-6632.2011.06112.x
PMCID: PMC3286355  PMID: 21950970
extraocular muscles; magnetic resonance imaging; motor nerve; pulleys; vestibulo-ocular reflex
2.  Nonclassical Innervation Patterns In Mammalian Extraocular Muscles 
Current eye research  2012;37(9):761-769.
Purpose
The abducens (CN6) and oculomotor (CN3) nerves (nn) enter target extraocular muscles (EOMs) via their global surfaces; the trochlear (CN4) nerve enters the superior oblique (SO) muscle on its orbital surface. Motor nn are classically described as entering the EOMs in their middle thirds. We investigated EOM innervation that does not follow the classic pattern.
Methods
Intact, whole orbits of two humans and one each monkey, cow, and rabbit were paraffin embedded, serially sectioned in coronal plane, and prepared with Masson’s trichrome and by choline acetyltransferase (ChAT) immunohistochemistry. Nerves innervating EOMs were traced from the orbital apex toward the scleral insertion, and some were reconstructed in three dimensions.
Results
Classical motor nn positive for ChAT entered rectus and SO EOMs and coursed anteriorly, without usually exhibiting recurrent branches. In every orbit, nonclassical (NC) nn entered each EOM well posterior to classical motor nn. These NC nn entered and arborized in the posterior EOMs, mainly within the orbital layer (OL), but often traveled into the global layer or entered an adjacent EOM. Other NC nn originated in the orbital apex and entered each EOM through its orbital surface, ultimately anastomosing with classical motor nn. Mixed sensory and motor nn interconnected EOM spindles.
Conclusions
EOMs exhibit a previously undescribed pattern of NC innervation originating in the proximal orbit that partially joins branches of the classical motor nn. This NC innervation appears preferential for the OL, and may have mixed supplemental motor and/or proprioceptive functions, perhaps depending upon species. The origin of the NC innervation is currently unknown.
doi:10.3109/02713683.2012.676699
PMCID: PMC3608520  PMID: 22559851
cranial nerve; eye movement; extra-ocular muscle; spindle

Results 1-2 (2)