PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Neuromuscular transmission failure in myasthenia gravis: decrement of safety factor and susceptibility of extraocular muscles 
An appropriate density of acetylcholine receptors (AChRs) and Na+ channels (NaChs) in the normal neuromuscular junction (NMJ) determines the magnitude of safety factor (SF) that guarantees fidelity of neuromuscular transmission. In myasthenia gravis (MG), an overall simplification of the postsynaptic folding secondary to NMJ destruction results in AChRs and NaChs depletion. Loss of AChRs and NaChs accounts respectively for 59% and 40% reduction of the SF at the endplate, which manifests as neuromuscular transmission failure. The extraocular muscles (EOM) have physiologically less developed postsynaptic folding, hence a lower baseline SF, which predisposes them to dysfunction in MG and development of fatigue during “high performance” eye movements, such as saccades. However, saccades in MG show stereotyped, conjugate initial components, similar to normal, which might reflect preserved neuromuscular transmission fidelity at the NMJ of the fast, pale global fibers, which have better developed postsynaptic folding than other extraocular fibers.
doi:10.1111/j.1749-6632.2012.06841.x
PMCID: PMC3539765  PMID: 23278588
safety factor; extraocular muscles; saccades; neuromuscular junction
2.  Ocular-Motor Profile and Effects of Memantine in a Familial Form of Adult Cerebellar Ataxia with Slow Saccades and Square Wave Saccadic Intrusions 
PLoS ONE  2013;8(7):e69522.
Fixation instability due to saccadic intrusions is a feature of autosomal recessive spinocerebellar ataxias, and includes square wave intrusions (SWI) and macrosaccadic oscillations (MSO). A recent report suggested that the non-competitive antagonist of NMDA receptors, memantine, could decrease MSO and improve fixation in patients with spinocerebellar ataxia with saccadic intrusions (SCASI). We similarly tested two sisters, respectively of 58 and 60 years, with an unrecognized form of recessive, adult-onset cerebellar ataxia, peripheral neuropathy and slow saccades, who showed prominent SWI and also complained with difficulty in reading. We tested horizontal visually guided saccades (10°–18°) and three minutes of steady fixation in each patient and in thirty healthy controls. Both patients showed a significant reduction of peak and mean velocity compared with control subjects. Large SWI interrupting steady fixation were prominent during steady fixation and especially following visually guided saccades. Eye movements were recorded before and during the treatment with memantine, 20 mg/daily for 6 months. The treatment with memantine reduced both the magnitude and frequency of SWI (the former significantly), but did not modified neurological conditions or saccade parameters. Thus, our report suggests that memantine may have some general suppressive effect on saccadic intrusions, including both SWI and MSO, thereby restoring the capacity of reading and visual attention in these and in other recessive forms of ataxia, including Friedreich’s, in which saccadic intrusions are prominent.
doi:10.1371/journal.pone.0069522
PMCID: PMC3718679  PMID: 23894498
3.  Critical role of cerebellar fastigial nucleus in programming sequences of saccades 
The cerebellum plays an important role in programming accurate saccades. Cerebellar lesions affecting the ocular motor region of the fastigial nucleus (FOR) cause saccadic hypermetria; however, if a second target is presented before a saccade can be initiated (double-step paradigm), saccade hypermetria may be decreased. We tested the hypothesis that the cerebellum, especially FOR, plays a pivotal role in programming sequences of saccades. We studied patients with saccadic hypermetria due either to genetic cerebellar ataxia or surgical lesions affecting FOR and confirmed that the gain of initial saccades made to double-step stimuli was reduced compared with the gain of saccades to single target jumps. Based on measurements of the intersaccadic interval, we found that the ability to perform parallel processing of saccades was reduced or absent in all of our patients with cerebellar disease. Our results support the crucial role of the cerebellum, especially FOR, in programming sequences of saccades.
doi:10.1111/j.1749-6632.2011.06119.x
PMCID: PMC3187558  PMID: 21950988
fastigial nucleus; double-step; saccade; latency; spinocerebellar ataxia; hypermetria; parallel processing
4.  Effects of Cerebellar Disease on Sequences of Rapid Eye Movements 
Vision research  2011;51(9):1064-1074.
Summary
Studying saccades can illuminate the more complex decision-making processes required for everyday movements. The double-step task, in which a target jumps to two successive locations before the subject has time to react, has proven a powerful research tool to investigate the brain’s ability to program sequential responses. We asked how patients with a range of cerebellar disorders responded to the double-step task, specifically, whether the initial saccadic response made to a target is affected by the appearance of a second target jump. We also sought to determine whether cerebellar patients were able to make corrective saccades towards the remembered second target location, if it were turned off soon after presentation. We tested saccades to randomly interleaved single- and double-step target jumps to eight locations on a circle. Patient’s initial responses to double-step stimuli showed 50% more error than saccades to single target jumps, and often, they failed to make a saccade to the first target jump. The presence of a second target jump had similar, but smaller effects in control subjects (error increased by 18%). During memory-guided double-step trials, both patients and controls made corrective saccades in darkness to the remembered location of the second jump. We conclude that in cerebellar patients, the second target jump interferes with programming of the saccade to the first target jump of a double-step stimulus; this defect highlights patients’ impaired ability to respond appropriately to sudden, conflicting changes in their environment. Conversely, since cerebellar patients can make corrective memory-guided saccades in darkness, they retain the ability to remember spatial locations, possibly due to non-retinal neural signals (corollary discharge) from cerebral hemispheric areas concerned with spatial localization.
doi:10.1016/j.visres.2011.02.019
PMCID: PMC3084368  PMID: 21385592
Saccades; double-step; dysmetria; cerebellum, fastigial nucleus; efference copy
5.  The role of the medial longitudinal fasciculus in horizontal gaze: tests of current hypotheses for saccade-vergence interactions 
Rapid shifts of the point of visual fixation between equidistant targets require equal-sized saccades of each eye. The brainstem medial longitudinal fasciculus (MLF) plays a cardinal role in ensuring that horizontal saccades between equidistant targets are tightly yoked. Lesions of the MLF—internuclear ophthalmoparesis (INO)—cause horizontal saccades to become disjunctive: adducting saccades are slow, small, or absent. However, in INO, convergence movements may remain intact. We studied horizontal gaze shifts between equidistant targets and between far and near targets aligned on the visual axis of one eye (Müller test paradigm) in five cases of INO and five control subjects. We estimated the saccadic component of each movement by measuring peak velocity and peak acceleration. We tested whether the ratio of the saccadic component of the adducting/abducting eyes stayed constant or changed for the two types of saccades. For saccades made by control subjects between equidistant targets, the group mean ratio (±SD) of adducting/abducting peak velocity was 0.96 ± 0.07 and adducting/abducting peak acceleration was 0.94 ± 0.09. Corresponding ratios for INO cases were 0.45 ± 0.10 for peak velocity and 0.27 ± 0.11 for peak acceleration, reflecting reduced saccadic pulses for adduction. For control subjects, during the Müller paradigm, the adducting/abducting ratio was 1.25 ± 0.14 for peak velocity and 1.03 ± 0.12 for peak acceleration. Corresponding ratios for INO cases were 0.82 ± 0.18 for peak velocity and 0.48 ± 0.13 for peak acceleration. When adducting/abducting ratios during Müller versus equidistant targets paradigms were compared, INO cases showed larger relative increases for both peak velocity and peak acceleration compared with control subjects. Comparison of similar-sized movements during the two test paradigms indicated that whereas INO patients could decrease peak velocity of their abducting eye during the Müller paradigm, they were unable to modulate adducting velocity in response to viewing conditions. However, the initial component of each eye’s movement was similar in both cases, possibly reflecting activation of saccadic burst neurons. These findings support the hypothesis that horizontal saccades are governed by disjunctive signals, preceded by an initial, high-acceleration conjugate transient and followed by a slower vergence component.
doi:10.1007/s00221-010-2485-y
PMCID: PMC3039121  PMID: 21082311
Eye movements; Saccades; Vergence; Medial longitudinal fasciculus; Hering’s law; Multiple sclerosis; Internuclear ophthalmoplegia
6.  The Disturbance of Gaze in Progressive Supranuclear Palsy: Implications for Pathogenesis 
Progressive supranuclear palsy (PSP) is a disease of later life that is currently regarded as a form of neurodegenerative tauopathy. Disturbance of gaze is a cardinal clinical feature of PSP that often helps clinicians to establish the diagnosis. Since the neurobiology of gaze control is now well understood, it is possible to use eye movements as investigational tools to understand aspects of the pathogenesis of PSP. In this review, we summarize each disorder of gaze control that occurs in PSP, drawing on our studies of 50 patients, and on reports from other laboratories that have measured the disturbances of eye movements. When these gaze disorders are approached by considering each functional class of eye movements and its neurobiological basis, a distinct pattern of eye movement deficits emerges that provides insight into the pathogenesis of PSP. Although some aspects of all forms of eye movements are affected in PSP, the predominant defects concern vertical saccades (slow and hypometric, both up and down), impaired vergence, and inability to modulate the linear vestibulo-ocular reflex appropriately for viewing distance. These vertical and vergence eye movements habitually work in concert to enable visuomotor skills that are important during locomotion with the hands free. Taken with the prominent early feature of falls, these findings suggest that PSP tauopathy impairs a recently evolved neural system concerned with bipedal locomotion in an erect posture and frequent gaze shifts between the distant environment and proximate hands. This approach provides a conceptual framework that can be used to address the nosological challenge posed by overlapping clinical and neuropathological features of neurodegenerative tauopathies.
doi:10.3389/fneur.2010.00147
PMCID: PMC3008928  PMID: 21188269
saccades; vergence; vestibular; parkinsonian disorders; tauopathy
7.  Diagnosing disconjugate eye movements 
Neurology  2008;71(15):1167-1175.
Background:
Saccades are fast eye movements that conjugately shift the point of fixation between distant features of interest in the visual environment. Several disorders, affecting sites from brainstem to extraocular muscle, may cause horizontal saccades to become disconjugate. Prior techniques for detection of saccadic disconjugacy, especially in internuclear ophthalmoparesis (INO), have compared only one point in abducting vs adducting saccades, such as peak velocity.
Methods:
We applied a phase-plane technique that compared each eye’s velocity as a function of change in position (normalized displacement) in 22 patients with disease variously affecting the brainstem reticular formation, the abducens nucleus, the medial longitudinal fasciculus, the oculomotor nerve, the abducens nerve, the neuromuscular junction, or the extraocular muscles; 10 age-matched subjects served as controls.
Results:
We found three different patterns of disconjugacy throughout the course of horizontal saccades: early abnormal velocity disconjugacy during the first 10% of the displacement in patients with INO, oculomotor or abducens nerve palsy, and advanced extraocular muscle disease; late disconjugacy in patients with disease affecting the neuromuscular junction; and variable middle-course disconjugacy in patients with pontine lesions. When normal subjects made disconjugate saccades between two targets aligned on one eye, the initial part of the movement remained conjugate.
Conclusions:
Along with conventional measures of saccades, such as peak velocity, phase planes provide a useful tool to determine the site, extent, and pathogenesis of disconjugacy. We hypothesize that the pale global extraocular muscle fibers, which drive the high-acceleration component of saccades, receive a neural command that ensures initial ocular conjugacy.
GLOSSARY
= abducens;
= cranial nerve;
= chronic progressive external ophthalmoplegia;
= eye movement;
= horizontal;
= internuclear ophthalmoparesis;
= myasthenia gravis;
= medial longitudinal fasciculus;
= multiple sclerosis;
= patient;
= prediction interval;
= paramedian pontine reticular formation;
= raphe interpositus;
= vertical.
doi:10.1212/01.wnl.0000327525.72168.57
PMCID: PMC2586990  PMID: 18838664
8.  Diagnosing Disconjugate Eye Movements 
Neurology  2008;71(15):1167-1175.
Background
Saccades are fast eye movements that conjugately shift the point of fixation between distant features of interest in the visual environment. Several disorders, affecting sites from brainstem to extraocular muscle, may cause horizontal saccades to become disconjugate. Prior techniques for detection of saccadic disconjugacy, especially in internuclear ophthalmoparesis (INO), have compared only one point in abducting versus adducting saccades, such as peak velocity.
Methods
We applied a phase-plane technique that compared each eye’s velocity as a function of change in position (normalized displacement) in 22 patients with disease variously affecting the brainstem reticular formation, the abducens nucleus, the medial longitudinal fasciculus, the oculomotor nerve, the abducens nerve, the neuromuscular junction or the extraocular muscles; 10 age-matched subjects served as controls.
Results
We found three different patterns of disconjugacy throughout the course of horizontal saccades: early abnormal velocity disconjugacy during the first 10% of the displacement, in patients with INO, oculomotor or abducens nerve palsy and advanced extraocular muscle disease; late disconjugacy in patients with disease affecting the neuromuscular junction; and variable middle-course disconjugacy in patients with pontine lesions. When normal subjects made disconjugate saccades between two targets aligned on one eye, the initial part of the movement remained conjugate.
Conclusions
Along with conventional measures of saccades, such as peak velocity, phase-planes provide a useful tool to determine the site, extent, and pathogenesis of disconjugacy. We hypothesize that the pale global extraocular muscle fibers, which drive the high-acceleration component of saccades, receive a neural command that ensures initial ocular conjugacy.
doi:10.1212/01.wnl.0000327525.72168.57
PMCID: PMC2586990  PMID: 18838664
Pontine infarction; multiple sclerosis; internuclear ophthalmoplegia; abducens nerve palsy; oculomotor nerve palsy; myasthenia gravis; chronic progressive external ophthalmoplegia

Results 1-8 (8)