Search tips
Search criteria

Results 1-25 (29)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Biomarkers to Diagnose Early Arthritis in Patients With Psoriasis 
Psoriatic arthritis is a potentially destructive, inflammatory joint disease that affects 20% to 30% of patients with psoriasis. Psoriasis precedes the onset of joint inflammation by approximately 10 years, providing a unique opportunity to intervene and prevent or delay onset of musculoskeletal manifestations. The emergence of sensitive imaging modalities and cellular biomarkers may facilitate early identification of patients with psoriasis who have subclinical joint disease and might help stratify patients with an early onset of arthritis.
The translational studies described herein are focused on the development of cellular biomarkers identified with flow cytometry and cell culture techniques in patients with psoriasis and psoriatic arthritis.
Results and Conclusion
The combination of power Doppler ultrasound imaging and cellular biomarkers (ie, CD16 and dendritic cell specific transmembrane protein) to diagnose early psoriatic arthritis and to stratify patients with established psoriatic arthritis provides a new opportunity to optimize treatment outcomes in this potentially disabling disease.
PMCID: PMC4241968  PMID: 25429195
Psoriasis; psoriatic arthritis; biomarker; osteoclast; DC-STAMP; CD16; cell fusion; signaling
2.  Characterization of DC-STAMP+ Cells in Human Bone Marrow 
Osteoclasts (OC), specialized cells derived from monocytes, maintain skeletal homeostasis under normal conditions but degrade bone in patients with rheumatoid (RA) and psoriatic arthritis (PsA). Monocytes initially develop in the bone marrow (BM), circulate in peripheral blood, and differentiate into distinct cell types with diverse functions. Imaging studies in (RA) patients and murine arthritis models demonstrate that bone marrow edema detected on MRI is the result of enhanced myelopoiesis which precedes the development of bone erosions detected on plain radiographs several years later. A major knowledge gap, however, is whether OC develop in the BM and circulate to the joint and if the differentiation to OC takes place in the joint space in response to differentiation signals such as RANKL and TNF. We have previously demonstrated that osteoclast precursors (OCP) are increased in the circulaton of patients with RA and PsA. We showed that DC-STAMP (Dendritic Cell-Specific Transmembrane protein), a 7-pass transmembrane protein expressed on the surface of monocytes, is essential for cell-to-cell fusion during OC differentiation and is a valid biomarker of OCP. Herein, we examined OCP in human bone marrow and identified one novel subset of DC-STAMP+CD45intermediate monocytes which was absent in the blood. We also found that OCPs reside in human BM with a higher frequency than in the peripheral blood. These findings support the notion that the BM is a major reservoir of circulating OCPs. In addition, we demonstrated that a higher frequency of DC-STAMP+ cells in the BM have detectable intracellular IFN-γ, IL-4 and IL-17A than DC-STAMP+ cells circulating in the peripheral blood. Finally, the frequency of DC-STAMP+ monocytes and T cells is signficantly higher in PsA BM compared to healthy controls, suggesting an enhanced myelopoiesis is a central event in inflammatory arthritis.
PMCID: PMC4238037  PMID: 25419541
Osteoclasts; Monocytes; Myelopoiesis; Inflammatory arthritis
3.  Divergent Gene Activation in Peripheral Blood and Tissues of Patients with Rheumatoid Arthritis, Psoriatic Arthritis and Psoriasis following Infliximab Therapy 
PLoS ONE  2014;9(10):e110657.
The immune inflammatory disorders rheumatoid arthritis (RA), psoriatic arthritis (PsA) and psoriasis (Ps) share common pathologic features and show responsiveness to anti-tumor necrosis factor (TNF) agents yet they are phenotypically distinct. The aim of this study was to examine if anti-TNF therapy is associated with divergent gene expression profiles in circulating cells and target tissues of patients with these diseases.
Peripheral blood CD14+ and CD14− cells were isolated from 9 RA, 12 PsA and 10 Ps patients before and after infliximab (IFX) treatment. Paired synovial (n = 3, RA, PsA) and skin biopsies (n = 5, Ps) were also collected. Gene expression was analyzed by microarrays.
26 out of 31 subjects responded to IFX. The transcriptional response of CD14+ cells to IFX was unique for the three diseases, with little overlap (<25%) in significantly changed gene lists (with PsA having the largest number of changed genes). In Ps, altered gene expression was more pronounced in lesional skin (relative to paired, healthy skin) compared to blood (relative to healthy controls). Marked suppression of up-regulated genes in affected skin was noted 2 weeks after therapy but the expression patterns differed from uninvolved skin. Divergent patterns of expression were noted between the blood cells and skin or synovial tissues in individual patients. Functions that promote cell differentiation, proliferation and apoptosis in all three diseases were enriched. RA was enriched in functions in CD14− cells, PsA in CD14+ cells and Ps in both CD14+ and CD14− cells, however, the specific functions showed little overlap in the 3 disorders.
Divergent patterns of altered gene expression are observed in RA, PsA and Ps patients in blood cells and target organs in IFX responders. Differential gene expression profiles in the blood do not correlate with those in target organs.
PMCID: PMC4204991  PMID: 25333715
4.  Troponin T3 expression in skeletal and smooth muscle is required for growth and postnatal survival: Characterization of Tnnt3tm2a(KOMP)Wtsi mice 
Genesis (New York, N.Y. : 2000)  2013;51(9):667-675.
The troponin complex, which consists of three regulatory proteins (troponin C, troponin I and troponin T), is known to regulate muscle contraction in skeletal and cardiac muscle, but its role in smooth muscle remains controversial. Troponin T3 (TnnT3) is a fast skeletal muscle troponin believed to be expressed only in skeletal muscle cells. To determine the in vivo function and tissue specific expression of Tnnt3, we obtained the heterozygous Tnnt3+/flox/lacZ mice from Knockout Mouse Project (KOMP) Repository. Tnnt3lacZ/+ mice are smaller than their WT littermates throughout development, but do not display any gross phenotypes. Tnnt3lacZ/lacZ embryos are smaller than heterozygotes, and die shortly after birth. Histology revealed hemorrhagic tissue in Tnnt3lacZ/lacZ liver and kidney, which was not present in Tnnt3lacZ/+ or WT, but no other gross tissue abnormalities. X-gal staining for Tnnt3 promoter-driven lacZ transgene expression revealed positive staining in skeletal muscle and diapharam, and smooth muscle cells located in the aorta, bladder, and bronchus. Collectively, these findings suggest that troponins are expressed in smooth muscle, and are required for normal growth and breathing for postnatal survival. Moreover, future studies with this mouse model can explore TnnT3 function in adult muscle function using the conditional-inducible gene deletion approach.
PMCID: PMC3787964  PMID: 23775847
Troponin; Knockout Mice; Muscle; Development
5.  Ustekinumab, an anti-IL-12/23 p40 monoclonal antibody, inhibits radiographic progression in patients with active psoriatic arthritis: results of an integrated analysis of radiographic data from the phase 3, multicentre, randomised, double-blind, placebo-controlled PSUMMIT-1 and PSUMMIT-2 trials 
Annals of the Rheumatic Diseases  2014;73(6):1000-1006.
Evaluate ustekinumab, an anti-interleukin (IL)-12 and IL-23 antibody, effects on radiographic progression in psoriatic arthritis (PsA).
We conducted preplanned integrated analyses of combined radiographic data from PSUMMIT-1 and PSUMMIT-2 phase 3, randomised, controlled trials. Patients had active PsA despite prior conventional and/or biologic disease-modifying antirheumatic drugs (≥5/66 swollen, ≥5/68 tender joints, C-reactive protein ≥3.0 mg/L, documented plaque psoriasis). Patients (PSUMMIT-1, n=615; PSUMMIT-2, n=312) were randomised to ustekinumab 45 mg, 90 mg, or placebo, at weeks (wk) 0, 4 and every (q) 12 wks. At wk 16, patients with <5% improvement in tender/swollen joint counts entered blinded early escape. All other placebo patients received ustekinumab 45 mg at wk 24 and wk 28, then q 12 wks. Radiographs of hands/feet at wks 0/24/52 were assessed using PsA-modified van der Heijde-Sharp (vdH-S) scores; combined PSUMMIT-1 and PSUMMIT-2 changes in total vdH-S scores from wk 0 to wk 24 comprised the prespecified primary radiographic analysis. Treatment effects were assessed using analysis of variance on van der Waerden normal scores (factors=treatment, baseline methotrexate usage, and study).
Integrated data analysis results indicated that ustekinumab-treated patients (regardless of dose) demonstrated significantly less radiographic progression at wk 24 than did placebo recipients (wk 0–24 total vdH-S score mean changes: 0.4-combined/individual ustekinumab dose groups, 1.0-placebo; all p<0.02). From wk 24 to wk 52, inhibition of radiographic progression was maintained for ustekinumab-treated patients, and progression was substantially reduced among initial placebo recipients who started ustekinumab at wk 16 or wk 24 (wk 24 – wk 52, total vdH-S score mean change: 0.08).
Ustekinumab 45 and 90 mg treatments significantly inhibited radiographic progression of joint damage in patients with active PsA.
PMCID: PMC4033146  PMID: 24553909
Spondyloarthritis; Anti-TNF; Psoriatic Arthritis
6.  The Role of Bone Marrow Edema and Lymphangiogenesis in Inflammatory-Erosive Arthritis 
A common feature of autoimmune diseases is perpetual production of macrophage, dendritic and/or osteoclast effector cells, which mediate parenchymal tissue destruction in end organs. In support of this, we have demonstrated previously that patients and mice with inflammatory-erosive arthritis have a marked increase in circulating CD11b+ precursor cells, which are primed for osteoclastogenesis, and that this increase in osteoclast precursors (OCPs) is due to systemically increased TNF production. From these data, we proposed a unifying hypothesis to explain these osteoimmunologic findings during the pathogenesis of inflammatory-erosive arthritis, which has three postulates: 1) myelopoiesis chronically induce by TNF has profound effects on the bone marrow and joint tissues that should be evident from longitudinal MRI; 2) TNF alters the chemokine/chemokine receptor axis in the bone marrow to stimulate OCP release into the blood, and 3) OCP-mediated lymphangiogenesis occurs in the end organ as a compensatory mechanism to drain the inflammation and remove by-products of joint catabolism. Here, we describe our recent experimental findings that support these hypotheses and speculate on how this information can be used as diagnostic biomarkers and tools to discover novel therapies to treat patients with inflammatory-erosive arthritis.
PMCID: PMC3932510  PMID: 19950010
Inflammatory Arthritis; Lymphangiogenesis; In vivo Imaging; 3D-MRI
7.  Efficacy of B cell Depletion Therapy on Joint Flare is Associated with Increased Lymphatic Flow 
Arthritis and rheumatism  2013;65(1):130-138.
B cell depletion therapy (BCDT) ameliorates rheumatoid arthritis by mechanisms that are incompletely understood. Arthritic flare in tumor necrosis factor transgenic (TNF-Tg) mice is associated with efferent lymph node (LN) “collapse,” triggered by B cell translocation into lymphatic spaces and decreased lymphatic drainage. We examined whether BCDT efficacy is associated with restoration of lymphatic drainage due to removal of obstructing nodal B cells.
We developed contrast-enhancement (CE) MRI imaging, near-infrared indocyanine green (NIR-ICG) imaging, and intravital immunofluorescent imaging to longitudinally assess synovitis, lymphatic flow, and cell migration in lymphatic vessels in TNF-Tg mice. We tested to see if BCDT efficacy is associated with restoration of lymphatic draining and cell egress from arthritic joints.
Unlike active lymphatics to normal and pre-arthritic knees, afferent lymphatic vessels to collapsed LNs in inflamed knees do not pulse. Intravital immunofluorescent imaging demonstrated that CD11b+ monocytes/macrophages in lymphatic vessels afferent to expanding LN travel at high velocity (186 ± 37 micrometer/sec), while these cells are stationary in lymphatic vessels afferent to collapsed PLN. BCDT of flaring TNF-Tg mice significantly decreased knee synovial volume by 50% from the baseline level, and significantly increased lymphatic clearance versus placebo (p<0.05). This increased lymphatic drainage restored macrophages egress from inflamed joints without recovery of the lymphatic pulse.
These results support a novel mechanism in which BCDT of flaring joints lessens inflammation by increasing lymphatic drainage and subsequent migration of cells and cytokines from the synovial space.
PMCID: PMC3535508  PMID: 23002006
Rheumatoid Arthritis (RA); Flare; Tumor Necrosis Factor (TNF); B cells in Inflamed Lymph Nodes (B-in); Lymphatic Pulse
8.  Regulation of Human Osteoclast Development by Dendritic Cell-Specific Transmembrane Protein (DC-STAMP) 
Osteoclasts (OC) are bone-resorbing, multinucleated cells that are generated via fusion of OC precursors (OCP). The frequency of OCP is elevated in patients with erosive inflammatory arthritis and metabolic bone diseases. Although many cytokines and cell surface receptors are known to participate in osteoclastogenesis, the molecular mechanisms underlying the regulation of this cellular transformation are poorly understood. Herein, we focused our studies on the dendritic cell-specific transmembrane protein (DC-STAMP), a seven-pass-transmembrane receptor-like protein known to be essential for cell-to-cell fusion during osteoclastogenesis. We identified an immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic tail of DC-STAMP, and developed an anti-DC-STAMP monoclonal antibody 1A2 that detected DC-STAMP expression on human tumor giant cells, blocked OC formation in vitro, and distinguished four patterns of human PBMC with a positive correlation to OC potential. In freshly isolated monocytes, DC-STAMPhigh cells produced a higher number of OC in culture than DC-STAMPlow cells and the surface expression of DC-STAMP gradually declined during osteoclastogenesis. Importantly, we showed that DC-STAMP is phosphorylated on its tyrosine residues and physically interacts with SHP-1 and CD16, an SH2-domain-containing tyrosine phosphatase and an ITAM-associated protein, respectively. Taken together, these data show that DC-STAMP is a potential OCP biomarker in inflammatory arthritis. Moreover, in addition to its effect on cell fusion, DC-STAMP dynamically regulates cell signaling during osteoclastogenesis.
PMCID: PMC3304467  PMID: 21987375
DC-STAMP; osteoclast; signaling; ITIM; ITAM; SHP-1; OCP; biomarker; Ps; PsA; CD16
9.  Measuring intranodal pressure and lymph viscosity to elucidate mechanisms of arthritic flare and therapeutic outcomes 
Rheumatoid arthritis (RA) is a chronic autoimmune disease with episodic flares in affected joints, whose etiology is largely unknown. Recent studies in mice demonstrated alterations in lymphatics from affected joints precede flares. Thus, we aimed to develop novel methods for measuring lymph node pressure and lymph viscosity in limbs of mice. Pressure measurements were performed by inserting a glass micropipette connected to a pressure transducer into popliteal lymph nodes (PLN) or axillary lymph nodes (ALN) of mice and determined that the lymphatic pressures were 9 and 12 cm of water, respectively. We are also developing methods for measuring lymph viscosity in lymphatic vessels afferent to PLN, which can be measured by multi-photon fluorescence recovery after photobleaching (MP-FRAP) of FITC-BSA injected into the hind footpad. These results demonstrate the potential of lymph node pressure and lymph viscosity measurements, and warrant future studies to test these outcomes as biomarkers of arthritic flare.
PMCID: PMC3334848  PMID: 22172039
Rheumatoid Arthritis; Lymph Node; Flare; Lymphatic Pressure; Lymph Viscosity
10.  Altered Bone Biology in Psoriatic Arthritis 
Current Rheumatology Reports  2012;14(4):349-357.
Psoriatic arthritis (PsA) is characterized by focal bone erosions mediated by osteoclasts at the bone–pannus junction. The bulk of research over the past decade has centered on mechanisms that underlie osteoclastogenesis along with new insights into osteoimmunology; however, recent advances that focus on steps that lead to new bone formation are beginning to emerge. New revelations about bone formation may have direct relevance to PsA given the presence of enthesophytes, syndesmophytes, and bony ankylosis frequently observed in patients with this disorder. In this review, we discuss current developments in the pathogenesis of new bone formation, novel imaging approaches to study bone remodeling and highlight innovative approaches to study the effect of inflammation on bone. Lastly, we discuss promising therapies that target joint inflammation and osteitis with the potential to mediate pathologic bone formation.
PMCID: PMC3387493  PMID: 22592745
Psoriatic arthritis; Ankylosing spondylitis; Osteoclastogenesis; Osteoblastogenesis; New bone formation; Bone biology; Imaging
11.  Decreased influenza-specific B cell responses in rheumatoid arthritis patients treated with anti-tumor necrosis factor 
Arthritis Research & Therapy  2011;13(6):R209.
As a group, rheumatoid arthritis (RA) patients exhibit increased risk of infection, and those treated with anti-tumor necrosis factor (TNF) therapy are at further risk. This increased susceptibility may result from a compromised humoral immune response. Therefore, we asked if short-term effector (d5-d10) and memory (1 month or later) B cell responses to antigen were compromised in RA patients treated with anti-TNF therapy.
Peripheral blood samples were obtained from RA patients, including a subset treated with anti-TNF, and from healthy controls to examine influenza-specific responses following seasonal influenza vaccination. Serum antibody was measured by hemagglutination inhibition assay. The frequency of influenza vaccine-specific antibody secreting cells and memory B cells was measured by EliSpot. Plasmablast (CD19+IgD-CD27hiCD38hi) induction was measured by flow cytometry.
Compared with healthy controls, RA patients treated with anti-TNF exhibited significantly decreased influenza-specific serum antibody and memory B cell responses throughout multiple years of the study. The short-term influenza-specific effector B cell response was also significantly decreased in RA patients treated with anti-TNF as compared with healthy controls, and correlated with decreased influenza-specific memory B cells and serum antibody present at one month following vaccination.
RA patients treated with anti-TNF exhibit a compromised immune response to influenza vaccine, consisting of impaired effector and consequently memory B cell and antibody responses. The results suggest that the increased incidence and severity of infection observed in this patient population could be a consequence of diminished antigen-responsiveness. Therefore, this patient population would likely benefit from repeat vaccination and from vaccines with enhanced immunogenicity.
PMCID: PMC3334662  PMID: 22177419
12.  CD23+/CD21hi B-cell translocation and ipsilateral lymph node collapse is associated with asymmetric arthritic flare in TNF-Tg mice 
Arthritis Research & Therapy  2011;13(4):R138.
Rheumatoid arthritis (RA) is a chronic autoimmune disease with episodic flares in affected joints. However, how arthritic flare occurs only in select joints during a systemic autoimmune disease remains an enigma. To better understand these observations, we developed longitudinal imaging outcomes of synovitis and lymphatic flow in mouse models of RA, and identified that asymmetric knee flare is associated with ipsilateral popliteal lymph node (PLN) collapse and the translocation of CD23+/CD21hi B-cells (B-in) into the paracortical sinus space of the node. In order to understand the relationship between this B-in translocation and lymph drainage from flaring joints, we tested the hypothesis that asymmetric tumor necrosis factor (TNF)-induced knee arthritis is associated with ipsilateral PLN and iliac lymph node (ILN) collapse, B-in translocation, and decreased afferent lymphatic flow.
TNF transgenic (Tg) mice with asymmetric knee arthritis were identified by contrast-enhanced (CE) magnetic resonance imaging (MRI), and PLN were phenotyped as "expanding" or "collapsed" using LNcap threshold = 30 (Arbitrary Unit (AU)). Inflammatory-erosive arthritis was confirmed by histology. Afferent lymphatic flow to PLN and ILN was quantified by near infrared imaging of injected indocyanine green (NIR-ICG). The B-in population in PLN and ILN was assessed by immunohistochemistry (IHC) and flow cytometry. Linear regression analyses of ipsilateral knee synovial volume and afferent lymphatic flow to PLN and ILN were performed.
Afferent lymph flow to collapsed nodes was significantly lower (P < 0.05) than flow to expanding nodes by NIR-ICG imaging, and this occurred ipsilaterally. While both collapsed and expanding PLN and ILN had a significant increase (P < 0.05) of B-in compared to wild type (WT) and pre-arthritic TNF-Tg nodes, B-in of expanding lymph nodes (LN) resided in follicular areas while B-in of collapsed LN were present within LYVE-1+ lymphatic vessels. A significant correlation (P < 0.002) was noted in afferent lymphatic flow between ipsilateral PLN and ILN during knee synovitis.
Asymmetric knee arthritis in TNF-Tg mice occurs simultaneously with ipsilateral PLN and ILN collapse. This is likely due to translocation of the expanded B-in population to the lumen of the lymphatic vessels, resulting in a dramatic decrease in afferent lymphatic flow. PLN collapse phenotype can serve as a new biomarker of knee flare.
PMCID: PMC3239381  PMID: 21884592
13.  RANKL induces heterogeneous DC-STAMPlo and DC-STAMPhi osteoclast precursors of which the DC-STAMPlo precursors are the master fusogens 
Osteoclasts (OC) are multinucleated bone resorbing cells that form via RANKL-induced fusion of heterogeneous mononuclear OC precursors (OCP). Currently, there are no unique surface markers to distinguish these OCP populations, which are diagnostic for erosive and metabolic bone diseases using culture assays. Thus, we investigated expression of DC-STAMP, a surface receptor required for OCP fusion, during osteoclastogenesis in vitro using a novel monoclonal antibody (1A2). Immunoprecipitation-western blot analysis of OCP membrane proteins detected 106 kDa dimeric and 53 kDa monomeric DC-STAMP in non-denaturing and denaturing conditions respectively, with greater sensitivity vs. rabbit anti-sera (KR104). 1A2 also detected 99.9% of undifferentiated monocytes as a single population by flow cytometry with a MFI 100-fold over background, while KR104 was not useful in this assay. Functionally, 1A2 inhibited OCP fusion in vitro. RANKL stimulation of OCP induced DC-STAMPlo and DC-STAMPhi cells, which mature into OC and mononuclear cells respectively as determined by fluorescent microscopy and TRAP assays. Addition of DC-STAMPhi cells to purified DC-STAMPlo cultures produced larger, more nucleated OC vs. pure DC-STAMPlo cultures. RT-qPCR analysis of these two populations showed that OC markers (Trap and Oc-stamp) and fusogenic gene expression (Cd9 and Cd47), were significantly increased in DC-STAMPlo vs. DC-STAMPhi cells. Collectively, these results demonstrate that DC-STAMP is expressed on OCP as a dimer, which is efficiently detected by 1A2 via flow cytometry. RANKL induces osteoclastogenesis by stimulating DC-STAMP internalization in some OCP, and these DC-STAMPlo cells display the “master fusogen” phenotype. In contrast, DC-STAMPhi OCP can only act as mononuclear donors.
PMCID: PMC2814997  PMID: 20039274
Dendritic Cell-Specific Transmembrane Protein (DC-STAMP); Osteoclast Precursors (OCP); Cell Fusion
14.  Nonerosive arthritis in lupus is mediated by IFN-α stimulated monocyte differentiation that is nonpermissive of osteoclastogenesis 
Arthritis and rheumatism  2010;62(4):1127-1137.
In contrast to rheumatoid arthritis (RA), Jaccoud arthritis (JA) joint inflammation in systemic lupus erythematosus (SLE) is nonerosive. Although the mechanism responsible is unknown, the anti-osteoclastogenic cytokine interferon-alpha (IFN-α), whose transcriptome is present in SLE monocytes, may be responsible. To test this, we examined effects of IFN-α versus lupus disease on osteoclasts and erosion in the NZBxNZW F1 SLE mouse model with K/BxN serum-induced arthritis (SIA).
Elevated systemic IFN-α levels were obtained by administration of an adenoviral vector expressing IFN-α (Ad-IFN-α). SLE disease was marked by anti-dsDNA antibody titer and proteinuria, and Ifi202 and Mx1 expression represented the IFN-α transcriptome. Micro-CT was used to evaluate bone erosions. Flow cytometry for CD11b and CD11c was used to evaluate the frequency of circulating osteoclast precursors (OCP) and myeloid dendritic cells (mDC) in blood.
Administration of Ad-IFN-α to NZBxNZW F1 mice induced osteopetrosis. Pre-autoimmune NZBxNZW F1 mice are fully susceptible to focal erosions in the setting of SIA. However, NZBxNZW F1 mice with high anti-dsDNA antibody titers and the IFN-α transcriptome were protected against bone erosions. Ad-IFN-α pre-treatment of NZW mice before K/BxN serum administration also resulted in protection against bone erosion (r2=0.4720, p<0.01), which was associated with a decrease in circulating CD11b+CD11c− OCP, and a concomitant increase in CD11b+CD11c+ cells (r2=0.6330, p<0.05) that are phenotypic of mDC.
These findings suggest that IFN-α in SLE shifts monocyte development toward mDC at the expense of osteoclastogenesis thereby resulting in decreased bone erosion.
PMCID: PMC2854832  PMID: 20131244
Jaccoud arthritis (JA); Lupus; Osteoclast; Interferon-alpha (IFN-α)
15.  High-Resolution Uniform MR Imaging of Finger Joints Using a Dedicated RF Coil at 3 Tesla 
To develop a dedicated RF coil for high-resolution MR imaging of finger joints at 3T to improve diagnostic evaluation of arthritic diseases.
Materials and Methods
A dedicated cylindrical RF receive coil was developed for imaging finger joints at 3T. A planar coil, a saddle coil and a 1.5T coil with similar design as the dedicated coil were also constructed to compare imaging performance with the dedicated coil. A phantom was used for quantitative evaluation. Three-dimensional images were obtained on four subjects and a cadaver finger specimen using isotropic resolution of 160 microns in 9:32 minutes. The images were reviewed by 2 musculoskeletal radiologists.
The dedicated finger coil provided higher signal-to-noise and greater signal uniformity than the other coils. It supported high-resolution imaging that demonstrated anatomical details of the entire finger joint, and in the subject study, revealed abnormalities not detectable by traditional clinical resolution.
The dedicated finger coil optimizes the potential advantages of 3T scanners compared to lower field magnets. Use of this coil should facilitate early diagnosis, improve assessment of treatment response and provide better understanding of basic mechanisms that underlie arthritis.
PMCID: PMC2921124  PMID: 19859961
High-resolution MRI; MR microscopy; RF receive coil; musculoskeletal MRI; finger joints; arthritis
16.  An 11-color Flow Cytometric Assay for Identifying, Phenotyping, and Assessing Endocytic Ability of Peripheral Blood Dendritic Cell Subsets in A Single Platform 
Journal of immunological methods  2008;341(1-2):106-116.
Human peripheral blood dendritic cells (PBDC) are a rare population comprised of several distinctive subsets. Analysis of these cells has been hindered by their low frequency. In this study, we report a novel direct ex vivo 11-color flow cytometric assay that combines subset identification with analysis of activation status and endocytic ability of three major PBDC subsets (CD1c+CD11c+ “MDC1,” CD141+CD11c+ “MDC2,” and CD303+CD11c− “PDC”) within a single platform. This method eliminates the need for DC enrichment, isolation, or prolonged culture. Human peripheral blood mononuclear cells (PBMC) from healthy donors are incubated with FITC-dextran directly ex vivo, prior to cell surface staining with various markers. As expected, PBDC identified by this assay express low levels of CD40 and CD86 directly ex vivo, and significantly upregulate expression of these molecules upon stimulation with toll-like receptor ligands LPS and CpG oligonucleotides. In addition, PDC internalize FITC-labeled dextran poorly in comparison to MDC1 and MDC2 subsets. Specificity of FITC-dextran endocytosis is further verified by imaging flow cytometry. Furthermore, the combination of surface markers used in this assay reveals a previously unreported CD4+CD11c+CD303−CD1c-CD141− cell population. Taken together, this assay is a rapid and cost-effective method that avoids manipulation of PBDC while providing direct ex vivo high-dimensional flow cytometry data for PBDC studies.
PMCID: PMC2935623  PMID: 19049809
17.  Inhibition of lymphangiogenesis and lymphatic drainage via VEGFR-3 blockade increases the severity of inflammation in chronic inflammatory arthritis 
Arthritis and rheumatism  2009;60(9):2666-2676.
Investigation of the effect of lymphatic inhibition on joint and draining lymph node pathology during the course of arthritis progression in mice.
TNF transgenic (TNF-Tg) mice were used as a model of chronic inflammatory arthritis. Mice received contrast enhanced MRI to obtain ankle and knee joint synovial volumes and draining popliteal lymph node (PLN) volumes before and 8 weeks after treatment with VEGFR-3 or VEGFR-2 neutralizing antibodies, or isotype IgG. The animals were subjected to near-infrared lymphatic imaging to determine the effect of VEGFR-3 neutralization on lymph transport from paws to draining PLNs prior to sacrifice. Lymphatic vessel formation and morphology of joints and PLNs were examined by histology, immunohistochemistry, and RT-PCR.
Compared to IgG treatment, VEGFR-3 neutralizing antibody treatment significantly decreased the size of PLNs, the number of lymphatic vessels in joints and PLNs, the lymphatic drainage from paws to PLNs, and the number of VEGF-C expressing CD11b+ myeloid cells in PLNs. However, it increased the synovial volumes and inflammatory area in ankle and knee joints. VEGFR-2 neutralizing antibody, in contrast, inhibited both lymphangiogenesis and joint inflammation.
Lymphangiogenesis and lymphatic drainage are reciprocally related to the severity of joint lesions during the development of chronic arthritis. Lymphatic drainage plays a beneficial role in controlling the progression of chronic inflammation.
PMCID: PMC2810533  PMID: 19714652
Lymphatic drainage; lymphangiogenesis; inflammation; lymph nodes; in vivo imagining
18.  Risk factors for radiographic progression in psoriatic arthritis: subanalysis of the randomized controlled trial ADEPT 
Arthritis Research & Therapy  2010;12(3):R113.
To identify independent predictors of radiographic progression in psoriatic arthritis (PsA) for patients treated with adalimumab or placebo in the Adalimumab Effectiveness in PsA Trial (ADEPT).
Univariate analyses and multivariate linear regression analyses assessed risk for radiographic progression (change in modified total Sharp score, ΔmTSS > 0.5) from baseline to week 24 for C-reactive protein (CRP) and other baseline variables, and for 24-week time-averaged CRP (univariate analysis only). Subanalyses determined mean ΔmTSS for CRP subgroups. Analyses were post hoc, with observed data.
One hundred and forty-four adalimumab-treated patients and 152 placebo-treated patients were assessed. Mean CRP was 64% lower by week 2 with adalimumab and essentially unchanged with placebo. Univariate analyses indicated that elevated CRP at baseline and time-averaged CRP were strongly associated with radiographic progression for placebo-treated patients but not for adalimumab-treated patients. Multivariate analysis confirmed that elevated baseline CRP was the only strong independent risk factor for radiographic progression (for CRP ≥1.0 mg/dl: odds ratio = 3.28, 95% confidence interval = 1.66 to 6.51, P < 0.001). Adalimumab treatment reduced risk of progression approximately fivefold. The difference between mean ΔmTSS for adalimumab versus placebo was greatest for patients with baseline CRP ≥2.0 mg/dl (-0.5 vs. 2.6).
Systemic inflammation in PsA, as indicated by elevated baseline CRP, was the only strong independent predictor of radiographic progression. This association was observed predominantly for placebo-treated patients. Adalimumab treatment substantially reduced the overall risk of radiographic progression, and provided greatest radiographic benefit for patients with the greatest CRP concentrations at baseline.
Trial Registration
Trial registration: NCT00195689.
PMCID: PMC2911906  PMID: 20537151
19.  CD16 (FcRγIII) as a potential marker of osteoclast precursors in psoriatic arthritis 
Psoriatic arthritis (PsA) is a chronic inflammatory arthritis characterized by bone erosion mediated by osteoclasts (OC). Our previous studies showed an elevated frequency of OC precursors (OCP) in PsA patients. Here, we examined if OC arise from CD16-positive monocytes in PsA.
Peripheral blood mononuclear cells (PBMC) or monocytes were isolated from human peripheral blood and sorted based on CD16 expression. Sorted cells were cultured alone or with bone wafers in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Enumeration and bone erosion activity of OC were examined after culture. The effects of tumor necrosis factor-alpha (TNFα), OC-promoting (M-CSF plus RANKL), and dendritic cell (DC)-promoting (GM-CSF plus interleukin (IL)-4) cytokines on CD16 surface expression were examined by flow cytometry.
PsA and psoriasis (Ps) subjects had a higher percentage of circulating inflammatory CD14+CD16+ cells than healthy controls (HC). Exposure of cells to OC-promoting, but not DC-promoting media, was associated with CD16 up-regulation. PBMC of Ps and PsA had a higher frequency of cells expressing intermediate levels of CD16. OC were mainly derived from CD16+ cells in PsA. Increased CD16 expression was associated with a higher bone erosion activity in PsA.
An increased frequency of circulating CD14+CD16+ cells was noted in PsA compared to controls, and intermediate levels of CD16 may suggest a transitional state of OCP during osteoclastogenesis. Intriguingly, TNFα blocked CD16 expression on a subset of CD14+ monocytes. Collectively, our data suggest that CD16 has the potential to serve as an OCP marker in inflammatory arthritis.
PMCID: PMC2875642  PMID: 20102624
20.  Altered Bone Remodeling in Psoriatic Arthritis 
Current rheumatology reports  2008;10(4):311-317.
Bone is a highly dynamic organ that interacts with a wide array cells and tissues. Recent studies have unveiled unanticipated connections between the immune and skeletal systems and this relationship led to the development a new field, osteoimmunology. This field will enable investigators to translate basic science findings in bone biology to clinical applications for inflammatory joint diseases such as psoriatic arthritis (PsA). In this review, we will examine the disruption of bone homeostasis in PsA and discuss the pivotal role of osteoclasts and osteoblasts as well as signaling pathways in the altered remodeling observed in this inflammatory arthritis. We will also discuss the effects of TNF inhibition on both bone resorption and new bone formation in PsA.
PMCID: PMC2656567  PMID: 18662512
psoriasis; psoriatic arthritis; osteoclast; tumor necrosis factor; osteoblast; dickkopf-1
21.  Elucidating Bone Marrow Edema and Myelopoiesis in Murine Arthritis Using Contrast-Enhanced Magnetic Resonance Imaging 
Arthritis and rheumatism  2008;58(7):2019-2029.
While bone marrow edema (BME) detected by magnetic resonance imaging (MRI) is a biomarker of arthritis, its nature remains poorly understood due to the limitations of clinical studies. In this study, MRI of murine arthritis was used to elucidate its cellular composition and vascular involvement.
BME was quantified using normalized bone marrow intensity (NBMI) from precontrast MRI and normalized marrow contrast enhancement (NMCE) following intravenous administration of gadopentate dimeglumine. Wild-type (WT) and tumor necrosis factor (TNF)-transgenic mice were scanned from 2 to 5 months of age, followed by histologic or fluorescence-activated cell sorting (FACS) analysis of marrow. In efficacy studies, TNF-transgenic mice were treated with anti-TNF or placebo for 8 weeks, and then were studied using bimonthly MRI and histologic analysis.
NBMI values were similar in WT and TNF-transgenic mice at 2 months. The values in WT mice steadily decreased thereafter, with mean values becoming significantly different from those of TNF-transgenic mice at 3.5 months (mean ± SD 0.29 ± 0.08 versus 0.46 ± 0.13; P < 0.05). Red to yellow marrow transformation occurred in WT but not TNF-transgenic mice, as observed histologically at 5 months. The marrow of TNF-transgenic mice that received anti-TNF therapy converted to yellow marrow, with lower NBMI values versus placebo at 6 weeks (mean ± SD 0.26 ± 0.07 versus 0.61 ± 0.22; P < 0.05). FACS analysis of bone marrow revealed a significant correlation between NBMI values and CD11b+ monocytes (R2 = 0.91, P = 0.0028). Thresholds for “normal” red marrow versus pathologic BME were established, and it was also found that inflammatory marrow is highly permeable to contrast agent.
BME signals in TNF-transgenic mice are caused by yellow to red marrow conversion, with increased myelopoiesis and increased marrow permeability. The factors that mediate these changes warrant further investigation.
PMCID: PMC2572869  PMID: 18576355
22.  The quest for a biomarker of circulating osteoclast precursors 
Osteoclast precursors arise from the CD14+ CD16- population in controls but details about cell surface marker expression and functional characteristics of these cells is unknown, particularly in patients with inflammatory arthritis. In a recent issue of Arthritis, Research and Therapy, Lari and colleagues found that osteoclasts developed from a proliferative CD14+ CD16- subset in healthy controls. These cells took on the morphology of osteoclasts, expressed mRNA for osteoclast-related genes and excavated pits on bone wafers. These findings provide new insights into monocyte diversity and provide evidence that osteoclast precursors arise from a small proliferating monocyte population in controls. Additional studies are needed in patients with inflammatory arthritis
PMCID: PMC2714124  PMID: 19591635
23.  Longitudinal Assessment of Synovial, Lymph Node, and Bone Volumes in Inflammatory Arthritis in Mice using in vivo MRI and micro-CT 
Arthritis and rheumatism  2007;56(12):4024-4037.
Development of longitudinal 3D outcomes of inflammation and bone erosion in murine arthritis using contrast enhanced (CE) MRI and in vivo micro-CT; and in a pilot study, to determine the value of entrance criteria by age versus synovial volume in therapeutic intervention studies.
CE-MRI and in vivo micro-CT was performed on TNF-Tg and WT littermates to quantify the synovial and popliteal lymph node (LN) volumes and patella and talus bone volumes, respectively, which were validated with histology. These longitudinal outcome measures were used to assess the natural history of inflammatory-erosive arthritis. We also performed anti-TNF versus placebo efficacy studies in TNF-Tg mice in which treatment was initiated either by age (4–5 months) or synovial volume (3mm3 as detected by CE-MRI). Linear regression was performed to analyze the correlation between synovitis and focal erosion.
CE-MRI demonstrated the highly variable nature of TNF-induced joint inflammation. Initiation of treatment by synovial volume produced significantly larger treatment effects on synovial volume (p=0.04) and lymph node volume (p<0.01) than initiation by age. By correlating the MRI and microCT data we were able to demonstrate a significant relationship between changes in synovial and patellar volumes (R2 =0.75; p<0.01).
In vivo CE-MRI and micro-CT 3D outcome measures are powerful tools that accurately demonstrate the progression of inflammatory-erosive arthritis in mice. These methods can be used to identify mice with arthritis of similar severity before intervention studies are initiated and thus minimize heterogeneity in outcome studies of chronic arthritis seen between genetically identical littermates.
PMCID: PMC2662386  PMID: 18050199
Inflammatory Arthritis; Animal Model; In vivo Imaging; 3D-MRI; Micro-CT
24.  Clinical development of anti-RANKL therapy 
Arthritis Research & Therapy  2007;9(Suppl 1):S7.
The receptor activator of nuclear factor-κB ligand (RANKL), its cognate receptor RANK, and its natural decoy receptor osteoprotegerin have been identified as the final effector molecules of osteoclastic bone resorption. This has provided an ideal target for therapeutic interventions in metabolic bone disease. As described in previous reviews in this supplement, RANKL signaling is required for osteoclast differentiation, activation, and survival. Furthermore, in vivo inhibition of RANKL leads to immediate osteoclast apoptosis, and there are no in vivo models of bone resorption that are refractory to RANKL inhibition. Thus, the only step remaining in the development of a clinical intervention is the generation of a safe, effective, and specific drug that can inhibit RANKL in humans. Here we review the clinical development of denosumab (formerly known as AMG 162), which is a fully human mAb directed against RANKL. This discussion includes the breadth of 21 human studies that have led to the current phase 3 clinical trials seeking approval for use of this agent to treat postmenopausal women with low bone mineral density (osteoporosis) and patients with metastatic lytic bone lesions (multiple myeloma, and prostate and breast cancer).
PMCID: PMC1924522  PMID: 17634146
25.  Microarray Analyses of Peripheral Blood Cells Identifies Unique Gene Expression Signature in Psoriatic Arthritis 
Molecular Medicine  2005;11(1-12):21-29.
Psoriatic arthritis (PsA) is a chronic and erosive form of arthritis of unknown cause. We aimed to characterize the PsA phenotype using gene expression profiling and comparing it with healthy control subjects and patients rheumatoid arthritis (RA). Peripheral blood cells (PBCs) of 19 patients with active PsA and 19 age- and sex-matched control subjects were used in the analyses of PsA, with blood samples collected in PaxGene tubes. A significant alteration in the pattern of expression of 313 genes was noted in the PBCs of PsA patients on Affymetrix U133A arrays: 257 genes were expressed at reduced levels in PsA, and 56 genes were expressed at increased levels, compared with controls. Downregulated genes tended to cluster to certain chromosomal regions, including those containing the psoriasis susceptibility loci PSORS1 and PSORS2. Among the genes with the most significantly reduced expression were those involved in downregulation or suppression of innate and acquired immune responses, such as SIGIRR, STAT3, SHP1, IKBKB, IL-11RA, and TCF7, suggesting inappropriate control that favors proin-flammatory responses. Several members of the MAPK signaling pathway and tumor suppressor genes showed reduced expression. Three proinflammatory genes—S100A8, S100A12, and thioredoxin—showed increased expression. Logistic regression and recursive partitioning analysis determined that one gene, nucleoporin 62 kDa, could correctly classify all controls and 94.7% of the PsA patients. Using a dataset of 48 RA samples for comparison, the combination of two genes, MAP3K3 followed by CACNA1S, was enough to correctly classify all RA and PsA patients. Thus, PBC gene expression profiling identified a gene expression signature that differentiated PsA from RA, and PsA from controls. Several novel genes were differentially expressed in PsA and may prove to be diagnostic biomarkers or serve as new targets for the development of therapies.
PMCID: PMC1449519  PMID: 16622521

Results 1-25 (29)