PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (25)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Molecular characterisation of murine acute myeloid leukaemia induced by 56Fe ion and 137Cs gamma ray irradiation 
Mutagenesis  2012;28(1):71-79.
Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML.
doi:10.1093/mutage/ges055
PMCID: PMC3716295  PMID: 22987027
2.  A Key Role of microRNA-29b for the Suppression of Colon Cancer Cell Migration by American Ginseng 
PLoS ONE  2013;8(10):e75034.
Metastasis of colon cancer cells increases the risk of colon cancer mortality. We have recently shown that American ginseng prevents colon cancer, and a Hexane extract of American Ginseng (HAG) has particularly potent anti-inflammatory and anti-cancer properties. Dysregulated microRNA (miR) expression has been observed in several disease conditions including colon cancer. Using global miR expression profiling, we observed increased miR-29b in colon cancer cells following exposure to HAG. Since miR-29b plays a role in regulating the migration of cancer cells, we hypothesized that HAG induces miR-29b expression to target matrix metalloproteinase-2 (MMP-2) thereby suppressing the migration of colon cancer cells. Results are consistent with this hypothesis. Our study supports the understanding that targeting MMP-2 by miR-29b is a mechanism by which HAG suppresses the migration of colon cancer cells.
doi:10.1371/journal.pone.0075034
PMCID: PMC3794036  PMID: 24130681
3.  Tissue Specific Expression Of Sprouty1 In Mice Protects Against High Fat Diet Induced Fat Accumulation, Bone Loss, And Metabolic Dysfunction 
The British journal of nutrition  2011;108(6):1025-1033.
We recently characterized Sprouty1 (Spry1), a growth factor signaling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue specific Spry1 expression in mice resulted in increased bone mass and reduced body fat while conditional knockout of Spry1 had the opposite effect with decreased bone and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high fat diet-induced obesity, bone loss, and associated lipid abnormalities and demonstrate that Spry1 has a long-term protective effect on mice fed a high caloric diet. We studied diet-induced obesity in mice with fatty acid binding promoter (aP2)-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1 null mice, high fat diet increased body fat by 40%, impaired glucose regulation, and led to liver steatosis. However, over-expression of Spry1 led to 35% lower body fat, reduced bone loss, and normal metabolic function compared to single transgenics. This protective phenotype was associated with decreased circulating insulin (70%) and leptin (54%) compared to controls on a high fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45%. We show that conditional Spry1 expression in adipose tissue protects against high fat diet-induced obesity and associated bone loss.
doi:10.1017/S0007114511006209
PMCID: PMC3496386  PMID: 22142492
Sprouty; high fat diet; body fat; obesity; bone loss
4.  Deficiency of Retinaldehyde Dehydrogenase 1 Induces BMP2 and Increases Bone Mass In Vivo 
PLoS ONE  2013;8(8):e71307.
The effects of retinoids, the structural derivatives of vitamin A (retinol), on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA) and its precursor all trans retinaldehyde (Rald), exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1), the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT) demonstrated that Aldh1a1-deficient (Aldh1a1−/−) female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT) mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1−/− mice. In serum assays, Aldh1a1−/− mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1−/− mesenchymal stem cells (MSCs) expressed significantly higher levels of bone morphogenetic protein 2 (BMP2) and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1−/− mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1−/− mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR)-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.
doi:10.1371/journal.pone.0071307
PMCID: PMC3739807  PMID: 23951127
5.  A Unique Mitochondrial Transcription Factor B Protein in Dictyostelium discoideum 
PLoS ONE  2013;8(7):e70614.
Unlike their bacteriophage homologs, mitochondrial RNA polymerases require the assistance of transcription factors in order to transcribe mitochondrial DNA efficiently. The transcription factor A family has been shown to be important for transcription of the human mitochondrial DNA, with some of its regulatory activity located in its extended C-terminal tail. The mitochondrial transcription factor B family often has functions not only in transcription, but also in mitochondrial rRNA modification, a hallmark of its α-proteobacterial origin. We have identified and characterised a mitochondrial transcription factor B homolog in the soil dwelling cellular slime mould Dictyostelium discoideum, an organism widely established as a model for studying eukaryotic cell biology. Using in bacterio functional assays, we demonstrate that the mitochondrial transcription factor B homolog not only functions as a mitochondrial transcription factor, but that it also has a role in rRNA methylation. Additionally, we show that the transcriptional activation properties of the D. discoideum protein are located in its extended C-terminal tail, a feature not seen before in the mitochondrial transcription factor B family, but reminiscent of the human mitochondrial transcription factor A. This report contributes to our current understanding of the complexities of mitochondrial transcription, and its evolution in eukaryotes.
doi:10.1371/journal.pone.0070614
PMCID: PMC3724811  PMID: 23923009
6.  A hexane fraction of american ginseng suppresses mouse colitis and associated colon cancer: anti-inflammatory and pro-apoptotic mechanisms 
Ulcerative colitis (UC) is a chronic inflammatory condition associated with a high colon cancer risk. We have previously reported that American Ginseng (AG) extract significantly reduced the inflammatory parameters of chemically induced colitis. The aim of this study was to further delineate the components of AG that suppress colitis and prevent colon cancer. Among five different fractions of AG (Butanol, Hexane, Ethylacetate, Dicholoromethane and Water), a Hexane Fraction has particularly potent anti-oxidant and pro-apoptotic properties. The effects of this fraction were shown in a mouse macrophage cell line (ANA-1 cells), in a human lymphoblastoid cell line (TK6), and in an ex-vivo model (CD4+/CD25− primary effector T cells). A key in vivo finding was that compared with the whole AG extract, the Hexane Fraction of AG was more potent in treating colitis in a dextran sulfate sodium (DSS) mouse model, as well as suppressing azoxymethane (AOM)/DSS-induced colon cancer. Furthermore, TUNEL labeling of inflammatory cells within the colonic mesenteric lymph nodes (MLN) was elevated in mice consuming DSS + the Hexane Fraction of AG. Results are consistent with our in vitro data, and with the hypothesis that the Hexane Fraction of AG has antiinflammatory properties, and drives inflammatory cell apoptosis in vivo, providing a mechanism by which this fraction protects from colitis in this DSS mouse model. This study moves us closer to understanding the molecular components of AG that suppress colitis, and prevent colon cancer associated with colitis.
doi:10.1158/1940-6207.CAPR-11-0421
PMCID: PMC3324646  PMID: 22293630
Inflammation; Ginseng; Colitis; Hexane; Colon; Apoptosis
7.  Evaluation of the risk of anti-SSA/Ro-SSB/La antibody-associated cardiac manifestations of neonatal lupus in fetuses of mothers with systemic lupus erythematosus exposed to hydroxychloroquine 
Annals of the rheumatic diseases  2010;69(10):1827-1830.
Background
Based on the potential involvement of Toll-like receptor (TLR) signalling in the pathogenesis of neonatal lupus (NL), it was hypothesised that fetal exposure to hydroxychloroquine (HCQ), a TLR inhibitor, might reduce the risk of anti-SSA/Ro/SSB/La antibody-associated cardiac manifestations of NL (cardiac-NL).
Methods
Cardiac-NL children (N=50) and controls (N=151) were drawn from the following overlapping pregnancy studies: Research Registry for NL; PR Interval and Dexamethasone Evaluation in Cardiac-NL; and Predictors of Pregnancy Outcomes: Biomarkers in Antiphospholipid Syndrome and Systemic Lupus Erythematosus (SLE). Pregnancies met the following inclusion criteria: documentation of maternal anti-SSA/Ro/SSB/La antibodies at pregnancy, confirmation of medication use and child’s outcome, a diagnosis of SLE before pregnancy and birth by 31 December 2007.
Results
Seven (14%) of the cardiac-NL children were exposed to HCQ compared with 56 (37%) of the controls (p=0.002; OR 0.28; 95% CI 0.12 to 0.63). Cases and controls were similar with respect to demographic and antibody status. Multivariable analysis adjusting for birth year, maternal race/ethnicity, antibody status, non-fluorinated steroid use and prior cardiac-NL risk yielded an OR associated with HCQ use of 0.46 (95% CI 0.18 to 1.18; p=0.10).
Conclusion
This case–control study suggests that, in mothers with SLE with anti-SSA/Ro/SSB/La antibodies, exposure to HCQ during pregnancy may decrease the risk of fetal development of cardiac-NL. Prospective studies are needed for confirmation.
doi:10.1136/ard.2009.119263
PMCID: PMC3593727  PMID: 20447951
8.  TERRA, hnRNP A1, and DNA-PKcs Interactions at Human Telomeres 
Maintenance of telomeres, repetitive elements at eukaryotic chromosomal termini, and the end-capping structure and function they provide, are imperative for preserving genome integrity and stability. The discovery that telomeres are transcribed into telomere repeat containing RNA (TERRA) has revolutionized our view of this repetitive, rather unappreciated region of the genome. We have previously shown that the non-homologous end-joining, shelterin associated DNA dependent protein kinase catalytic subunit (DNA-PKcs) participates in mammalian telomeric end-capping, exclusively at telomeres created by leading-strand synthesis. Here, we explore potential roles of DNA-PKcs and its phosphorylation target heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) in the localization of TERRA at human telomeres. Evaluation of co-localized foci utilizing RNA-FISH and three-dimensional (3D) reconstruction strategies provided evidence that both inhibition of DNA-PKcs kinase activity and siRNA depletion of hnRNP A1 result in accumulation of TERRA at individual telomeres; depletion of hnRNP A1 also resulted in increased frequencies of fragile telomeres. These observations are consistent with previous demonstrations that decreased levels of the nonsense RNA-mediated decay factors SMG1 and UPF1 increase TERRA at telomeres and interfere with replication of leading-strand telomeres. We propose that hTR mediated stimulation of DNA-PKcs and subsequent phosphorylation of hnRNP A1 influences the cell cycle dependent distribution of TERRA at telomeres by contributing to the removal of TERRA from telomeres, an action important for progression of S-phase, and thereby facilitating efficient telomere replication and end-capping.
doi:10.3389/fonc.2013.00091
PMCID: PMC3628365  PMID: 23616949
TERRA; hnRNP A1; DNA-PKcs; hTR; telomeres; strand-specificity
9.  An automated approach for the identification of horizontal gene transfers from complete genomes reveals the rhizome of Rickettsiales 
Background
Horizontal gene transfer (HGT) is considered to be a major force driving the evolutionary history of prokaryotes. HGT is widespread in prokaryotes, contributing to the genomic repertoire of prokaryotic organisms, and is particularly apparent in Rickettsiales genomes. Gene gains from both distantly and closely related organisms play crucial roles in the evolution of bacterial genomes. In this work, we focus on genes transferred from distantly related species into Rickettsiales species.
Results
We developed an automated approach for the detection of HGT from other organisms (excluding alphaproteobacteria) into Rickettsiales genomes. Our systematic approach consisted of several specialized features including the application of a parsimony method for inferring phyletic patterns followed by blast filter, automated phylogenetic reconstruction and the application of patterns for HGT detection. We identified 42 instances of HGT in 31 complete Rickettsiales genomes, of which 38 were previously unidentified instances of HGT from Anaplasma, Wolbachia, Candidatus Pelagibacter ubique and Rickettsia genomes. Additionally, putative cases with no phylogenetic support were assigned gene ontology terms. Overall, these transfers could be characterized as “rhizome-like”.
Conclusions
Our analysis provides a comprehensive, systematic approach for the automated detection of HGTs from several complete proteome sequences that can be applied to detect instances of HGT within other genomes of interest.
doi:10.1186/1471-2148-12-243
PMCID: PMC3575314  PMID: 23234643
Horizontal gene transfer; Rickettsiales; Candidatus Pelagibacter ubique; Sympatry
10.  An essential role for the circadian-regulated gene Nocturnin in osteogenesis: the importance of local timekeeping in skeletal homeostasis 
The role of circadian proteins in regulating whole body metabolism and bone turnover has been studied in detail and has led to the discovery of an elemental system for timekeeping involving the core genes Clock, Bmal1, Per, and Cry. Nocturnin, a peripheral circadian-regulated gene has been shown to play a very important role in regulating adipogenesis by deadenylation of key mRNAs and intra-cytoplasmic transport of PPARγ. The role that it plays in osteogenesis has previously not been studied in detail. In this report we examined in vitro and in vivo osteogenesis in the presence and absence of Nocturnin and show that loss of Nocturnin enhances bone formation and can rescue Rosiglitazone induced bone loss in mice. The circadian rhythm of Nocturnin is likely to be an essential element of marrow stromal cell fate.
doi:10.1111/j.1749-6632.2011.06213.x
PMCID: PMC3285261  PMID: 22082366
Nocturnin; rosiglitazone; PPARγ
11.  VDR Haploinsufficiency Impacts Body Composition and Skeletal Acquisition in a Gender-Specific Manner 
Calcified tissue international  2011;89(3):179-191.
The vitamin D receptor (VDR) is crucial for virtually all of vitamin D’s actions and is thought to be ubiquitously expressed. We hypothesized that disruption of one allele of the VDR gene would impact bone development and would have metabolic consequences. Body composition and bone mass (BMD) in VDR heterozygous (VDR HET) mice were compared to those obtained in male and female VDR KO and WT mice at 8 weeks of age. Male mice were also evaluated at 16 weeks, and bone marrow mesenchymal stem cell (MSC) differentiation was evaluated in VDR female mice. Additionally, female VDR HET and WT mice received intermittent PTH treatment or vehicle (VH) for 4 weeks. BMD was determined at baseline and after treatment. MRI was done in vivo at the end of treatment; μCT and bone histomorphometry were performed after killing the animals. VDR HET male mice had normal skeletal development until 16 weeks of age but showed significantly less gain in fat mass than WT mice. In contrast, female VDR HET mice showed decreased total-body BMD at age 8 weeks but ad a normal skeletal response to PTH. MSC differentiation was also impaired in VDR HET female mice. Thus, female VDR HET mice show early impairment in bone acquisition, while male VDR HET mice exhibit a lean phenotype. Our results indicate that the VDR HET mouse is a useful model for studying the metabolic and skeletal impact of decreased vitamin D sensitivity.
doi:10.1007/s00223-011-9505-1
PMCID: PMC3157554  PMID: 21637996
Vitamin D; Parathyroid hormone; Body composition
12.  A Limited Role of p53 on the Ability of a Hexane Fraction of American Ginseng to Suppress Mouse Colitis 
Ulcerative colitis (UC) is debilitating and carries a high colon cancer risk. Apoptosis of inflammatory cells is a key mechanism regulating UC. We have recently shown that American ginseng (AG), and to a greater extent, a Hexane fraction of AG (HAG) can cause apoptosis and suppress mouse colitis through a p53-mediated mechanism. Here, we tested the hypothesis that HAG suppresses colitis through a p53 mechanism. We found only a limited impact of p53 in the ability of HAG to induce inflammatory cell apoptosis and suppress mouse colitis in vitro and in vivo. Finally, we asked whether HAG could cause cell cycle arrest of HCT116 colon cancer cells in vitro. Interestingly, HAG caused a G1 arrest of such cells independent of p53 status. Findings are significant because HAG suppresses colitis and associated colon cancer, and mutation in p53 is observed in most colitis-driven colon cancers. Therefore, HAG might be very effective in targeting the inflammatory cells and cancer cells since it induces apoptosis of inflammatory cells and cell cycle arrest in both p53−/− and WT p53 colon cancer cells.
doi:10.1155/2012/785739
PMCID: PMC3414200  PMID: 22899889
13.  Effects of Combination Tocopherols and Alpha Lipoic Acid Therapy on Oxidative Stress and Inflammatory Biomarkers in Chronic Kidney Disease 
Increased oxidative stress and inflammation are highly prevalent in chronic kidney disease (CKD), yet few studies have investigated whether oral antioxidant therapy can alter markers of inflammation or oxidative stress in CKD. The purpose of this study was to investigate whether a combination of mixed tocopherols and alpha lipoic acid (ALA) would alter biomarkers of oxidative stress and inflammation in subjects with Stage 3–4 CKD.
Methods
This was a prospective, randomized, double-blind, placebo-controlled pilot trial. 62 subjects were enrolled, and were randomly assigned to receive the combination of mixed tocopherols 666 IU/day plus ALA 600mg/day or their matching placebos for a total of 8 weeks. Plasma F2-isoprostane and protein thiol concentration were measured as biomarkers of oxidative stress, and C-reactive protein (CRP) and interleukin-6 (IL-6) concentration as biomarkers of systemic inflammation.
Results
There were no significant differences in demographics, diabetic status, or estimated glomerular filtration rate (eGFR) between study treatment and placebo groups at baseline. 58 of 62 randomized subjects (93%) completed the study protocol. After two months of treatment, there were no significant changes in F2-isoprostanes, protein thiols, CRP and IL-6 concentrations with mixed tocopherols and ALA treatment compared to matching placebos, whether analyzed as intention to treat or as treated. Diabetic status and baseline body mass index did not influence the results.
Conclusions
Combination oral mixed tocopherols and ALA treatment for 2 months does not influence biomarkers of oxidative stress and inflammation in Stage 3–4 CKD patients.
doi:10.1053/j.jrn.2010.08.003
PMCID: PMC3078529  PMID: 21185738
14.  Phylogenomic Analysis of Odyssella thessalonicensis Fortifies the Common Origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana Mitochondrion 
PLoS ONE  2011;6(9):e24857.
Background
The evolution of the Alphaproteobacteria and origin of the mitochondria are topics of considerable debate. Most studies have placed the mitochondria ancestor within the Rickettsiales order. Ten years ago, the bacterium Odyssella thessalonicensis was isolated from Acanthamoeba spp., and the 16S rDNA phylogeny placed it within the Rickettsiales. Recently, the whole genome of O. thessalonicensis has been sequenced, and 16S rDNA phylogeny and more robust and accurate phylogenomic analyses have been performed with 65 highly conserved proteins.
Methodology/Principal Findings
The results suggested that the O. thessalonicensis emerged between the Rickettsiales and other Alphaproteobacteria. The mitochondrial proteins of the Reclinomonas americana have been used to locate the phylogenetic position of the mitochondrion ancestor within the Alphaproteobacteria tree. Using the K tree score method, nine mitochondrion-encoded proteins, whose phylogenies were congruent with the Alphaproteobacteria phylogenomic tree, have been selected and concatenated for Bayesian and Maximum Likelihood phylogenies. The Reclinomonas americana mitochondrion is a sister taxon to the free-living bacteria Candidatus Pelagibacter ubique, and together, they form a clade that is deeply rooted in the Rickettsiales clade.
Conclusions/Significance
The Reclinomonas americana mitochondrion phylogenomic study confirmed that mitochondria emerged deeply in the Rickettsiales clade and that they are closely related to Candidatus Pelagibacter ubique.
doi:10.1371/journal.pone.0024857
PMCID: PMC3177885  PMID: 21957463
15.  Quinazolin-4-one derivatives: A novel class of non-competitive NR2C/D subunit-selective N-methyl-D-aspartate receptor antagonists 
Journal of medicinal chemistry  2010;53(15):5476-5490.
We describe a new class of subunit-selective antagonists of N-methyl D-Aspartate (NMDA)-selective ionotropic glutamate receptors that contain the (E)-3-phenyl-2-styrylquinazolin-4(3H)-one backbone. The inhibition of recombinant NMDA receptor function induced by these quinazolin-4-one derivatives is non-competitive and voltage-independent, suggesting that this family of compounds does not exert action on the agonist binding site of the receptor or block the channel pore. The compounds described here resemble CP-465,022 ((S)-3-(2-chlorophenyl)-2-[2-(6-diethylaminomethyl-pyridin-2-yl)-vinyl]-6-fluoro-3H-quinazolin-4-one), a non-competitive antagonist of AMPA-selective glutamate receptors. However, modification of ring substituents resulted in analogues with greater than 100-fold selectivity for recombinant NMDA receptors over AMPA and kainate receptors. Furthermore, within this series of compounds, analogues were identified with 50-fold selectivity for recombinant NR2C/D-containing receptors over NR2A/B containing receptors. These compounds represent a new class of non-competitive subunit-selective NMDA receptor antagonists.
doi:10.1021/jm100027p
PMCID: PMC2920070  PMID: 20684595
16.  Enantiomeric Propanolamines as selective N-Methyl-d-aspartate 2B Receptor Antagonists† 
Journal of medicinal chemistry  2008;51(18):5506-5521.
Enantiomeric propanolamines have been identified as a new class of NR2B-selective NMDA receptor antagonists. The most effective agents are biaryl structures, synthesized in six steps with overall yields ranging from 11–64%. The compounds are potent and selective inhibitors of NR2B-containing recombinant NMDA receptors with IC50 values between 30–100 nM. Potency is strongly controlled by substitution on both rings and the centrally located amine nitrogen. SAR analysis suggests that well-balanced polarity and chain-length factors provide the greatest inhibitory potency. Structural comparisons based on 3D shape analysis and electrostatic complementarity support this conclusion. The antagonists are neuroprotective in both in vitro and in vivo models of ischemic cell death. In addition, some compounds exhibit anticonvulsant properties. Unlike earlier generation NMDA receptor antagonists and some NR2B-selective antagonists, the present series of propanolamines does not cause increased locomotion in rodents. Thus, the NR2B-selective antagonists exhibit a range of therapeutically interesting properties.
doi:10.1021/jm8002153
PMCID: PMC3142473  PMID: 18800760
17.  A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors 
NMDA receptors are tetrameric complexes of NR1 and NR2A-D subunits that mediate excitatory synaptic transmission and play a role in neurological disorders. We have identified a novel subunit-selective potentiator of NMDA receptors containing the NR2C or NR2D subunit, which could allow selective modification of circuit function in regions expressing NR2C/D subunits. The substituted tetrahydroisoquinoline CIQ enhances receptor responses two-fold with an EC50 of 3 μM by increasing channel opening frequency without altering mean open time or EC50 values for glutamate or glycine. The actions of CIQ depend on a single residue in the M1 region (NR2D Thr592) and the linker between the amino terminal domain and agonist binding domain. CIQ potentiates native NR2D-containing NMDA receptor currents from subthalamic neurons. Our identification of a subunit-selective NMDA receptor modulator reveals a new class of pharmacological tools with which to probe the role of NR2C- and NR2D-containing NMDA receptors in brain function and disease.
doi:10.1038/ncomms1085
PMCID: PMC3113701  PMID: 20981015
18.  Modulation of TRAIL resistance in colon carcinoma cells: Different contributions of DR4 and DR5 
BMC Cancer  2011;11:39.
Background
rhTRAIL is a therapeutic agent, derived from the TRAIL cytokine, which induces apoptosis in cancer cells by activating the membrane death receptors 4 and 5 (DR4 and DR5). Here, we investigated each receptor's contribution to rhTRAIL sensitivity and rhTRAIL resistance. We assessed whether agonistic DR4 or DR5 antibodies could be used to circumvent rhTRAIL resistance, alone or in combination with various chemotherapies.
Methods
Our study was performed in an isogenic model comprised of the SW948 human colon carcinoma cell line and its rhTRAIL resistant sub-line SW948-TR. Effects of rhTRAIL and agonistic DR4/DR5 antibodies on cell viability were measured using MTT assays and identification of morphological changes characteristic of apoptosis, after acridine orange staining. Sensitivity to the different death receptor ligands was stimulated using pretreatment with the cytokine IFN-gamma and the proteasome inhibitor MG-132. To investigate the mechanisms underlying the changes in rhTRAIL sensitivity, alterations in expression levels of targets of interest were measured by Western blot analysis. Co-immunoprecipitation was used to determine the composition of the death-inducing signalling complex at the cell membrane.
Results
SW948 cells were sensitive to all three of the DR-targeting agents tested, although the agonistic DR5 antibody induced only weak caspase 8 cleavage and limited apoptosis. Surprisingly, agonistic DR4 and DR5 antibodies induced equivalent DISC formation and caspase 8 cleavage at the level of their individual receptors, suggesting impairment of further caspase 8 processing upon DR5 stimulation. SW948-TR cells were cross-resistant to all DR-targeting agents as a result of decreased caspase 8 expression levels. Caspase 8 protein expression was restored by MG-132 and IFN-gamma pretreatment, which also re-established sensitivity to rhTRAIL and agonistic DR4 antibody in SW948-TR. Surprisingly, MG-132 but not IFN-gamma could also increase DR5-mediated apoptosis in SW948-TR.
Conclusions
These results highlight a critical difference between DR4- and DR5-mediated apoptotic signaling modulation, with possible implications for future combinatorial regimens.
doi:10.1186/1471-2407-11-39
PMCID: PMC3045356  PMID: 21272366
19.  The Early Whole-Blood Transcriptional Signature of Dengue Virus and Features Associated with Progression to Dengue Shock Syndrome in Vietnamese Children and Young Adults▿ † ‡  
Journal of Virology  2010;84(24):12982-12994.
Dengue is a pantropic public health problem. In children, dengue shock syndrome (DSS) is the most common life-threatening complication. The ability to predict which patients may develop DSS may improve triage and treatment. To this end, we conducted a nested case-control comparison of the early host transcriptional features in 24 DSS patients and 56 sex-, age-, and virus serotype-matched uncomplicated (UC) dengue patients. In the first instance, we defined the “early dengue” profile. The transcriptional signature in acute rather than convalescent samples (≤72 h post-illness onset) was defined by an overabundance of interferon-inducible transcripts (31% of the 551 overabundant transcripts) and canonical gene ontology terms that included the following: response to virus, immune response, innate immune response, and inflammatory response. Pathway and network analyses identified STAT1, STAT2, STAT3, IRF7, IRF9, IRF1, CEBPB, and SP1 as key transcriptional factors mediating the early response. Strikingly, the only difference in the transcriptional signatures of early DSS and UC dengue cases was the greater abundance of several neutrophil-associated transcripts in patients who progressed to DSS, a finding supported by higher plasma concentrations of several canonical proteins associated with neutrophil degranulation (bactericidal/permeability-increasing protein [BPI], elastase 2 [ELA2], and defensin 1 alpha [DEF1A]). Elevated levels of neutrophil-associated transcripts were independent of the neutrophil count and also of the genotype of the infecting virus, as genome-length sequences of dengue virus serotype 1 (DENV-1) (n = 15) and DENV-2 (n = 3) sampled from DSS patients were phylogenetically indistinguishable from those sampled from uncomplicated dengue patients (32 DENV-1 and 9 DENV-2 sequences). Collectively, these data suggest a hitherto unrecognized association between neutrophil activation, pathogenesis, and the development of DSS and point to future strategies for guiding prognosis.
doi:10.1128/JVI.01224-10
PMCID: PMC3004338  PMID: 20943967
20.  Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors 
We have studied relative efficacies of NR1 agonists glycine and D-cycloserine (DCS), and found efficacy to be dependent on the NR2 subunit. DCS shows partial agonism at NR1/NR2B but has higher relative efficacy than glycine at NR1/NR2C receptor. Molecular dynamics (MD) simulations of the NR1/NR2B and NR1/NR2C agonist binding domain dimer suggest only subtle differences in the interactions of DCS with NR1 binding site residues relative to glycine. The most pronounced differences were observed in the NR1/NR2C simulation between the orientation of helix F and G of the NR1 subunit. Interestingly, Helix F was previously proposed to influence receptor gating and to adopt an orientation depending on agonist efficacy. MD simulations and site-directed mutagenesis further suggest a role for residues at the agonist binding domain dimer interface in regulating DCS efficacy. To relate the structural rearrangements to receptor gating, we recorded single-channel currents from outside-out patches containing a single active NR1/NR2C receptor. DCS increased the mean open time and open probability of NR1/NR2C receptors in comparison to glycine. Maximum likelihood fitting of a gating model for NR1/NR2C receptor activation to the single channel data suggests that DCS specifically accelerates the rate constant governing a fast gating step and reduces the closing rate. These changes appear to reflect a decreased activation energy for a pregating step and increased stability of the open states. We suggest that the higher efficacy of DCS at NR1/NR2C receptors involves structural rearrangements at the dimer interface and an effect on NR1/NR2C receptor pre-gating conformational changes.
doi:10.1523/JNEUROSCI.5390-09.2010
PMCID: PMC2862277  PMID: 20164358
D-cycloserine; glutamate; glycine; NR2C; NMDA gating
21.  Synthesis, structural activity-relationships, and biological evaluation of novel amide-based allosteric binding site antagonists in NR1A/NR2B N-methyl-D-aspartate receptors☆ 
Bioorganic & medicinal chemistry  2009;17(17):6463-6480.
The synthesis and structure–activity relationship analysis of a novel class of amide-based biaryl NR2B-selective NMDA receptor antagonists are presented. Some of the studied compounds are potent, selective, non-competitive, and voltage-independent antagonists of NR2B-containing NMDA receptors. Like the founding member of this class of antagonists (ifenprodil), several interesting compounds of the series bind to the amino terminal domain of the NR2B subunit to inhibit function. Analogue potency is modu-lated by linker length, flexibility, and hydrogen bonding opportunities. However, unlike previously described classes of NR2B-selective NMDA antagonists that exhibit off-target activity at a variety of monoamine receptors, the compounds described herein show much diminished effects against the hERG channel and α1-adrenergic receptors. Selections of the compounds discussed have acceptable half-lives in vivo and are predicted to permeate the blood–brain barrier. These data together suggest that masking charged atoms on the linker region of NR2B-selective antagonists can decrease undesirable side effects while still maintaining on-target potency.
doi:10.1016/j.bmc.2009.05.085
PMCID: PMC2891242  PMID: 19648014
NMDA; GluN2B; NR2B-selective antagonists; Neuroprotection
22.  In Vitro Antibacterial Activity of CE-156811, a Novel Analog Derived from Hygromycin A▿  
We evaluated a novel truncated hygromycin A analog in which the furanose ring was replaced with a 2-fluoro-2-cyclopropylethyl substituent for its activity against multidrug resistant gram-positive bacteria and compared its activity to the activities of linezolid, quinupristin-dalfopristin, and vancomycin. CE-156811 demonstrated robust in vitro activity against gram-positive bacteria that was comparable to that of linezolid.
doi:10.1128/AAC.01326-07
PMCID: PMC2443909  PMID: 18426902
23.  Caveolae/raft-dependent endocytosis 
The Journal of Cell Biology  2003;161(4):673-677.
Although caveolae are well-characterized subdomains of glycolipid rafts, their distinctive morphology and association with caveolins has led to their internalization being considered different from that of rafts. In this review, we propose that caveolae and rafts are internalized via a common pathway, caveolae/raft-dependent endocytosis, defined by its clathrin independence, dynamin dependence, and sensitivity to cholesterol depletion. The regulatory role of caveolin-1 and ligand sorting in this complex endocytic pathway are specifically addressed.
doi:10.1083/jcb.200302028
PMCID: PMC2199359  PMID: 12771123
endocytosis; caveolae; glycolipid rafts; caveolin; dynamin
24.  The STE20 Kinase HGK Is Broadly Expressed in Human Tumor Cells and Can Modulate Cellular Transformation, Invasion, and Adhesion 
Molecular and Cellular Biology  2003;23(6):2068-2082.
HGK (hepatocyte progenitor kinase-like/germinal center kinase-like kinase) is a member of the human STE20/mitogen-activated protein kinase kinase kinase kinase family of serine/threonine kinases and is the ortholog of mouse NIK (Nck-interacting kinase). We have cloned a novel splice variant of HGK from a human tumor line and have further identified a complex family of HGK splice variants. We showed HGK to be highly expressed in most tumor cell lines relative to normal tissue. An active role for this kinase in transformation was suggested by an inhibition of H-RasV12-induced focus formation by expression of inactive, dominant-negative mutants of HGK in both fibroblast and epithelial cell lines. Expression of an inactive mutant of HGK also inhibited the anchorage-independent growth of cells yet had no effect on proliferation in monolayer culture. Expression of HGK mutants modulated integrin receptor expression and had a striking effect on hepatocyte growth factor-stimulated epithelial cell invasion. Together, these results suggest an important role for HGK in cell transformation and invasiveness.
doi:10.1128/MCB.23.6.2068-2082.2003
PMCID: PMC149462  PMID: 12612079
25.  Localization of Autocrine Motility Factor Receptor to Caveolae and Clathrin-independent Internalization of Its Ligand to Smooth Endoplasmic Reticulum 
Molecular Biology of the Cell  1998;9(7):1773-1786.
Autocrine motility factor receptor (AMF-R) is a cell surface receptor that is also localized to a smooth subdomain of the endoplasmic reticulum, the AMF-R tubule. By postembedding immunoelectron microscopy, AMF-R concentrates within smooth plasmalemmal vesicles or caveolae in both NIH-3T3 fibroblasts and HeLa cells. By confocal microscopy, cell surface AMF-R labeled by the addition of anti-AMF-R antibody to viable cells at 4°C exhibits partial colocalization with caveolin, confirming the localization of cell surface AMF-R to caveolae. Labeling of cell surface AMF-R by either anti-AMF-R antibody or biotinylated AMF (bAMF) exhibits extensive colocalization and after a pulse of 1–2 h at 37°C, bAMF accumulates in densely labeled perinuclear structures as well as fainter tubular structures that colocalize with AMF-R tubules. After a subsequent 2- to 4-h chase, bAMF is localized predominantly to AMF-R tubules. Cytoplasmic acidification, blocking clathrin-mediated endocytosis, results in the essentially exclusive distribution of internalized bAMF to AMF-R tubules. By confocal microscopy, the tubular structures labeled by internalized bAMF show complete colocalization with AMF-R tubules. bAMF internalized in the presence of a 10-fold excess of unlabeled AMF labels perinuclear punctate structures, which are therefore the product of fluid phase endocytosis, but does not label AMF-R tubules, demonstrating that bAMF targeting to AMF-R tubules occurs via a receptor-mediated pathway. By electron microscopy, bAMF internalized for 10 min is located to cell surface caveolae and after 30 min is present within smooth and rough endoplasmic reticulum tubules. AMF-R is therefore internalized via a receptor-mediated clathrin-independent pathway to smooth ER. The steady state localization of AMF-R to caveolae implicates these cell surface invaginations in AMF-R endocytosis.
PMCID: PMC25416  PMID: 9658170

Results 1-25 (25)