Search tips
Search criteria

Results 1-25 (26)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
Locus coeruleus (LC) consists of a densely packed nuclear core and a surrounding plexus of dendritic zone which is further divided into several sub-regions. Whereas many limbic-related structures topographically target specific sub-regions of the LC, the precise projections from two limbic areas, i.e., medial prefrontal cortex (mPFC) and dorsal raphe (DR), have not been investigated. The goal of the present study is to identify and compare the distribution patterns of mPFC and DR afferent terminals to the LC nuclear core as opposed to specific pericoerulear dendritic regions (Peri-LC). To address these issues, anterograde tracer injections were combined with dopamine-β-hydroxylase (DBH) immunofluorescent staining in order to reveal the distribution patterns around the LC nuclear complex. Our data suggest that both mPFC-LC and DR-LC projections exhibit selective afferent terminal patterns. More specifically, mPFC-LC projecting fibers mainly target the rostromedial Peri-LC, whereas DR-LC projecting fibers demonstrate a preference to the caudal juxtaependymal Peri-LC. Thus, our present findings provide further evidences that afferents to the LC are topographically organized. Understanding the relationship among different inputs to the LC may help to elucidate the organizing principle which likely governs the interactions between the broad afferent sources of the LC and its global efferent targets.
PMCID: PMC3408042  PMID: 22674904
Medial prefrontal cortex; Dorsal raphe; Locus coeruleus; Serotonin; Norepinephrine
2.  Neonatal citalopram exposure decreases serotonergic fiber density in the olfactory bulb of male but not female adult rats 
Manipulation of serotonin (5HT) during early development has been shown to induce long-lasting morphological changes within the raphe nuclear complex and serotonergic circuitry throughout the brain. Recent studies have demonstrated altered raphe-derived 5HT transporter (SERT) immunoreactive axonal expression in several cortical target sites after brief perinatal exposure to selective 5HT reuptake inhibitors such as citalopram (CTM). Since the serotonergic raphe nuclear complex projects to the olfactory bulb (OB) and perinatal 5HT disruption has been shown to disrupt olfactory behaviors, the goal of this study was to further investigate such developmental effects in the OB of CTM exposed animals. Male and female rat pups were exposed to CTM from postnatal day 8–21. After animals reach adulthood (>90 days), OB tissue sections were processed immunohistochemically for SERT antiserum. Our data revealed that the density of the SERT immunoreactive fibers decreased ~40% in the OB of CTM exposed male rats, but not female rats. Our findings support a broad and long-lasting change throughout most of the 5HT system, including the OB, after early manipulation of 5HT. Because dysfunction of the early 5HT system has been implicated in the etiology of neurodevelopmental disorders such as autism spectrum disorders (ASDs), these new findings may offer insight into the abnormal olfactory perception often noted in patients with ASD.
PMCID: PMC3650517  PMID: 23675318
serotonin transporter; olfactory bulb; selective serotonin reuptake inhibitors; sexual dimorphism; autism spectrum disorders
Several lines of evidence have implicated a direct reciprocal interaction between serotonin and nitric oxide. The goal of this investigation was, therefore, to examine the co-expression of tryptophan hydroxylase (TPH; the rate limiting enzyme for the synthesis of serotonin) and neuronal nitric oxide synthase (nNOS) in the ascending cortical projecting raphe nuclei (B6–B9 subgroups), as compared to the descending spinal cord projecting raphe nuclei (B1–B3 subgroups). Our data demonstrated that: 1) a significant number of raphe-cortical projecting neurons was identified not only in the midline subgroup of dorsal raphe (DR; B6,7) but also in the median raphe (MR; B8), as well as in the supralemniscal nucleus (SLN; B9); 2) serotonergic cortical projecting neurons from these three raphe nuclei exhibited a high (>80%) percentage of co-expression with nNOS immunoreactivity; 3) similarly, serotonin transporter (SERT) immunoreactive fibers in the medial prefrontal cortex (mPFC) were also double-labeled with nNOS immunoreactivity; 4) in contrast, the descending spinal cord projecting raphe nuclei revealed only TPH but not nNOS immunoreactivity. Our present findings suggest the existence of a direct interaction between serotonin and nitric oxide (NO) in the ascending cortical projecting raphe system. In contrast, a different strategy appears to operate the descending spinal cord projecting raphe system.
PMCID: PMC3412368  PMID: 20734426
Medial prefrontal cortex; dorsal raphe; median raphe; supralemniscal nucleus
4.  Perinatal citalopram exposure selectively increases locus coeruleus circuit function in male rats 
The Journal of Neuroscience  2011;31(46):16709-16715.
Selective serotonin reuptake inhibitors (SSRIs) such as citalopram (CTM) have been widely prescribed for major depressive disorder, not only for adult populations, but also for children and pregnant mothers. Recent evidence suggests that chronic SSRI exposure in adults increases serotonin (5-HT) levels in the raphe system and decreases norepinephrine (NE) locus coeruleus (LC) neural activity, suggesting a robust opposing interaction between these two monoamines. In contrast, perinatal SSRI exposure induces a long lasting down-regulation of the 5-HT-raphe system, which is opposite to that seen with chronic adult treatment. Therefore, the goal of the present investigation was to test the hypothesis that perinatal CTM exposure (20mg/kg/day) from postnatal day 1 to 10 (PN1-10) leads to hyperexcited NE-LC circuit function in adult rats (PN>90). Our single neuron LC electrophysiological data demonstrated an increase in spontaneous and stimulus-driven neural activity, including an increase in phasic bursts in CTM exposed animals. In addition, we demonstrated a corresponding immunoreactive increase in the rate limiting catalyzing catecholamine enzyme (tyrosine hydroxylase) within the LC and their neocortical target sites compared to saline controls. Moreover, these effects were only evident in male exposed rats, suggesting a sexual dimorphism in neural development after SSRI exposure. Taken together, these results indicate that administration of SSRIs during a sensitive period of brain development results in long-lasting alterations in NE-LC circuit function in adults and may be useful in understanding the etiology of pervasive developmental disorders such as autism spectrum disorder.
PMCID: PMC3312583  PMID: 22090498
antidepressant; neurodevelopment; serotonin; norepinephrine; locus coeruleus
5.  Patterns of Convergence in Rat Zona Incerta from the Trigeminal Nuclear Complex: Light and Electron Microscopic Study 
The Journal of comparative neurology  2008;507(4):1521-1541.
In contrast to the restricted receptive field (RF) properties of the ventral posteriomedial nucleus (VPM), neurons of the ventral thalamus zona incerta (ZI) have been shown to exhibit multiwhisker responses that vary from the ventral (ZIv) to the dorsal (ZId) subdivision. Differences in activity may arise from the trigeminal nuclear complex (TNC) and result from subnucleus specific inputs via certain cells of origin, axon distribution patterns, fiber densities, bouton sizes, or postsynaptic contact sites. We tested this hypothesis by assessing circuit relationships among TNC, ZI, and VPM. Results from tracer studies show that, 1) relative to ZId, the trigeminal projection to ZIv is denser and arises predominantly from the principalis (PrV) and interpolaris (SpVi) subdivisions; 2) the incertal projection from TNC subnuclei overlaps and covers most of ZIv; 3) two sets of PrV axons terminate in ZI: a major subtype, possessing bouton-like swellings, and a few fine fibers, with minimal specialization; 4) both PrV and SpVi terminals exhibit asymmetric endings and preferentially target dendrites of ZI neurons; 5) small and large neurons in PrV are labeled after retrograde injections into ZI; 6) small PrV cells with incertal projections form a population that is distinct from those projecting to VPM; and 7) ~30–50% of large cells in PrV send collaterals to ZI and VPM. These findings suggest that, 1) although information to ZI and VPM is essentially routed along separate TNC circuits, streams of somatosensory code converge in ZI to establish large RFs, and 2) subregional differences in ZI response profiles are attributable in part to TNC innervation density.
PMCID: PMC2921836  PMID: 18213707
somatosensory; ventral thalamus; GABA; superior colliculus; attention; orienting
6.  Projections of Somatosensory Cortex and Frontal Eye Fields onto Incertotectal Neurons in the Cat 
The goal of this study was to determine whether the input-output characteristics of the zona incerta (ZI) are appropriate for it to serve as a conduit for cortical control over saccade-related activity in the superior colliculus. The study utilized the neuronal tracers wheat germ agglutinin-horseradish peroxidase (WGA-HRP) and biotinylated dextran amine (BDA) in the cat. Injections of WGA-HRP into primary somatosensory cortex (SI) revealed sparse, widespread nontopographic projections throughout ZI. In addition, region-specific areas of more intense termination were present in ventral ZI, although strict topography was not observed. In comparison, the frontal eye fields (FEF) also projected sparsely throughout ZI, but terminated more heavily, medially, along the border between the two sublaminae. Furthermore, retrogradely labeled incertocortical neurons were observed in both experiments. The relationship of these two cortical projections to incertotectal cells was also directly examined by retrogradely labeling incertotectal cells with WGA-HRP in animals that had also received cortical BDA injections. Labeled axonal arbors from both SI and FEF had thin, sparsely branched axons with numerous en passant boutons. They formed numerous close associations with the somata and dendrites of WGA-HRP-labeled incertotectal cells. In summary, these results indicate that both sensory and motor cortical inputs to ZI display similar morphologies and distributions. In addition, both display close associations with incertotectal cells, suggesting direct synaptic contact. From these data, we conclude that inputs from somatosensory and FEF cortex both play a role in controlling gaze-related activity in the superior colliculus by way of the inhibitory incertotectal projection.
PMCID: PMC4281943  PMID: 17083121
zona incerta; oculomotor; superior colliculus; thalamus
7.  Neonatal systemic exposure to lipopolysaccharide enhances susceptibility of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life 
Developmental neuroscience  2013;35(0):155-171.
Brain inflammation via intracerebral injection with lipopolysaccharide (LPS) in early life has been shown to increase risks for the development of neurodegenerative disorders in adult rats. To determine if neonatal systemic LPS exposure has the same effects on enhancement of adult dopaminergic neuron susceptibility to rotenone neurotoxicity as centrally-injected LPS does, LPS (2 μg/g body weight) was administered intraperitoneally into post-natal day 5 (P5) rats and when grown to P70, rats were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusion at a dose of 1.25 mg/kg per day for 14 days. Systemically administered LPS can penetrate into the neonatal rat brain and cause acute and chronic brain inflammation, as evidenced by persistent increases in IL-1β levels, cyclooxygenase-2 expression and microglial activation in the substantia nigra (SN) of P70 rats. Neonatal LPS exposure resulted in suppression of tyrosine hydroxylase (TH) expression, but not actual death of dopaminergic neurons in the SN, as indicated by the reduced number of TH+ cells and unchanged total number of neurons (NeuN+) in the SN. Neonatal LPS exposure also caused motor function deficits, which were spontaneously recoverable by P70. A small dose of rotenone at P70 induced loss of dopaminergic neurons, as indicated by reduced numbers of both TH+ and NeuN+ cells in the SN, and Parkinson’s disease (PD)-like motor impairment in P98 rats that had experienced neonatal LPS exposure, but not in those without the LPS exposure. These results indicate that although neonatal systemic LPS exposure may not necessarily lead to death of dopaminergic neurons in the SN, such an exposure could cause persistent functional alterations in the dopaminergic system and indirectly predispose the nigrostriatal system in the adult brain more vulnerable to be damaged by environmental toxins at an ordinarily non-toxic or sub-toxic dose to develop PD-like pathological features and motor dysfunction.
PMCID: PMC3777222  PMID: 23446007
Neonatal brain injury; Neuroinflammation; Lipopolysaccharide; Substantia nigra; Tyrosine hydroxylase; Mitochondrial injury; Secondary injury; Rotenone; Parkinson’s disease
8.  Differential roles of astrocyte and microglia in supporting oligodendrocyte development and myelination in vitro 
Brain and Behavior  2013;3(5):503-514.
Oligodendrocyte (OL) development relies on many extracellular cues, most of which are secreted cytokines from neighboring neural cells. Although it is generally accepted that both astrocytes and microglia are beneficial for OL development, there is a lack of understanding regarding whether astrocytes and microglia play similar or distinct roles. The current study examined the effects of astrocytes and microglia on OL developmental phenotypes including cell survival, proliferation, differentiation, and myelination in vitro. Our data reveal that, although both astrocytes- and microglia-conditioned medium (ACDM and MCDM, respectively) protect OL progenitor cells (OPCs) against growth factor withdrawal-induced apoptosis, ACDM is significantly more effective than MCDM in supporting long-term OL survival. In contrast, MCDM preferentially promotes OL differentiation and myelination. These differential effects of ACDM and MCDM on OL development are highlighted by distinct pattern of cytokine/growth factors in the conditioned medium, which correlates with differentially activated intracellular signaling pathways in OPCs upon exposure to the conditioned medium.
PMCID: PMC3869978  PMID: 24392271
Cytokine; differentiation; glia; in vitro; proliferation
9.  Monoamine oxidase A and A/B knockout mice display autistic-like features 
Converging lines of evidence show that a sizable subset of autism-spectrum disorders (ASDs) is characterized by increased blood levels of serotonin (5-hydroxytryptamine, 5-HT), yet the mechanistic link between these two phenomena remains unclear. The enzymatic degradation of brain 5-HT is mainly mediated by monoamine oxidase (MAO)A and, in the absence of this enzyme, by its cognate isoenzyme MAOB. MAOA and A/B knockout (KO) mice display high 5-HT levels, particularly during early developmental stages. Here we show that both mutant lines exhibit numerous behavioural hallmarks of ASDs, such as social and communication impairments, perseverative and stereotypical responses, behavioural inflexibility, as well as subtle tactile and motor deficits. Furthermore, both MAOA and A/B KO mice displayed neuropathological alterations reminiscent of typical ASD features, including reduced thickness of the corpus callosum, increased dendritic arborization of pyramidal neurons in the prefrontal cortex and disrupted microarchitecture of the cerebellum. The severity of repetitive responses and neuropathological aberrances was generally greater in MAOA/B KO animals. These findings suggest that the neurochemical imbalances induced by MAOAdeficiency (either by itself or in conjunction with lack of MAOB) may result in an array of abnormalities similar to those observed in ASDs. Thus, MAOA and A/B KO mice may afford valuable models to help elucidate the neurobiological bases of these disorders and related neurodevelopmental problems.
PMCID: PMC3517692  PMID: 22850464
Animal models; autistic-spectrum disorders; monoamine oxidase
10.  Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life 
Neurobiology of disease  2011;44(3):304-316.
Brain inflammation in early life has been proposed to play important roles in the development of neurodegenerative disorders in adult life. To test this hypothesis, we used a neonatal rat model of lipopolysaccharide (LPS) exposure (1,000 EU/g body weight, intracerebral injection on P5) to produce brain inflammation. By P70, when LPS-induced behavioral deficits were spontaneously recovered, animals were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusion at a dose of 1.25 mg/kg per day for 14 days. This rotenone treatment regimen ordinarily does not produce toxic effects on behaviors in normal adult rats. Our results show that neonatal LPS exposure enhanced vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Rotenone treatment resulted in motor neurobehavioral impairments in rats with the neonatal LPS exposure, but not in those without the neonatal LPS exposure. Rotenone induced losses of tyrosine hydroxylase immunoreactive neurons in the substantia nigra and decreased mitochondrial complex I activity in the striatum of rats with neonatal LPS exposure, but not in those without this exposure. Neonatal LPS exposure with later exposure to rotenone decreased retrogradely labeled nigrostriatal dopaminergic projecting neurons. The current study suggests that perinatal brain inflammation may enhance adult susceptibility to the development of neurodegenerative disorders triggered later on by environmental toxins at an ordinarily non-toxic or sub-toxic dose. Our model may be useful for studying mechanisms involved in the pathogenesis of nonfamilial Parkinson’s disease and the development of potential therapeutic treatments.
PMCID: PMC3185112  PMID: 21798348
Lipopolysaccharide; Neurodegenerative disorder; Substantia nigra; Tyrosine hydroxylase; Rotenone; Axonal impairment
11.  Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice 
Neuropharmacology  2012;63(7):1208-1217.
Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum.
PMCID: PMC3442946  PMID: 22971542
Monoamine oxidase A; Hypomorphism; Serotonin; Cerebellum; Purkinje cells
12.  Chronic administration of adenosine A3 receptor agonist and cerebral ischemia: neuronal and glial effects 
European journal of pharmacology  1999;367(2-3):157-163.
We have previously shown that chronic administration of the selective A3 receptor agonist N6-(3-iodobenzyl)-5′-N-methyl-carboxoamidoadenosine (IB-MECA) leads to a significant improvement of postocclusive cerebral blood flow, and protects against neuronal damage and mortality induced by severe forebrain ischemia in gerbils. Using immunocytochemical methods we now show that chronic with IB-MECA results in a significant preservation of ischemia-sensitive microtubule associated protein 2 (MAP-2), enhancement of the expression of glial fibrillary acidic protein (GFAP), and a very intense depression of nitric oxide synthase in the brain of postischemic gerbils. These changes demonstrate that the cerebroprotective actions of chronically administered IB-MECA involve both neurons and glial cells, and indicate the possibility of distinct mechanisms that are affected in the course of chronic administration of the drug.
PMCID: PMC3469161  PMID: 10078988
Ischemia; Adenosine A3 receptor; GFAP (glial fibrillary acidic protein); MAP-2 (microtubule associated protein); Nitric oxide (NO); Synthase; (Gerbil)
13.  Neonatal Exposure of Rats to Antidepressants Affects Behavioral Reactions to Novelty and Social Interactions in a Manner Analogous to Autistic Spectrum Disorders 
We have demonstrated that neonatal exposure to selective serotonin reuptake inhibitors has lasting effects on behavior and serotonergic neurons in Long Evans rats. Hyperserotoninemia and altered sensory processing are reported in autistic spectrum disorders (ASD). We hypothesized that early life exposure to SSRIs alters sensory processing, disrupts responses to novelty and impairs social interactions in a manner similar to that observed in ASD. Male and female Long-Evans rat pups were administered citalopram, buproprion, fluoxetine, or saline from postnatal day (P) 8 to 21. Rats were tested for response to a novel tone before weaning (P25). Later, rats were tested 2× for response to a novel object (P39), and to a novel conspecific (P78, P101). In addition, rats were assessed for juvenile play behaviors (P32–P34) and later, we assessed sexual response to an estrus female in male rats (P153–184). Antidepressant exposure increased freezing after tone, diminished novel object exploration and reduced conspecific interaction up to 3× compared to saline exposed rats. Juvenile play was profoundly reduced in antidepressant-exposed males when compared to saline exposed groups. Exposure to the SSRIs, but not bupropion disrupted male sexual behaviors. Moreover, specific male responses to female proceptive behaviors were disrupted in SSRI, but not bupropion exposed rats. We conclude that neonatal exposure to antidepressants in rats results in sensory and social abnormalities that parallel many of those reported in ASD.
PMCID: PMC3177158  PMID: 21905242
14.  Altered Expression of Tyrosine Hydroxylase in the Locus Coeruleus Noradrenergic System in Citalopram Neonatally Exposed Rats and Monoamine Oxidase A Knock Out Mice 
In rodents, noradrenergic (NE) locus coeruleus (LC) neurons are well known to express tyrosine hydroxylase (TH) immunoreactivity. However, due to its very low enzyme activity, NE cortical fibers do not typically express TH immunoreactivity, thus dopamine-beta-hydroxylase (DBH) immunoreactivity is commonly utilized as a marker for NE cortical fibers. In this study, we performed double and/or triple immunofluorescent staining using antibodies against TH, DBH, and/or norepinephrine transporter (NET) to investigate the altered noradrenergic TH expression of cortical fibers in citalopram (CTM) exposed rats and monoamine oxidase (MAO) A knock out (KO) mice. We have noted the following novel findings: 1) neonatal exposure to the selective serotonin reuptake inhibitor (SSRI) CTM enhanced noradrenergic TH immunoreactive fibers throughout the entire neocortex, and a few of them appeared to be hypertrophic; 2) slightly enhanced noradrenergic cortical TH immunoreactive fibers were also noted in MAO A KO mice, and many of them revealed varicosities compared to the rather smooth noradrenergic cortical TH immunoreactive fibers in wild type (WT) mice; 3) LC dendrites of MAO A KO mice exhibited beaded morphology compared to the smooth LC dendrites in WT mice. Our findings suggest that both genetic and environmental factors during early development may play a critical role in the regulation and proper function of noradrenergic TH expression in the neocortex.
PMCID: PMC3177426  PMID: 21901841
norepinephrine; tyrosine hydroxylase; monoamine oxidase; neonates; antidepressants; knock out mice
15.  Postischemic administration of adenosine amine congener (ADAC): analysis of recovery in gerbils 
European journal of pharmacology  1996;316(2-3):171-179.
Although adenosine receptor-based treatment of cerebral ischemia and other neurodegenerative disorders has been frequently advocated, cardiovascular side effects and an uncertain therapeutic time window of such treatment have constituted major obstacles to clinical implementation. Therefore, we have investigated the neuroprotective effects of the adenosine A1 receptor agonist adenosine amine congener (ADAC) injected after either 5 or 10 min ischemia at 100 μg/kg. When the drug was administered at either 6 or 12 h following 5 min forebrain ischemia, all animals were still alive on the 14th day after the occlusion. In both ADAC treated groups neuronal survival was approximately 85% vs. 50% in controls. Administration of a single dose of ADAC at times 15 min to 12 h after 10 min ischemia resulted in a significant improvement of survival in animals injected either at 15 or 30 min, or at 1, 2, or 3 h after the insult. In all 10 min ischemia groups, administration of ADAC resulted in a significant protection of neuronal morphology and preservation of microtubule associated protein 2 (MAP-2). However, postischemic Morris’ water maze tests revealed full preservation of spatial memory and learning ability in animals injected at 6 h. On the other hand, the performance of gerbils treated at 12 h postischemia was indistinguishable from that of the controls. Administration of ADAC at 100 μg/kg in non-ischemic animals did not result in bradycardia, hypotension, or hypothermia. The data indicate that when ADAC is used postischemically, the most optimal level of protection is obtained when drugs are given at 30 min to 6 h after the insult. Although the mechanisms involved in neuroprotective effects of adenosine A1 receptor agonists require further studies, the present results demonstrate the feasibility of their clinical applications.
PMCID: PMC3449162  PMID: 8982684
Ischemia; treatment; Adenosine; Memory; MAP2 (microtubule-associated protein 2); (Gerbil)
16.  Reduction of postischemic brain damage and memory deficits following treatment with the selective adenosine A1 receptor agonist 
European journal of pharmacology  1996;302(1-3):43-48.
Agonists of adenosine A1 receptors have been frequently proposed as candidates for clinical development in treatment of cerebral ischemia and stroke. Numerous experimental studies have shown that pre- and postischemic administration of these drugs results in a very significant reduction of postischemic brain damage. However, only a few studies determined the impact of cerebral ischemia and drug treatment on postischemic recovery of spatial memory. The present paper demonstrates that preischemic i.p. administration of adenosine amine congener (ADAC) at 100 μg/kg in gerbils results in a significant (P < 0.05) reduction of postischemic mortality and hippocampal, cortical and striatal morbidity. Postischemic Morris’ water maze tests show that preischemic treatment with ADAC also leads to a very significant (P < 0.001) reduction of postischemic spatial memory loss. Our results indicate feasibility of further consideration of adenosine A1 receptor agonists as a clinically applicable acute treatment of brain ischemia. Recent development of neuroprotective adenosine A1 receptor agonists that are free of cardiovascular side effects supports such development.
PMCID: PMC3449166  PMID: 8790990
Cerebral ischemia; Adenosine receptor; Spatial memory; Water maze; (Gerbil)
17.  Protection against ischemic damage by adenosine amine congener, a potent and selective adenosine A1 receptor agonist 
European journal of pharmacology  1999;369(3):313-317.
Although the selectivity and potency of adenosine amine congener (ADAC) at adenosine A1receptors are similar to other highly selective agonists at this receptor type, the chemical structure of the N6 substituent is completely different. We now demonstrate that the characteristics of the therapeutic profile of ADAC are distinct from those observed during our previous studies of adenosine A1receptor agonist-mediated neuroprotection. Most significantly, chronic treatment with low microgram doses of ADAC (25–100 µg/kg) protects against both mortality and neuronal damage induced by 10 min bilateral carotid occlusion in gerbils. At higher chronic doses, the statistical significance of the protective effect is lost. Acute preischemic administration of the drug at 75–200 µg/kg also results in a statistically significant reduction of postischemic mortality and morbidity. These data indicate that, contrary to other adenosine A1 receptor agonists whose chronic administration enhances postocclusive brain damage, ADAC may be a promising agent in treatment of both acute (e.g., cerebral ischemia) and chronic (seizures) disorders of the central nervous system in which adenosine A1 receptors appear to be involved.
PMCID: PMC3438899  PMID: 10225368
Cerebral ischemia; Adenosine A1 receptor; Therapy; Gerbil
19.  Chronic NMDA receptor stimulation: therapeutic implications of its effect on adenosine A1 receptors 
European journal of pharmacology  1995;283(1-3):185-192.
It is known that stimulation of adenosine A1 receptors has a modulatory effect on the excitability of postsynaptic NMDA receptors. Conversely, acute stimulation of NMDA receptors results in release of adenosine via calcium-independent mechanisms. These findings indicate a close functional relationship between these receptors. It is, therefore, possible that chronic, low level stimulation of the NMDA receptor may have a negative impact on these modulatory processes. To investigate this possibility, we have subjected C57BL mice either to an acute injection of a N6-cyclopentyladenosine (CPA, 0.01 mg/kg) or deoxycoformycin (1 mg/kg) followed by a convulsant dose of N-methyl-d-aspartate (NMDA) (60 mg/kg) or to chronic, low level (20 mg/kg i.p. daily) exposure to NMDA for 8 weeks. One day after the last injection of NMDA, animals were injected either with a convulsant dose of NMDA alone, or with either CPA at 0.001 or 0.01 mg/kg, or with 1 mg/kg deoxycoformycin followed 15 min later by 60 mg/kg NMDA. Neither CPA nor deoxycoformycin were protective when NMDA was given acutely at 60 mg/kg. Chronic treatment with NMDA alone or chronic administration of NMDA followed by 0.001 mg/kg CPA had no significant effect on mortality following a convulsant dose of NMDA. However, when the chronic regimen of NMDA was followed by either 0.01 mg/kg CPA or 1 mg/kg deoxycoformycin, mortality was reduced to 10% (CPA), or eliminated completely (deoxycoformycin). Moreover, combination of chronic NMDA treatment with either CPA (both doses) or deoxycoformycin produced a significant improvement in other measures, i.e., seizure onset, intensity of neurological impairment, and extension of time to death. Consonant with these results, apparent density of adenosine A1 receptors was increased in the cortex and hippocampus of animals treated chronically with NMDA. Our results indicate a possible role for NMDA-adenosine A1 receptor interaction in pathologies in which chronic stimulation of the NMDA receptor by endogenous excitatory amino acids may be involved.
PMCID: PMC3427754  PMID: 7498308
Adenosine A1 receptor; NMDA receptor; Seizure; Alzheimer’s disease; (Mouse)
20.  Adenosine A3 receptor stimulation and cerebral ischemia 
European journal of pharmacology  1994;263(1-2):59-67.
Chronic treatment with the selective adenosine A3 receptor agonist N6-(3-iodobenzyl)adenosine-5’-N-methylcarboxamide (IB-MECA) administered prior to either 10 or 20 min forebrain ischemia in gerbils resulted in improved postischemic cerebral blood circulation, survival, and neuronal preservation. Opposite effects, i.e., impaired postischemic blood flow, enhanced mortality, and extensive neuronal destruction in the hippocampus were seen when IB-MECA was given acutely. Neither adenosine A1 nor A2 receptors are involved in these actions. The data indicate that stimulation of adenosine A3 receptors may play an important role in the development of ischemic damage, and that adenosine A3 receptors may offer a new target for therapeutic interventions.
PMCID: PMC3426360  PMID: 7821362
Adenosine receptor; Brain ischemia; therapy; Cerebral blood flow; (Gerbil)
21.  Dopaminergic neuronal injury in the adult rat brain following neonatal exposure to lipopolysaccharide and the silent neurotoxicity 
Brain, behavior, and immunity  2010;25(2):286-297.
Our previous studies have shown that neonatal exposure to lipopolysaccharide (LPS) resulted in motor dysfunction and dopaminergic neuronal injury in the juvenile rat brain. To further examine whether neonatal LPS exposure has persisting effects in adult rats, motor behaviors were examined from postnatal day 7 (P7) to P70 and brain injury was determined in P70 rats following an intracerebral injection of LPS (1 mg/kg) in P5 Sprague-Dawley male rats. Although neonatal LPS exposure resulted in hyperactivity in locomotion and stereotyped tasks, and other disturbances of motor behaviors, the impaired motor functions were spontaneously recovered by P70. On the other hand, neonatal LPS-induced injury to the dopaminergic system such as the loss of dendrites and reduced tyrosine hydroxylase immunoreactivity in the substantia nigra persisted in P70 rats. Neonatal LPS exposure also resulted in sustained inflammatory responses in the P70 rat brain, as indicated by an increased number of activated microglia and elevation of interleukin-1β and interleukin-6 content in the rat brain. In addition, when challenged with methamphetamine (METH, 0.5 mg/kg) subcutaneously, rats with neonatal LPS exposure had significantly increased responses in METH-induced locomotion and stereotypy behaviors as compared to those without LPS exposure. These results indicate that although neonatal LPS-induced neurobehavioral impairment is spontaneously recoverable, the LPS exposure-induced persistent injury to the dopaminergic system and the chronic inflammation may represent the existence of silent neurotoxicity. Our data further suggest that the compromised dendritic mitochondrial function might contribute, at least partially, to the silent neurotoxicity.
PMCID: PMC3025048  PMID: 20875849
Lipopolysaccharide; Motor disturbances; Substantia nigra; Tyrosine hydroxylase; Interleukin-1β; Methamphetamine; dendritic mitochondria
22.  Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex 
Brain and Behavior  2012;2(1):53-67.
An in vitro myelination model derived from rat central nervous system (CNS) remains to be established. Here, we describe a simple and reproducible myelination culture method using dissociated neuron-oligodendrocyte (OL) co-cultures from either the embryonic day 16 (E16) rat spinal cord or cerebral cortex. The dissociated cells are plated directly on poly-L-lysine-coated cover slips and maintained in a modified myelination medium that supports both OL and neuron differentiation. The spinal cord derived OL progenitor cells develop quickly into myelin basic protein (MBP)+ mature OLs and start to myelinate axons around 17 days in vitro (DIV17). Myelination reaches its peak around six weeks (DIV40) and the typical nodes of Ranvier are revealed by paranodal proteins Caspr and juxaparanodal protein Kv1.2 immunoreactivity. Electron microscopy (EM) shows typical myelination cytoarchitecture and synaptic organization. In contrast, the cortical-derived co-culture requires triiodothyronine (T3) in the culture medium for myelination. Finally, either hypomyelination and/or demyelination can be induced by exposing proinflammatory cytokines or demyelinating agents to the co-culture, suggesting the feasibility of this modified in vitro myelination model for myelin-deficit investigation.
PMCID: PMC3343299  PMID: 22574274
CNS; myelination; neuron; oligodendrocyte; rat
23.  Neonatal Exposure to citalopram selectively alters the expression of the serotonin transporter in the hippocampus: Dose-dependent effects 
Infants born to mothers taking selective serotonin reuptake inhibitors (SSRIs) late in pregnancy have been reported to exhibit signs of antidepressant withdrawal. Such evidence suggests that these drugs access the fetal brain in utero at biologically significant levels. Recent studies in rodents have revealed that early exposure to antidepressants can lead to long lasting abnormalities in adult behaviors, and result in robust decreases in the expression of a major serotonin synthetic enzyme (tryptophan hydroxylase) along the raphe midline. In the present investigation, we injected rat pups with citalopram (CTM: 5mg/kg, 10mg/kg, and 20mg/kg) from postnatal days 8–21, and examined serotonin transporter (SERT) labeling in the hippocampus, ventrobasal thalamic complex, and caudate-putamen when the subjects reached adulthood. Our data support the idea, that forebrain targets in receipt of innervation from the raphe midline are particularly vulnerable to the effects of CTM. SERT-immunoreactive fiber density was preferentially decreased throughout all sectors of the hippocampal formation, while the subcortical structures, each supplied by more lateral and rostral aspects of the raphe complex, respectively, were not significantly affected. Reductions in SERT staining were also found to be dose-dependent. These findings suggest that SSRIs may not only interfere with the establishment of chemically balanced circuits in the neonate, but also impose selective impairment on higher cortical function and cognitive processes via more circumscribed (i.e. regionally specific) deficits in 5-HT action.
PMCID: PMC2967660  PMID: 20830689
serotonin; antidepressant; development; dorsal raphe; reuptake inhibitor
24.  Characterization of Neurochemically Specific Projections From the Locus Coeruleus With Respect to Somatosensory-Related Barrels 
Tactile information from the rodent mystacial vibrissae is relayed through the ascending trigeminal somatosensory system. At each level of this pathway, the whiskers are represented by a unique pattern of dense cell aggregates, which in layer IV of cortex are known as “barrels.” Afferent inputs from the dorsal thalamus have been demonstrated repeatedly to correspond rather precisely with this modular organization. However, axonal innervation patterns from other brain regions such as the noradrenergic locus coeruleus are less clear. A previous report has suggested that norepinephrine-containing fibers are concentrated in the center/hollow of the barrel, while other studies have emphasized a more random distribution of monoaminergic projections. To address this issue more directly, individual tissue sections were histochemically processed for cytochrome oxidase in combination with dopamine-β-hydroxylase, the synthesizing enzyme for norepinephrine, or the neuropeptide galanin. These two neuroactive agents were of particular interest because they colocalize in a majority of locus coeruleus neurons and terminals. Our data indicate that discrete concentrations or local arrays of dopamine-β-hydroxylase- or galanin-immunoreactive fibers are not apparent within the cores of individual barrels. As such, the data suggest that cortical inputs from the locus coeruleus are not patterned according to cytoarchitectural landmarks or the neurochemical identity of coeruleocortical efferents. While transmitter-specific actions of norepinephrine and/or galanin may not be derived from the laminar/spatial connections of locus coeruleus axons, the possibility remains that the release of these substances may mediate distinctive events through the localization of different receptor subclasses, or the contact of their terminals onto cells with certain morphological characteristics or ultrastructural components.
PMCID: PMC2921854  PMID: 16419103
galanin; norepinephrine; locus coeruleus; trigeminal; barrel; cytochrome oxidase
25.  α-Phenyl-n-tert-butyl-nitrone Attenuates Lipopolysaccharide-induced Brain Injury and Improves Neurological Reflexes and Early Sensorimotor Behavioral Performance in Juvenile Rats 
Journal of neuroscience research  2008;86(16):3536-3547.
Our previous study showed that treatment with α-phenyl-n-tert-butyl-nitrone (PBN) after exposure to lipopolysaccharide (LPS) reduced LPS-induced white matter injury in the neonatal rat brain. The object of the current study was to further examine whether PBN has long-lasting protective effects and ameliorates LPS-induced neurological dysfunction. Intracerebral (i.c.) injection of LPS (1 mg/kg) was performed in postnatal day (P) 5 Sprague Dawley rat pups and PBN (100 mg/kg) or saline was administered intraperitoneally 5 min after LPS injection. The control rats were injected (i.c.) with sterile saline. Neurobehavioral tests were carried out from P3 to P21, and brain injury was examined after these tests. LPS exposure resulted in severe brain damage, including enlargement of ventricles bilaterally, loss of mature oligodendrocytes, impaired myelination as indicated by the decrease in myelin basic protein immunostaining, and alterations in dendritic processes in the cortical gray matter of the parietal cortex. Electron microscopic examination showed that LPS exposure caused impaired myelination as indicated by the disintegrated myelin sheaths in the juvenile rat brain. LPS administration also significantly affected neurobehavioral functions such as performance in righting reflex, wire hanging maneuver, cliff avoidance, negative geotaxis, vibrissa-elicited forelimb-placing test, beam walking, and gait test. Treatment with PBN, a free radical scavenger and antioxidant, provided protection against LPS-induced brain injury and associated neurological dysfunction in juvenile rats, suggesting that antioxidation might be an effective approach for therapeutic treatment of neonatal brain injury induced by infection/inflammation.
PMCID: PMC2921906  PMID: 18683243
white matter injury; lipopolysaccharide; impaired myelination; neurobehavioral performance; antioxidant

Results 1-25 (26)