PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Adiponectin in mice with altered growth hormone action: links to insulin sensitivity and longevity? 
The Journal of endocrinology  2013;216(3):363-374.
Adiponectin is positively correlated with longevity and negatively correlated with many obesity-related diseases. While there are several circulating forms of adiponectin, the high molecular weight (HMW) version has been suggested to have the predominant bioactivity. Adiponectin gene expression and cognate serum protein levels are of particular interest in mice with altered growth hormone (GH) signaling as these mice exhibit extremes in obesity that are positively associated with insulin sensitivity and lifespan as opposed to the typical negative association of these factors. While a few studies have reported total adiponectin levels in young adult mice with altered GH signaling, much remains unresolved, including changes in adiponectin levels with advancing age, proportion of total adiponectin in the HMW form, adipose depot of origin, and differential effects of GH versus IGF1. Therefore, the purpose of this study was to address these issues using assorted mouse lines with altered GH signaling. Our results show that adiponectin is generally negatively associated with GH activity, regardless of age. Further, the amount of HMW adiponectin is consistently linked with the level of total adiponectin and not necessarily with previously reported lifespan or insulin sensitivity of these mice. Interestingly, circulating adiponectin levels correlated strongly with inguinal fat mass, implying the effects of GH on adiponectin are depot-specific. Interestingly rbGH, but not IGF1, decreased circulating total and HMW adiponectin levels. Taken together, these results fill important gaps in the literature related to GH and adiponectin and question the frequently reported associations of total and HMW adiponectin with insulin sensitivity and longevity.
doi:10.1530/JOE-12-0505
PMCID: PMC3756886  PMID: 23261955
adiponectin; high molecular weight adiponectin; growth hormone receptor; growth hormone; growth hormone deficiency; growth hormone antagonist
2.  Role of ghrelin system in neuroprotection and cognitive functions: implications in Alzheimer’s disease 
Peptides  2011;32(11):2225-2228.
Alzheimer’s disease (AD) is a multifactorial progressive neurodegenerative disorder characterized by loss of memory and cognitive deficits, strongly influenced by the metabolic status, in which the impairment of neuropeptides/neurotransmitters systems has been previously observed. Ghrelin is a multifunctional hormone produced in a wide variety of tissues, which has been associated with the progression of obesity and metabolic syndrome, but has been also linked to neuromodulation, neuroprotection and memory and learning processes. In addition, ghrelin system also acts in an autocrine/paracrine fashion where the majority of its components [ghrelin variants (native ghrelin, In2-ghrelin), acylation enzymes (GOAT) and receptors (GHS-Rs)] are expressed in the different regions of central nervous system. In spite of all these pieces of information strongly suggesting a close association between ghrelin system and AD, which could be of pathophysiological relevance, few studies have been addressed to clarify this relationship. In this work, the role of ghrelin system in neuroprotection, memory consolidation and learning is reviewed, and its influence in AD, as well as the regulation of its expression in AD patients, is discussed.
doi:10.1016/j.peptides.2011.09.019
PMCID: PMC3228413  PMID: 21983104
Ghrelin; Alzheimer Disease; neuroprotection; memory; learning
3.  Does the pituitary somatotrope play a primary role in regulating GH output in metabolic extremes? 
Circulating growth hormone (GH) levels rise in response to nutrient deprivation and fall in states of nutrient excess. Since GH regulates carbohydrate, lipid and protein metabolism, defining the mechanisms by which changes in metabolism alters GH secretion will aid in our understanding of the cause, progression and treatment of metabolic diseases. This review will summarize what is currently known regarding the impact of systemic metabolic signals on GH-axis function. In addition, ongoing studies using the Cre/loxP system to generate mouse models with selective somatotrope resistance to metabolic signals, will be discussed, where these models will serve to enhance our understanding of the specific role the somatotrope plays in sensing the metabolic environment and adjusting GH output in metabolic extremes.
doi:10.1111/j.1749-6632.2010.05913.x
PMCID: PMC3444739  PMID: 21388406
growth hormone; somatotrope; fasting; obesity
4.  A Novel Human Ghrelin Variant (In1-Ghrelin) and Ghrelin-O-Acyltransferase Are Overexpressed in Breast Cancer: Potential Pathophysiological Relevance 
PLoS ONE  2011;6(8):e23302.
The human ghrelin gene, which encodes the ghrelin and obestatin peptides, contains 5 exons (Ex), with Ex1-Ex4 encoding a 117 amino-acid (aa) preproprotein that is known to be processed to yield a 28-aa (ghrelin) and/or a 23-aa (obestatin) mature peptides, which possess biological activities in multiple tissues. However, the ghrelin gene also encodes additional peptides through alternative splicing or post-translational modifications. Indeed, we previously identified a spliced mRNA ghrelin variant in mouse (In2-ghrelin-variant), which is regulated in a tissue-dependent manner by metabolic status and may thus be of biological relevance. Here, we have characterized a new human ghrelin variant that contains Ex0-1, intron (In) 1, and Ex2 and lacks Ex3-4. This human In1-ghrelin variant would encode a new prepropeptide that conserves the first 12aa of native-ghrelin (including the Ser3-potential octanoylation site) but has a different C-terminal tail. Expression of In1-variant was detected in 22 human tissues and its levels were positively correlated with those of ghrelin-O-acyltransferase (GOAT; p = 0.0001) but not with native-ghrelin expression, suggesting that In1-ghrelin could be a primary substrate for GOAT in human tissues. Interestingly, levels of In1-ghrelin variant expression in breast cancer samples were 8-times higher than those of normal mammary tissue, and showed a strong correlation in breast tumors with GOAT (p = 0.0001), ghrelin receptor-type 1b (GHSR1b; p = 0.049) and cyclin-D3 (a cell-cycle inducer/proliferation marker; p = 0.009), but not with native-ghrelin or GHSR1a expression. Interestingly, In1-ghrelin variant overexpression increased basal proliferation of MDA-MB-231 breast cancer cells. Taken together, our results provide evidence that In1-ghrelin is a novel element of the ghrelin family with a potential pathophysiological role in breast cancer.
doi:10.1371/journal.pone.0023302
PMCID: PMC3150424  PMID: 21829727
5.  Metabolic regulation of ghrelin O-acyl transferase (GOAT) expression in the mouse hypothalamus, pituitary, and stomach 
Ghrelin acts as an endocrine link connecting physiological processes regulating food intake, body composition, growth, and energy balance. Ghrelin is the only peptide known to undergo octanoylation. The enzyme mediating this process, ghrelin O-acyltransferase (GOAT), is expressed in the gastrointestinal tract (GI; primary source of circulating ghrelin) as well as other tissues. The present study demonstrates that stomach GOAT mRNA levels correlate with circulating acylated-ghrelin levels in fasted and diet-induced obese mice. In addition, GOAT was found to be expressed in both the pituitary and hypothalamus (two target tissues of ghrelin’s actions), and regulated in response to metabolic status. Using primary pituitary cell cultures as a model system to study the regulation of GOAT expression, we found that acylated-ghrelin, but not desacyl-ghrelin, increased GOAT expression. In addition, growth-hormone-releasing hormone (GHRH) and leptin increased, while somatostatin (SST) decreased GOAT expression. The physiologic relevance of these later results is supported by the observation that pituitary GOAT expression in mice lacking GHRH, SST and leptin showed opposite changes to those observed after in vitro treatment with the corresponding peptides. Therefore, it seems plausible that these hormones directly contribute to the regulation of pituitary GOAT. Interestingly, in all the models studied, pituitary GOAT expression paralleled changes in the expression of a dominant spliced-variant of ghrelin (In2-ghrelin) and therefore this transcript may be a primary substrate for pituitary GOAT. Collectively, these observations support the notion that the GI tract is not the only source of acylated-ghrelin, but in fact locally-produced des-acylated-ghrelin could be converted to acylated-ghrelin within target tissues by locally active GOAT, to mediate its tissue-specific effects.
doi:10.1016/j.mce.2009.12.023
PMCID: PMC2819060  PMID: 20035826
Ghrelin O-Acyl Transferase (GOAT); mouse models (fasting, obesity, knockouts); stomach; pituitary; hypothalamus
6.  Metabolic Impact of Adult-Onset, Isolated, Growth Hormone Deficiency (AOiGHD) Due to Destruction of Pituitary Somatotropes 
PLoS ONE  2011;6(1):e15767.
Growth hormone (GH) inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD) was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre) with inducible diphtheria toxin receptor mice (iDTR) and treating adult Cre+/−,iDTR+/− offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre−/−,iDTR+/− mice were used as GH-intact controls. AOiGHD improved whole body insulin sensitivity in both low-fat and high-fat fed mice. Consistent with improved insulin sensitivity, indirect calorimetry revealed AOiGHD mice preferentially utilized carbohydrates for energy metabolism, as compared to GH-intact controls. In high-fat, but not low-fat fed AOiGHD mice, fat mass increased, hepatic lipids decreased and glucose clearance and insulin output were impaired. These results suggest the age-related decline in GH helps to preserve systemic insulin sensitivity, and in the context of moderate caloric intake, prevents the deterioration in metabolic function. However, in the context of excess caloric intake, low GH leads to impaired insulin output, and thereby could contribute to the development of diabetes.
doi:10.1371/journal.pone.0015767
PMCID: PMC3023710  PMID: 21283519

Results 1-6 (6)