Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Do brainstem omnipause neurons terminate saccades? 
Saccade-generating burst neurons (BN) are inhibited by omnipause neurons (OPN), except during saccades. OPN activity pauses before saccade onset and resumes at the saccade end. Microstimulation of OPN stops saccades in mid-flight, which shows that OPN can end saccades. However, OPN pause duration does not correlate well with saccade duration, and saccades are normometric after OPN lesions. We tested whether OPN were responsible for stopping saccades both in late-onset Tay–Sachs, which causes premature saccadic termination, and in individuals with cerebellar hypermetria. We studied gaze shifts between two targets at different distances aligned on one eye, which consist of a disjunctive saccade followed by vergence. High-frequency conjugate oscillations during the vergence movements that followed saccades were present in all subjects studied, indicating OPN silence. Thus, mechanisms other than OPN discharge (e.g., cerebellar caudal fastigial nucleus–promoting inhibitory BN discharge) must contribute to saccade termination.
PMCID: PMC3438674  PMID: 21950975
Tay–Sachs disease; saccades; omnipause neurons; fastigial nucleus; Müller paradigm
2.  Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift 
PLoS ONE  2012;7(6):e39886.
The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.
PMCID: PMC3384609  PMID: 22761923
3.  Ocular motor anatomy in a case of interrupted saccades 
Progress in brain research  2008;171:563-566.
Saccades normally place the eye on target with one smooth movement. In late-onset Tay—Sachs (LOTS), intrasaccadic transient decelerations occur that may result from (1) premature omnipause neuron (OPN) re-activation due to malfunction of the latch circuit that inhibits OPNs for the duration of the saccade or (2) premature inhibitory burst neuron (IBN) activation due to fastigial nucleus (FN) dysregulation by the dorsal cerebellar vermis. Neuroanatomic analysis of a LOTS brain was performed. Purkinje cells were absent and gliosis of the granular cell layer was present in the dorsal cerebellar vermis. Deep cerebellar nuclei contained large inclusions. IBNs were present with small inclusions. The sample did not contain the complete OPN region; however, neurons in the OPN region contained massive inclusions. Pathologic findings suggest that premature OPN re-activation and/or inappropriate firing of IBNs may be responsible for interrupted saccades in LOTS. Cerebellar clinical dysfunction, lack of saccadic slowing, and significant loss of cerebellar cells suggest that the second cause is more likely.
PMCID: PMC2752380  PMID: 18718354
fastigial nucleus; omnipause neurons; burst neurons; latch circuit; brainstem
4.  Mechanism of interrupted saccades in patients with late-onset Tay-Sachs disease 
Progress in brain research  2008;171:567-570.
In late-onset Tay-Sachs disease (LOTS), saccades are interrupted by one or more transient decelerations. Some saccades reaccelerate and continue on before eye velocity reaches zero, even in darkness. Intervals between successive decelerations are not regularly spaced. Peak decelerations of horizontal and vertical components of oblique saccades in LOTS is more synchronous than those in control subjects. We hypothesize that these decelerations are caused by dysregulation of the fastigial nuclei (FN) of the cerebellum, which fire brain stem inhibitory burst neurons (IBNs).
PMCID: PMC2750844  PMID: 18718355
fastigial nucleus; omnipause neurons; burst neurons; latch circuit
5.  Symbolic Cue Driven Activity in Superior Colliculus Neurons in a Peripheral Visual Choice Task 
Journal of neurophysiology  2006;95(6):3585-3595.
Recent evidence implicates the superior colliculus (SC) in cognitive processes, such as target selection and control of spatial attention, in addition to the execution of saccadic eye movements. We report here the presence of a cognitive response in some cells in the SC in a task that requires the long term association of spatial location with an arbitrary color. In this study, using a visual choice response task, we demonstrate that visuomotor neurons in the SC were activated by the appearance of a central symbolic cue delivered outside of the visual response fields of the recorded neurons. This procedure insures that cognitively generated activity in these SC cells is not confounded with modulation of activity from previous visual stimuli that appeared in the response field of the neurons. The experiments suggest that cognitive signals can activate SC cells by themselves instead of only being able to modulate activities already evoked by visual events. Furthermore, a substantial fraction of these cells accurately reflected cue aligned target selection in advance of saccade initiation. Our results add further support to other studies that have demonstrated that internally generated signals exist in SC cells.
PMCID: PMC1464098  PMID: 16554510

Results 1-5 (5)