Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("Fan, bingjun")
1.  The LEGSKO Mouse: A Mouse Model of Age-Related Nuclear Cataract Based on Genetic Suppression of Lens Glutathione Synthesis 
PLoS ONE  2012;7(11):e50832.
Age-related nuclear cataracts are associated with progressive post-synthetic modifications of crystallins from various physical chemical and metabolic insults, of which oxidative stress is a major factor. The latter is normally suppressed by high concentrations of glutathione (GSH), which however are very low in the nucleus of the old lens. Here we generated a mouse model of oxidant stress by knocking out glutathione synthesis in the mouse in the hope of recapitulating some of the changes observed in human age-related nuclear cataract (ARNC). A floxed Gclc mouse was generated and crossed with a transgenic mouse expressing Cre in the lens to generate the LEGSKO mouse in which de novo GSH synthesis was completely abolished in the lens. Lens GSH levels were reduced up to 60% in homozygous LEGSKO mice, and a decreasing GSH gradient was noticed from cortical to nuclear region at 4 months of age. Oxidation of crystallin methionine and sulfhydryls into sulfoxides was dramatically increased, but methylglyoxal hydroimidazolones levels that are GSH/glyoxalase dependent were surprisingly normal. Homozygous LEGSKO mice developed nuclear opacities starting at 4 months that progressed into severe nuclear cataract by 9 months. We conclude that the LEGSKO mouse lens mimics several features of human ARNC and is thus expected to be a useful model for the development of anti-cataract agents.
PMCID: PMC3511334  PMID: 23226398
2.  Vitamin C–mediated Maillard Reaction in the Lens Probed in a Transgenic-mouse Model 
Aging human lens crystallins are progressively modified by yellow glycation, oxidation, and cross-linked carbonyl compounds that have deleterious properties on protein structure and stability. In order to test the hypothesis that some of these compounds originate from oxidized vitamin C, we have overexpressed the human vitamin C transporter 2 (hSCVT2) in the mouse lens. We find that levels of ascorbic and dehydroascorbic acid are highly elevated compared to the wild type and that the lenses have accumulated yellow color and advanced Maillard reaction products identical with those of the human lens. Treatment of the mice with nucleophilic inhibitors can slow down the process, opening new avenues for the pharmacological prevention of senile cataractogenesis.
PMCID: PMC3485640  PMID: 18448816
glycation; ascorbic acid; crystallin; cross-linking; aging
Free radical biology & medicine  2010;49(5):847-856.
The effects of anaerobic (lens) vs aerobic (skin) environment on carbonyl and oxidant stress are compared using de novo and existing data on advanced glycation and oxidation products in human crystallins and collagen. Almost all modifications increase with age. Methylglyoxal hydroimidazolones (MG-H1), carboxymethyl-lysine (CML), and carboxyethyl-lysine (CEL) are several folds higher in lens than skin, and markedly increase upon incubation of lens crystallins with 5 mM ascorbic acid. Vice-versa, fructose-lysine, glucosepane crosslinks, glyoxal hydroimidazolones (G-H1), metal catalyzed oxidation (allysine) and H2O2 dependent modifications (2-aminoapidic acid and methionine sulfoxide) are markedly elevated in skin, but relatively suppressed in the aging lens. In both tissues ornithine is the dominant modification, implicating arginine residues as the principal target of the Maillard reaction in vivo. Diabetes (here mostly type 2 studied) increases significantly fructose-lysine and glucosepane in both tissues (P<0.001) but has surprisingly little effect on the absolute level of most other advanced glycation end products (AGEs) . However, diabetes strengthens the Spearman correlation coefficients for age-related accumulation of hydrogen peroxide mediated modifications in the lens. Overall, the data suggest oxoaldehyde stress involving methylglyoxal from either glucose or ascorbate is predominant in the aging non-cataractous lens, while aging skin collagen undergoes combined attack by non-oxidative glucose mediated modifications, as well as those from metal catalyzed oxidation and H2O2.
PMCID: PMC2910832  PMID: 20541005
crystallins; collagen; glycation; oxidative stress; methylglyoxal; metals
4.  Topical application of L-arginine blocks advanced glycation by ascorbic acid in the lens of hSVCT2 transgenic mice 
Molecular Vision  2011;17:2221-2227.
Previous experiments from our laboratory showed that the oral intake of selected guanidino compounds could block the formation of crystallin-bound advanced ascorbylation products. Here we tested whether these were also active when applied as eye drops.
Two month old hSVCT2 transgenic mice (n=10) were treated twice daily with one drop of 0.1% L-arginine, γ-guanidinobutyric acid (GBA), penicillamine (PA) or N-acetylcysteine (NAC) in one eye and vehicle only in the other eye. After seven months, lens crystallins were isolated, dialyzed, and proteolytically digested to determine the protein-bound fluorescence at 335/385 and 370/440 nm excitation/emission and the advanced glycation/ascorbylation endproducts carboxymethyl-lysine (CML), carboxyethyl-lysine (CEL), glucosepane, glyoxal, and methylglyoxal hydroimidazolones G-H1 and MG-H1. The topical uptake of L-arginine and NAC was also evaluated in vitro and in vivo in rabbit lens.
In hSVCT2 mice, L-arginine decreased 335/385 and 370/440 nm fluorescence by 40% (p<0.001), CML, CEL, and glucosepane crystallin crosslinks by 35% (p<0.05), 30% (p<0.05), and 37% (p<0.05), respectively, without affecting MG-H1 and G-H1. NAC decreased 335/385 nm fluorescence by 50% (p<0.001) but, like PA and GBA, had no effect on other modifications. L-Arginine uptake into rabbit eyes treated topically reached identical lenticular plateau levels (~400 nmol/g wet weight) at 0.5% and 2.0% but levels remained three times higher at 5 h at 2% versus 0.5% concentration, respectively. In vitro studies showed a 100 fold higher L-arginine level than NAC levels, implicating high affinity uptake of the former.
L-Arginine when applied both orally and topically is a potent and broad suppressor of advanced ascorbylation in the lens. Its uptake in rabbit lens upon topical application suggests transcorneal uptake into the human lens should be feasible for testing its potential anticataract properties in clinical trials.
PMCID: PMC3164690  PMID: 21897744
5.  Nucleophilic compounds decrease advanced glycation end products (AGEs) from ascorbic acid in the hSVCT2 transgenic mouse model of lenticular aging 
Senile cataracts are associated with oxidation, fragmentation, cross-linking, insolubilization, and yellow pigmentation of lens crystallins. This process is partially explained by advanced glycation endproducts (AGEs) from ascorbic acid (ASA), as unequivocally demonstrated in our hSVCT2 transgenic mouse(PNAS 103:16912, 2006). We now present the first pharmacological intervention study against ascorbylation in these mice.
Five groups of mice (10 mice/group) were fed from two to nine months a diet containing 0.1% (wt/wt) aminoguanidine (AG), pyridoxamine (PM), penicillamine (PA), and nucleophilic compounds NC-I and NC-II. AGEs were determined in crystallin digests using HPLC, LC-MS or GC-MS. In vitro incubations of lens protein extract with ASA or dehydroascorbic aicd (DHA) were also performed.
ASA level increased ~10 fold in all groups and was unaffected by treatment. AGEs were several fold increased in transgenic compared to control lenses. Body weight, food intake, lenticular glutathione and glycated lysine level were unaltered. In vitro, all compounds inhibited AGE formation. In vivo, NC-I and NC-II significantly decreased protein fluorescence at λex335/em385 (p=0.045, 0.017, respectively) and λex370/em440 (p=0.029, 0.007, respectively). Other inhibitors had no effect. After 7 months, only NC-1 and NC-2 induced a 50 % reduction in pentosidine (n.s, p=0.035 respectively). NC-1 also decreased carboxymethyllysine (CML) (p=0.032) and carboxyethyllysine (CEL) (p= n.s). Fluorescent crosslink K2P was decreased by NC-1, NC-2, AG and PM (p= n.s).
Pharmacologically blocking protein ascorbylation with absorbable guanidino compounds is feasible and may represent a new strategy for the delay of age-related nuclear sclerosis of the lens.
PMCID: PMC2576497  PMID: 18421088
6.  Identification of Glucose-Derived Cross-Linking Sites in Ribonuclease A 
Journal of proteome research  2008;7(7):2756-2768.
The accumulation of glycation derived cross-links has been widely implicated in extracellular matrix damage in aging and diabetes, yet little information is available on the cross-linking sites in proteins and the intra- versus intermolecular character of cross-linking. Recently, glucosepane, a 7-membered heterocycle formed between lysine and arginine residues, has been found to be the single major cross-link known so far to accumulate during aging. As an approach toward identification of glucose derived cross-linking sites, we have preglycated ribonuclease A first for for 14 days with 500 mM glucose, followed by a 4-week incubation in absence of glucose. MALDI-TOF analysis of tryptic digests revealed the presence of Amadori products (Δm/z = 162) at K1, K7, K37 and K41, in accordance with previous studies. In addition, K66, K98 and K104 were also modified by Amadori products. Intramolecular glucosepane cross-links were observed at K41-R39 and K98-R85. Surprisingly, the only intermolecular cross-link observed was the 3-deoxyglucosone-derived DODIC at K1-R39. The identity of cross-linked peptides was confirmed by sequencing with tandem mass spectrometry. Recombinant ribonuclease A mutants R39A, R85A, and K91A were produced, purified, and glycated to further confirm the importance of these sites on protein cross-linking. These data provide the first documentation that both intramolecular and intermolecular cross-links form in glucose-incubated proteins.
PMCID: PMC2574603  PMID: 18500835
glycation; ribonuclease A; cross-linking; glycation sites; glucosepane; DODIC; AGEs

Results 1-6 (6)