Search tips
Search criteria

Results 1-25 (29)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
1.  Antiaggregatory activity in human platelets of potent antagonists of the P2Y1 receptor 
Biochemical pharmacology  2004;68(10):1995-2002.
Activation of the P2Y1 nucleotide receptor in platelets by ADP causes changes in shape and aggregation, mediated by activation of phospholipase C (PLC). Recently, MRS2500 (2-iodo-N6-methyl-(N)-methanocarba-2′-deoxyadenosine-3′,5′-bisphosphate) was introduced as a highly potent and selective antagonist for this receptor. We have studied the actions of MRS2500 in human platelets and compared these effects with the effects of two acyclic nucleotide analogues, a bisphosphate MRS2298 and a bisphosphonate derivative MRS2496, which act as P2Y1 receptor antagonists, although less potently than MRS2500. Improved synthetic methods for MRS2500 and MRS2496 were devised. The bisphosphonate is predicted to be more stable in general in biological systems than phosphate antagonists due to the non-hydrolyzable C–P bond. MRS2500 inhibited the ADP-induced aggregation of human platelets with an IC50 value of 0.95 nM. MRS2298 and MRS2496 also both inhibited the ADP-induced aggregation of human platelets with IC50 values of 62.8 nM and 1.5 μM, respectively. A similar order of potency was observed for the three antagonists in binding to the recombinant human P2Y1 receptor and in inhibition of ADP-induced shape change and ADP-induced rise in intracellular Ca2+. No substantial antagonism of the pathway linked to the inhibition of cyclic AMP was observed for the nucleotide derivatives, indicating no interaction of these three P2Y1 receptor antagonists with the proaggregatory P2Y12 receptor, which is also activated by ADP. Thus, all three of the bisphosphate derivatives are highly selective antagonists of the platelet P2Y1 receptor, and MRS2500 is the most potent such antagonist yet reported.
PMCID: PMC3471151  PMID: 15476670
P2Y1 nucleotide receptor; G protein-coupled receptor; Acyclic nucleotides; Purines; Platelet aggregation; Carbocyclic nucleotides
2.  Chronic administration of adenosine A3 receptor agonist and cerebral ischemia: neuronal and glial effects 
European journal of pharmacology  1999;367(2-3):157-163.
We have previously shown that chronic administration of the selective A3 receptor agonist N6-(3-iodobenzyl)-5′-N-methyl-carboxoamidoadenosine (IB-MECA) leads to a significant improvement of postocclusive cerebral blood flow, and protects against neuronal damage and mortality induced by severe forebrain ischemia in gerbils. Using immunocytochemical methods we now show that chronic with IB-MECA results in a significant preservation of ischemia-sensitive microtubule associated protein 2 (MAP-2), enhancement of the expression of glial fibrillary acidic protein (GFAP), and a very intense depression of nitric oxide synthase in the brain of postischemic gerbils. These changes demonstrate that the cerebroprotective actions of chronically administered IB-MECA involve both neurons and glial cells, and indicate the possibility of distinct mechanisms that are affected in the course of chronic administration of the drug.
PMCID: PMC3469161  PMID: 10078988
Ischemia; Adenosine A3 receptor; GFAP (glial fibrillary acidic protein); MAP-2 (microtubule associated protein); Nitric oxide (NO); Synthase; (Gerbil)
3.  Postischemic administration of adenosine amine congener (ADAC): analysis of recovery in gerbils 
European journal of pharmacology  1996;316(2-3):171-179.
Although adenosine receptor-based treatment of cerebral ischemia and other neurodegenerative disorders has been frequently advocated, cardiovascular side effects and an uncertain therapeutic time window of such treatment have constituted major obstacles to clinical implementation. Therefore, we have investigated the neuroprotective effects of the adenosine A1 receptor agonist adenosine amine congener (ADAC) injected after either 5 or 10 min ischemia at 100 μg/kg. When the drug was administered at either 6 or 12 h following 5 min forebrain ischemia, all animals were still alive on the 14th day after the occlusion. In both ADAC treated groups neuronal survival was approximately 85% vs. 50% in controls. Administration of a single dose of ADAC at times 15 min to 12 h after 10 min ischemia resulted in a significant improvement of survival in animals injected either at 15 or 30 min, or at 1, 2, or 3 h after the insult. In all 10 min ischemia groups, administration of ADAC resulted in a significant protection of neuronal morphology and preservation of microtubule associated protein 2 (MAP-2). However, postischemic Morris’ water maze tests revealed full preservation of spatial memory and learning ability in animals injected at 6 h. On the other hand, the performance of gerbils treated at 12 h postischemia was indistinguishable from that of the controls. Administration of ADAC at 100 μg/kg in non-ischemic animals did not result in bradycardia, hypotension, or hypothermia. The data indicate that when ADAC is used postischemically, the most optimal level of protection is obtained when drugs are given at 30 min to 6 h after the insult. Although the mechanisms involved in neuroprotective effects of adenosine A1 receptor agonists require further studies, the present results demonstrate the feasibility of their clinical applications.
PMCID: PMC3449162  PMID: 8982684
Ischemia; treatment; Adenosine; Memory; MAP2 (microtubule-associated protein 2); (Gerbil)
4.  Reduction of postischemic brain damage and memory deficits following treatment with the selective adenosine A1 receptor agonist 
European journal of pharmacology  1996;302(1-3):43-48.
Agonists of adenosine A1 receptors have been frequently proposed as candidates for clinical development in treatment of cerebral ischemia and stroke. Numerous experimental studies have shown that pre- and postischemic administration of these drugs results in a very significant reduction of postischemic brain damage. However, only a few studies determined the impact of cerebral ischemia and drug treatment on postischemic recovery of spatial memory. The present paper demonstrates that preischemic i.p. administration of adenosine amine congener (ADAC) at 100 μg/kg in gerbils results in a significant (P < 0.05) reduction of postischemic mortality and hippocampal, cortical and striatal morbidity. Postischemic Morris’ water maze tests show that preischemic treatment with ADAC also leads to a very significant (P < 0.001) reduction of postischemic spatial memory loss. Our results indicate feasibility of further consideration of adenosine A1 receptor agonists as a clinically applicable acute treatment of brain ischemia. Recent development of neuroprotective adenosine A1 receptor agonists that are free of cardiovascular side effects supports such development.
PMCID: PMC3449166  PMID: 8790990
Cerebral ischemia; Adenosine receptor; Spatial memory; Water maze; (Gerbil)
6.  Protection against ischemic damage by adenosine amine congener, a potent and selective adenosine A1 receptor agonist 
European journal of pharmacology  1999;369(3):313-317.
Although the selectivity and potency of adenosine amine congener (ADAC) at adenosine A1receptors are similar to other highly selective agonists at this receptor type, the chemical structure of the N6 substituent is completely different. We now demonstrate that the characteristics of the therapeutic profile of ADAC are distinct from those observed during our previous studies of adenosine A1receptor agonist-mediated neuroprotection. Most significantly, chronic treatment with low microgram doses of ADAC (25–100 µg/kg) protects against both mortality and neuronal damage induced by 10 min bilateral carotid occlusion in gerbils. At higher chronic doses, the statistical significance of the protective effect is lost. Acute preischemic administration of the drug at 75–200 µg/kg also results in a statistically significant reduction of postischemic mortality and morbidity. These data indicate that, contrary to other adenosine A1 receptor agonists whose chronic administration enhances postocclusive brain damage, ADAC may be a promising agent in treatment of both acute (e.g., cerebral ischemia) and chronic (seizures) disorders of the central nervous system in which adenosine A1 receptors appear to be involved.
PMCID: PMC3438899  PMID: 10225368
Cerebral ischemia; Adenosine A1 receptor; Therapy; Gerbil
7.  Chronic Administration of Tenofovir to Rhesus Macaques from Infancy through Adulthood and Pregnancy: Summary of Pharmacokinetics and Biological and Virological Effects▿  
The reverse transcriptase (RT) inhibitor tenofovir (TFV) is highly effective in the simian immunodeficiency virus (SIV) macaque model of human immunodeficiency virus infection. The current report describes extended safety and efficacy data on 32 animals that received prolonged (≥1- to 13-year) daily subcutaneous TFV regimens. The likelihood of renal toxicity (proximal renal tubular dysfunction [PRTD]) correlated with plasma drug concentrations, which depended on the dosage regimen and age-related changes in drug clearance. Below a threshold area under the concentration-time curve for TFV in plasma of ∼10 μg·h/ml, an exposure severalfold higher than that observed in humans treated orally with 300 mg TFV disoproxil fumarate (TDF), prolonged TFV administration was not associated with PRTD based on urinalysis, serum chemistry analyses, bone mineral density, and clinical observations. At low-dose maintenance regimens, plasma TFV concentrations and intracellular TFV diphosphate concentrations were similar to or slightly higher than those observed in TDF-treated humans. No new toxicities were identified. The available evidence does not suggest teratogenic effects of prolonged low-dose TFV treatment; by the age of 10 years, one macaque, on TFV treatment since birth, had produced three offspring that were healthy by all criteria up to the age of 5 years. Despite the presence of viral variants with a lysine-to-arginine substitution at codon 65 (K65R) of RT in all 28 SIV-infected animals, 6 animals suppressed viremia to undetectable levels for as long as 12 years of TFV monotherapy. In conclusion, these findings illustrate the safety and sustained benefits of prolonged TFV-containing regimens throughout development from infancy to adulthood, including pregnancy.
PMCID: PMC2533487  PMID: 18573931
8.  Suppression of Viremia and Evolution of Human Immunodeficiency Virus Type 1 Drug Resistance in a Macaque Model for Antiretroviral Therapy▿  
Journal of Virology  2007;81(22):12145-12155.
Antiretroviral therapy (ART) in human immunodeficiency virus type 1 (HIV-1)-infected patients does not clear the infection and can select for drug resistance over time. Not only is drug-resistant HIV-1 a concern for infected individuals on continual therapy, but it is an emerging problem in resource-limited settings where, in efforts to stem mother-to-child-transmission of HIV-1, transient nonnucleoside reverse transcriptase inhibitor (NNRTI) therapy given during labor can select for NNRTI resistance in both mother and child. Questions of HIV-1 persistence and drug resistance are highly amenable to exploration within animals models, where therapy manipulation is less constrained. We examined a pigtail macaque infection model responsive to anti-HIV-1 therapy to study the development of resistance. Pigtail macaques were infected with a pathogenic simian immunodeficiency virus encoding HIV-1 reverse transcriptase (RT-SHIV) to examine the impact of prior exposure to a NNRTI on subsequent ART comprised of a NNRTI and two nucleoside RT inhibitors. K103N resistance-conferring mutations in RT rapidly accumulated in 2/3 infected animals after NNRTI monotherapy and contributed to virologic failure during ART in 1/3 animals. By contrast, ART effectively suppressed RT-SHIV in 5/6 animals. These data indicate that suboptimal therapy facilitates HIV-1 drug resistance and suggest that this model can be used to investigate persisting viral reservoirs.
PMCID: PMC2169021  PMID: 17855539
9.  Long-Lasting Decrease in Viremia in Macaques Chronically Infected with Simian Immunodeficiency Virus SIVmac251 after Therapeutic DNA Immunization▿  
Journal of Virology  2006;81(4):1972-1979.
Rhesus macaques chronically infected with highly pathogenic simian immunodeficiency virus (SIV) SIVmac251 were treated with antiretroviral drugs and vaccinated with combinations of DNA vectors expressing SIV antigens. Vaccination during therapy increased cellular immune responses. After the animals were released from therapy, the virus levels of 12 immunized animals were significantly lower (P = 0.001) compared to those of 11 animals treated with only antiretroviral drugs. Vaccinated animals showed a persistent increase in immune responses, thus indicating both a virological and an immunological benefit following DNA therapeutic vaccination. Several animals show a long-lasting decrease in viremia, suggesting that therapeutic vaccination may provide an additional benefit to antiretroviral therapy.
PMCID: PMC1797580  PMID: 17135321
10.  Sequential emergence and clinical implications of viral mutants with K70E and K65R mutation in reverse transcriptase during prolonged tenofovir monotherapy in rhesus macaques with chronic RT-SHIV infection 
Retrovirology  2007;4:25.
We reported previously on the emergence and clinical implications of simian immunodeficiency virus (SIVmac251) mutants with a K65R mutation in reverse transcriptase (RT), and the role of CD8+ cell-mediated immune responses in suppressing viremia during tenofovir therapy. Because of significant sequence differences between SIV and HIV-1 RT that affect drug susceptibilities and mutational patterns, it is unclear to what extent findings with SIV can be extrapolated to HIV-1 RT. Accordingly, to model HIV-1 RT responses, 12 macaques were inoculated with RT-SHIV, a chimeric SIV containing HIV-1 RT, and started on prolonged tenofovir therapy 5 months later.
The early virologic response to tenofovir correlated with baseline viral RNA levels and expression of the MHC class I allele Mamu-A*01. For all animals, sensitive real-time PCR assays detected the transient emergence of K70E RT mutants within 4 weeks of therapy, which were then replaced by K65R mutants within 12 weeks of therapy. For most animals, the occurrence of these mutations preceded a partial rebound of plasma viremia to levels that remained on average 10-fold below baseline values. One animal eventually suppressed K65R viremia to undetectable levels for more than 4 years; sequential experiments using CD8+ cell depletion and tenofovir interruption demonstrated that both CD8+ cells and continued tenofovir therapy were required for sustained suppression of viremia.
This is the first evidence that tenofovir therapy can select directly for K70E viral mutants in vivo. The observations on the clinical implications of the K65R RT-SHIV mutants were consistent with those of SIVmac251, and suggest that for persons infected with K65R HIV-1 both immune-mediated and drug-dependent antiviral activities play a role in controlling viremia. These findings suggest also that even in the presence of K65R virus, continuation of tenofovir treatment as part of HAART may be beneficial, particularly when assisted by antiviral immune responses.
PMCID: PMC1852805  PMID: 17417971
11.  Structured Treatment Interruptions with Tenofovir Monotherapy for Simian Immunodeficiency Virus-Infected Newborn Macaques 
Journal of Virology  2006;80(13):6399-6410.
We demonstrated previously that prolonged tenofovir treatment of infant macaques, starting early during infection with virulent simian immunodeficiency virus (SIVmac251), can lead to persistently low or undetectable viremia even after the emergence of mutants with reduced in vitro susceptibility to tenofovir as a result of a K65R mutation in reverse transcriptase; this control of viremia was demonstrated to be mediated by the generation of effective antiviral immune responses. To determine whether structured treatment interruptions (STI) can induce similar immunologic control of viremia, eight newborn macaques were infected with highly virulent SIVmac251 and started on a tenofovir STI regimen 5 days later. Treatment was withdrawn permanently at 33 weeks of age. All animals receiving STI fared much better than 22 untreated SIVmac251-infected infant macaques. However, there was a high variability among animals in the viral RNA set point after complete drug withdrawal, and none of the animals was able to achieve long-term immunologic suppression of viremia to persistently low levels. Early immunologic and viral markers in blood (including the detection of the K65R mutation) were not predictive of the viral RNA set point after drug withdrawal. These results, which reflect the complex interactions between drug resistance mutations, viral virulence, and drug- and immune-mediated inhibition of virus replication, highlight the difficulties associated with trying to develop STI regimens with predictable efficacy for clinical practice.
PMCID: PMC1488952  PMID: 16775328
12.  Magnetic resonance spectroscopy reveals that activated monocytes contribute to neuronal injury in SIV neuroAIDS 
Journal of Clinical Investigation  2005;115(9):2534-2545.
Difficulties in understanding the mechanisms of HIV neuropathogenesis include the inability to study dynamic processes of infection, cumulative effects of the virus, and contributing host immune responses. We used 1H magnetic resonance spectroscopy and studied monocyte activation and progression of CNS neuronal injury in a CD8 lymphocyte depletion model of neuroAIDS in SIV-infected rhesus macaque monkeys. We found early, consistent neuronal injury coincident with viremia and SIV infection/activation of monocyte subsets and sought to define the role of plasma virus and monocytes in contributing to CNS disease. Antiretroviral therapy with essentially non–CNS-penetrating agents resulted in slightly decreased levels of plasma virus, a significant reduction in the number of activated and infected monocytes, and rapid, near-complete reversal of neuronal injury. Robust macrophage accumulation and productive virus replication were found in brains of infected and CD8 lymphocyte–depleted animals, but no detectable virus and few scattered infiltrating macrophages were observed in CD8 lymphocyte–depleted animals compared with animals not receiving antiretroviruses that were sacrificed at the same time after infection. These results underscore the role of activated monocytes and monocyte infection outside of the brain in driving CNS disease.
PMCID: PMC1187930  PMID: 16110325
13.  Pharmacokinetics of Tenofovir in Breast Milk of Lactating Rhesus Macaques 
To study tenofovir transfer into milk, two lactating macaques were given a subcutaneous dose of tenofovir (30 mg/kg of body weight). Peak concentrations and area under the curve values of tenofovir in milk were ∼3 and ∼20% of those detected in serum, respectively.
PMCID: PMC1087653  PMID: 15855535
15.  Biological Effects of Short-Term or Prolonged Administration of 9-[2-(Phosphonomethoxy)Propyl]Adenine (Tenofovir) to Newborn and Infant Rhesus Macaques 
The reverse transcriptase inhibitor 9-[2-(phosphonomethoxy)propyl]adenine (PMPA; tenofovir) was previously found to offer strong prophylactic and therapeutic benefits in an infant macaque model of pediatric human immunodeficiency virus (HIV) infection. We now summarize the toxicity and safety of PMPA in these studies. When a range of PMPA doses (4 to 30 mg/kg of body weight administered subcutaneously once daily) was administered to 39 infant macaques for a short period of time (range, 1 day to 12 weeks), no adverse effects on their health or growth were observed; this included a subset of 12 animals which were monitored for more than 2 years. In contrast, daily administration of a high dose of PMPA (30 mg/kg subcutaneously) for prolonged periods of time (>8 to 21 months) to 13 animals resulted in a Fanconi-like syndrome (proximal renal tubular disorder) with glucosuria, aminoaciduria, hypophosphatemia, growth restriction, bone pathology (osteomalacia), and reduced clearance of PMPA. The adverse effects were reversible or were alleviated following either complete withdrawal of PMPA treatment or reduction of the daily regimen from 30 mg/kg to 2.5 to 10 mg/kg subcutaneously. Finally, to evaluate the safety of a prolonged low-dose treatment regimen, two newborn macaques were started on a 10-mg/kg/day subcutaneous regimen; these animals are healthy and have normal bone density and growth after 5 years of daily treatment. In conclusion, our findings suggest that chronic daily administration of a high dose of PMPA results in adverse effects on kidney and bone, while short-term administration of relatively high doses and prolonged low-dose administration are safe.
PMCID: PMC400569  PMID: 15105094
16.  CD8+-Cell-Mediated Suppression of Virulent Simian Immunodeficiency Virus during Tenofovir Treatment 
Journal of Virology  2004;78(10):5324-5337.
The ability of tenofovir to suppress viremia in simian immunodeficiency virus (SIV)-infected macaques for years despite the presence of virulent viral mutants with reduced in vitro susceptibility is unprecedented in this animal model. In vivo cell depletion experiments demonstrate that tenofovir's ability to suppress viremia during acute and chronic infection is significantly dependent on the presence of CD8+ lymphocytes. Continuous tenofovir treatment was required to maintain low viremia. Although it is unclear whether this immune-mediated suppression of viremia is linked to tenofovir's direct antiviral efficacy or is due to independent immunomodulatory effects, these studies prove the concept that antiviral immune responses can play a crucial role in suppressing viremia during anti-human immunodeficiency virus drug therapy.
PMCID: PMC400346  PMID: 15113912
17.  Role of CD8+ Lymphocytes in Control of Simian Immunodeficiency Virus Infection and Resistance to Rechallenge after Transient Early Antiretroviral Treatment† 
Journal of Virology  2001;75(21):10187-10199.
Transient antiretroviral treatment with tenofovir, (R)-9-(2-phosphonylmethoxypropyl)adenine, begun shortly after inoculation of rhesus macaques with the highly pathogenic simian immunodeficiency virus (SIV) isolate SIVsmE660, facilitated the development of SIV-specific lymphoproliferative responses and sustained effective control of the infection following drug discontinuation. Animals that controlled plasma viremia following transient postinoculation treatment showed substantial resistance to subsequent intravenous rechallenge with homologous (SIVsmE660) and highly heterologous (SIVmac239) SIV isolates, up to more than 1 year later, despite the absence of measurable neutralizing antibody. In some instances, resistance to rechallenge was observed despite the absence of detectable SIV-specific binding antibody and in the face of SIV lymphoproliferative responses that were low or undetectable at the time of challenge. In vivo monoclonal antibody depletion experiments demonstrated a critical role for CD8+ lymphocytes in the control of viral replication; plasma viremia rose by as much as five log units after depletion of CD8+ cells and returned to predepletion levels (as low as <100 copy Eq/ml) as circulating CD8+ cells were restored. The extent of host control of replication of highly pathogenic SIV strains and the level of resistance to heterologous rechallenge achieved following transient postinoculation treatment compared favorably to the results seen after SIVsmE660 and SIVmac239 challenge with many vaccine strategies. This impressive control of viral replication was observed despite comparatively modest measured immune responses, less than those often achieved with vaccination regimens. The results help establish the underlying feasibility of efforts to develop vaccines for the prevention of AIDS, although the exact nature of the protective host responses involved remains to be elucidated.
PMCID: PMC114593  PMID: 11581387
18.  Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus–infected monkeys 
Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions.
PMCID: PMC314358  PMID: 10880046
19.  Containment of Simian Immunodeficiency Virus Infection: Cellular Immune Responses and Protection from Rechallenge following Transient Postinoculation Antiretroviral Treatment 
Journal of Virology  2000;74(6):2584-2593.
To better understand the viral and host factors involved in the establishment of persistent productive infection by primate lentiviruses, we varied the time of initiation and duration of postinoculation antiretroviral treatment with tenofovir {9-[2-(R)-(phosphonomethoxy)propyl]adenine}while performing intensive virologic and immunologic monitoring in rhesus macaques, inoculated intravenously with simian immunodeficiency virus SIVsmE660. Postinoculation treatment did not block the initial infection, but we identified treatment regimens that prevented the establishment of persistent productive infection, as judged by the absence of measurable plasma viremia following drug discontinuation. While immune responses were heterogeneous, animals in which treatment resulted in prevention of persistent productive infection showed a higher frequency and higher levels of SIV-specific lymphocyte proliferative responses during the treatment period compared to control animals, despite the absence of either detectable plasma viremia or seroconversion. Animals protected from the initial establishment of persistent productive infection were also relatively or completely protected from subsequent homologous rechallenge. Even postinoculation treatment regimens that did not prevent establishment of persistent infection resulted in downmodulation of the level of plasma viremia following treatment cessation, compared to the viremia seen in untreated control animals, animals treated with regimens known to be ineffective, or the cumulative experience with the natural history of plasma viremia following infection with SIVsmE660. The results suggest that the host may be able to effectively control SIV infection if the initial exposure occurs under favorable conditions of low viral burden and in the absence of ongoing high level cytopathic infection of responding cells. These findings may be particularly important in relation to prospects for control of primate lentiviruses in the settings of both prophylactic and therapeutic vaccination for prevention of AIDS.
PMCID: PMC111746  PMID: 10684272
20.  Antiretroviral Therapy during Primary Immunodeficiency Virus Infection Can Induce Persistent Suppression of Virus Load and Protection from Heterologous Challenge in Rhesus Macaques 
Journal of Virology  2000;74(4):1704-1711.
A limited period of chemotherapy during primary immunodeficiency virus infection might provide a long-term clinical benefit even if treatment is initiated at a time point when virus is already detectable in plasma. To evaluate this strategy, we infected rhesus macaques with the pathogenic simian/human immunodeficiency virus RT-SHIV and treated them with the antiretroviral drug (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) for 8 weeks starting 7 or 14 days postinfection. PMPA treatment suppressed viral replication efficiently in all of the monkeys. After chemotherapy ended, virus replication rebounded and viral RNA in plasma reached levels comparable to that of the controls in four of the six monkeys. However, in the other two animals, virus loads peaked only moderately after withdrawal of the drug and then declined to low or even undetectable levels. These low levels of viremia remained stable for at least 31 weeks after cessation of therapy. At this time point, these two monkeys were challenged with SIV8980 to evaluate whether the host responses which were able to keep RT-SHIV replication under control were also sufficient to protect against infection with a highly pathogenic heterologous virus. Both monkeys proved to be protected against the heterologous virus. In one of the two animals, low levels of SIV8980 replication were detected. Thus, by chemotherapy during the acute phase of pathogenic virus replication, we could achieve not only persistent virus load suppression in two out of six monkeys but also protection from subsequent heterologous challenge. By this chemotherapeutic attenuation, the replication kinetics of attenuated viruses could be mimicked and a vaccination effect similar to that induced by live attenuated simian immunodeficiency virus vaccines was achieved.
PMCID: PMC111645  PMID: 10644340
21.  Prophylactic and Therapeutic Benefits of Short-Term 9-[2-(R)-(Phosphonomethoxy)Propyl]Adenine (PMPA) Administration to Newborn Macaques following Oral Inoculation with Simian Immunodeficiency Virus with Reduced Susceptibility to PMPA 
Journal of Virology  2000;74(4):1767-1774.
Simian immunodeficiency virus (SIV) infection of newborn macaques is a useful animal model of human pediatric AIDS to study pathogenesis and to develop intervention strategies aimed at preventing infection or delaying disease progression. In previous studies, we demonstrated that 9-[2-(R)-(phosphonomethoxy)propyl]adenine (PMPA; tenofovir) was highly effective in protecting newborn macaques against infection with virulent wild-type (i.e., drug-susceptible) SIVmac251. In the present study, we determined how reduced drug susceptibility of the virus inoculum affects the chemoprophylactic success. SIVmac055 is a virulent isolate that has a fivefold-reduced in vitro susceptibility to PMPA, associated with a K65R mutation and additional amino acid changes (N69T, R82K, A158S, S211N) in reverse transcriptase (RT). Eight newborn macaques were inoculated orally with SIVmac055. The three untreated control animals became SIVmac055 infected; these animals had persistently high viremia and developed fatal immunodeficiency within 3 months. Five animals were treated once daily with PMPA (at 30 mg/kg of body weight) for 4 weeks, starting 24 h prior to oral SIVmac055 inoculation. Two of the five PMPA-treated animals had no evidence of infection. The other three PMPA-treated infant macaques became infected but had a delayed viremia, enhanced antiviral antibody responses, and a slower disease course (AIDS in 5 to 15 months). No reversion to wild-type susceptibility or loss of the K65R mutation was detected in virus isolates from any of the PMPA-treated or untreated SIVmac055-infected animals. Several additional amino acid changes developed in RT, but they were not exclusively associated with PMPA therapy. The results of this study suggest that prophylactic administration of PMPA to human newborns and to adults following exposure to human immunodeficiency virus will still be beneficial even in the presence of viral variants with reduced susceptibility to PMPA.
PMCID: PMC111653  PMID: 10644348
22.  Postinoculation PMPA Treatment, but Not Preinoculation Immunomodulatory Therapy, Protects against Development of Acute Disease Induced by the Unique Simian Immunodeficiency Virus SIVsmmPBj 
Journal of Virology  1999;73(10):8630-8639.
The fatal disease induced by SIVsmmPBj4 clinically resembles endotoxic shock, with the development of severe gastrointestinal disease. While the exact mechanism of disease induction has not been fully elucidated, aspects of virus biology suggest that immune activation contributes to pathogenesis. These biological characteristics include induction of peripheral blood mononuclear cell (PBMC) proliferation, upregulation of activation markers and Fas ligand expression, and increased levels of apoptosis. To investigate the role of immune activation and viral replication on disease induction, animals infected with SIVsmmPBj14 were treated with one of two drugs: FK-506, a potent immunosuppressive agent, or PMPA, a potent antiretroviral agent. While PBMC proliferation was blocked in vitro with FK-506, pig-tailed macaques treated preinoculation with FK-506 were not protected from acutely lethal disease. However, these animals did show some evidence of modulation of immune activation, including reduced levels of CD25 antigen and FasL expression, as well as lower tissue viral loads. In contrast, macaques treated postinoculation with PMPA were completely protected from the development of acutely lethal disease. Treatment with PMPA beginning as late as 5 days postinfection was able to prevent the PBj syndrome. Plasma and cellular viral loads in PMPA-treated animals were significantly lower than those in untreated controls. Although PMPA-treated animals showed acute lymphopenia due to SIVsmmPBj14 infection, cell subset levels subsequently recovered and returned to normal. Based upon subsequent CD4+ cell counts, the results suggest that very early treatment following retroviral infection can have a significant effect on modifying the subsequent course of disease. These results also suggest that viral replication is an important factor involved in PBJ-induced disease. These studies reinforce the idea that the SIVsmmPBj model system is useful for therapy and vaccine testing.
PMCID: PMC112883  PMID: 10482616
23.  9-[2-(Phosphonomethoxy)propyl]adenine (PMPA) Therapy Prolongs Survival of Infant Macaques Inoculated with Simian Immunodeficiency Virus with Reduced Susceptibility to PMPA 
Simian immunodeficiency virus (SIV) infection of newborn rhesus macaques is a useful animal model of human immunodeficiency virus infection for the study of the emergence and clinical implications of drug-resistant viral mutants. We previously demonstrated that SIV-infected infant macaques receiving prolonged treatment with 9-[2-(phosphonomethoxy)propyl]adenine (PMPA) developed viral mutants with fivefold reduced susceptibility to PMPA in vitro and that the development of these mutants was associated with the development of a K65R mutation and additional compensatory mutations in reverse transcriptase (RT). To study directly the virulence and clinical implications of these SIV mutants, two uncloned SIVmac isolates with similar fivefold reduced in vitro susceptibilities to PMPA but distinct RT genotypes, SIVmac055 (K65R, N69T, R82K A158S, S211N) and SIVmac385 (K65R, N69S, I118V), were each inoculated intravenously into six newborn rhesus macaques; 3 weeks later, three animals of each group were started on PMPA treatment. All six untreated animals developed persistently high levels of viremia and fatal immunodeficiency within 4 months. In contrast, the six PMPA-treated animals, despite having persistently high virus levels, survived significantly longer: 5 to 9 months for the three SIVmac055-infected infants and ≥21 months for the three SIVmac385-infected infants. Virus from only one untreated animal demonstrated reversion to wild-type susceptibility and loss of the K65R mutation. In several other animals, additional RT mutations, including K64R and Y115F, were detected, but the biological role of these mutations is unclear since they did not affect the in vitro susceptibility of the virus to PMPA. In conclusion, this study demonstrates that although SIVmac mutants with the PMPA-selected K65R mutation in RT were highly virulent, PMPA treatment still offered strong therapeutic benefits. These results suggest that the potential emergence of HIV mutants with reduced susceptibility to PMPA in patients during prolonged PMPA therapy may not eliminate its therapeutic benefits.
PMCID: PMC89210  PMID: 10103184
24.  Early Short-Term 9-[2-(R)-(Phosphonomethoxy)Propyl]Adenine Treatment Favorably Alters the Subsequent Disease Course in Simian Immunodeficiency Virus-Infected Newborn Rhesus Macaques 
Journal of Virology  1999;73(4):2947-2955.
Simian immunodeficiency virus (SIV) infection of newborn macaques is a useful animal model of human pediatric AIDS to study disease pathogenesis and to develop intervention strategies aimed at delaying disease. In the present study, we demonstrate that very early events of infection greatly determine the ultimate disease course, as short-term antiviral drug administration during the initial viremia stage significantly delayed the onset of AIDS. Fourteen newborn macaques were inoculated orally with uncloned, highly virulent SIVmac251. The four untreated control animals showed persistently high virus levels and poor antiviral immune responses; they developed fatal immunodeficiency within 15 weeks. In contrast, SIV-infected newborn macaques which were started on 9-[2-(R)-(phosphonomethoxy)propyl]adenine (PMPA) treatment at 5 days of age and continued for either 14 or 60 days showed reduced virus levels and enhanced antiviral immune responses. This short-term PMPA treatment did not induce detectable emergence of SIV mutants with reduced in vitro susceptibility to PMPA. Although viremia increased in most animals after PMPA treatment was withdrawn, all animals remained disease-free for at least 6 months. Our data suggest that short-term treatment with a potent antiviral drug regimen during the initial viremia will significantly prolong AIDS-free survival for HIV-infected infants and adults.
PMCID: PMC104054  PMID: 10074144
25.  Antiretroviral Efficacy and Pharmacokinetics of Oral Bis(isopropyloxycarbonyloxymethyl)9-(2-Phosphonylmethoxypropyl)adenine in Mice 
To overcome the low oral bioavailability of the highly potent and selective antiretroviral agent (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA), a new lipophilic ester derivative, i.e., the bis(isopropyloxycarbonyloxymethyl)-ester [bis(POC)-PMPA], was prepared. The usefulness of bis(POC)-PMPA as an oral prodrug for PMPA was investigated in the intestinal mucosa Caco-2 cell monolayer model. The total transport of bis(POC)-PMPA was 2.7%, whereas it was less than 0.1% for PMPA. Bis(POC)-PMPA was considerably metabolized inside the epithelial cells, since the majority of the compound was recovered after transport in the form of the monoester metabolite [mono(POC)-PMPA]. In contrast, bis(POC)-PMPA was relatively resistant to degradation at the luminal side of the Caco-2 cells. Pharmacokinetic studies with mice showed that the oral bioavailability of bis(POC)-PMPA (calculated from the curves of the concentration of free PMPA in plasma) was 20%. Neither bis(POC)-PMPA nor mono(POC)-PMPA could be recovered in plasma, suggesting the efficient release of the active drug PMPA after oral administration of bis(POC)-PMPA. Severe combined immunodeficient (SCID) mice infected with Moloney murine sarcoma virus (MSV) and treated orally with bis(POC)-PMPA for 5 or 10 days (dosages, 50, 100, or 200 mg of PMPA equivalent per kg of body weight per day) showed a significant delay in MSV-induced tumor appearance and tumor-associated death. The antiviral efficacy of oral bis(POC)-PMPA was related to the dosage and treatment period and was not significantly different from that of subcutaneous PMPA given at an equivalent dose. The favorable pharmacokinetic profile, marked antiviral efficacy, and low toxicity make bis(POC)-PMPA an attractive oral prodrug of PMPA that should be further pursued in clinical studies with patients infected with human immunodeficiency virus or hepatitis B virus.
PMCID: PMC105646  PMID: 9660984

Results 1-25 (29)