PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Delineation of motoneuron subgroups supplying individual eye muscles in the human oculomotor nucleus 
The oculomotor nucleus (nIII) contains the motoneurons of medial, inferior, and superior recti (MR, IR, and SR), inferior oblique (IO), and levator palpebrae (LP) muscles. The delineation of motoneuron subgroups for each muscle is well-known in monkey, but not in human. We studied the transmitter inputs to human nIII and the trochlear nucleus (nIV), which innervates the superior oblique muscle (SO), to outline individual motoneuron subgroups. Parallel series of sections from human brainstems were immunostained for different markers: choline acetyltransferase combined with glutamate decarboxylase (GAD), calretinin (CR) or glycine receptor. The cytoarchitecture was visualized with cresyl violet, Gallyas staining and expression of non-phosphorylated neurofilaments. Apart from nIV, seven subgroups were delineated in nIII: the central caudal nucleus (CCN), a dorsolateral (DL), dorsomedial (DM), central (CEN), and ventral (VEN) group, the nucleus of Perlia (NP) and the non-preganglionic centrally projecting Edinger–Westphal nucleus (EWcp). DL, VEN, NP, and EWcp were characterized by a strong supply of GAD-positive terminals, in contrast to DM, CEN, and nIV. CR-positive terminals and fibers were confined to CCN, CEN, and NP. Based on location and histochemistry of the motoneuron subgroups in monkey, CEN is considered as the SR and IO motoneurons, DL and VEN as the B- and A-group of MR motoneurons, respectively, and DM as IR motoneurons. A good correlation between monkey and man is seen for the CR input, which labels only motoneurons of eye muscles participating in upgaze (SR, IO, and LP). The CCN contained LP motoneurons, and nIV those of SO. This study provides a map of the individual subgroups of motoneurons in human nIII for the first time, and suggests that NP may contain upgaze motoneurons. Surprisingly, a strong GABAergic input to human MR motoneurons was discovered, which is not seen in monkey and may indicate a functional oculomotor specialization.
doi:10.3389/fnana.2014.00002
PMCID: PMC3921678  PMID: 24574976
central caudal nucleus; nucleus of Perlia; extraocular muscles; motoneurons; calretinin; glycine; GABA; eye movements
2.  Do brainstem omnipause neurons terminate saccades? 
Saccade-generating burst neurons (BN) are inhibited by omnipause neurons (OPN), except during saccades. OPN activity pauses before saccade onset and resumes at the saccade end. Microstimulation of OPN stops saccades in mid-flight, which shows that OPN can end saccades. However, OPN pause duration does not correlate well with saccade duration, and saccades are normometric after OPN lesions. We tested whether OPN were responsible for stopping saccades both in late-onset Tay–Sachs, which causes premature saccadic termination, and in individuals with cerebellar hypermetria. We studied gaze shifts between two targets at different distances aligned on one eye, which consist of a disjunctive saccade followed by vergence. High-frequency conjugate oscillations during the vergence movements that followed saccades were present in all subjects studied, indicating OPN silence. Thus, mechanisms other than OPN discharge (e.g., cerebellar caudal fastigial nucleus–promoting inhibitory BN discharge) must contribute to saccade termination.
doi:10.1111/j.1749-6632.2011.06170.x
PMCID: PMC3438674  PMID: 21950975
Tay–Sachs disease; saccades; omnipause neurons; fastigial nucleus; Müller paradigm
3.  Do Palisade Endings in Extraocular Muscles Arise from Neurons in the Motor Nuclei? 
The data in this study, obtained from tract-tracing experiments in the monkey, imply that the palisade endings located at the myotendinous junction of eye muscles arise from the motor nuclei in the brain stem.
Purpose.
The purpose of this study was to localize the cell bodies of palisade endings that are associated with the myotendinous junctions of the extraocular muscles.
Methods.
Rhesus monkeys received tract-tracer injections (tetramethylrhodamine dextran [TMR-DA] or choleratoxin subunit B [CTB]) into the oculomotor and trochlear nuclei, which contain the motoneurons of extraocular muscles. All extraocular muscles were processed for the combined immunocytochemical detection of the tracer and SNAP-25 or synaptophysin for the visualization of the complete muscle innervation.
Results.
In all muscles—except the lateral rectus—en plaque and en grappe motor endings, but also palisade endings, were anterogradely labeled. In addition a few tracer-labeled tendon organs were found. One group of tracer-negative nerve fibers was identified as thin tyrosine hydroxylase-positive sympathetic fibers, and a second less numerous group of tracer-negative fibers may originate from the trigeminal ganglia. No cellular or terminal tracer labeling was present within the mesencephalic trigeminal nucleus or the trigeminal ganglia.
Conclusions.
These results confirm those of earlier studies and furthermore suggest that the somata of palisade endings are located close to the extraocular motor nuclei—in this case, probably within the C and S groups around the periphery of the oculomotor nucleus. The multiple en grappe endings have also been shown to arise from these cells groups, but it is not possible to distinguish different populations in these experiments.
doi:10.1167/iovs.10-6008
PMCID: PMC3088547  PMID: 21228383
4.  Torsional deviations with voluntary saccades caused by a unilateral midbrain lesion 
BMJ Case Reports  2009;2009:bcr08.2008.0807.
Three dimensional eye rotations were measured using the magnetic search coil technique in a patient with a lesion of the right rostral interstitial nucleus of the medial longitudinal fasciculus (RIMLF) and in four control subjects. Up to 10° contralesional torsional deviations with each voluntary saccade were revealed, which also could be seen during bedside examination. There was no spontaneous nystagmus. Based on MRI criteria, the lesion involved the RIMLF but spared the interstitial nucleus of Cajal. To date, this deficit has not been described in patients. Our results support the hypothesis that the vertical-torsional saccade generator in humans is organised similarly as in monkeys: each RIMLF encodes torsional saccades in one direction, while both participate in vertical saccades.
doi:10.1136/bcr.08.2008.0807
PMCID: PMC3029653  PMID: 21686621
5.  Orexin-A inputs onto visuomotor cell groups in the monkey brainstem 
Neuroscience  2009;164(2):629-640.
Orexin-A, synthesized by neurons of the lateral hypothalamus, helps to maintain wakefulness through excitatory projections to nuclei involved in arousal. Obvious changes in eye movements, eyelid position and pupil reactions seen in the transition to sleep led to the investigation of orexin-A projections to visuomotor cell groups to determine whether direct pathways exist that may modify visuomotor behaviors during the sleep/wake cycle. Histological markers were used to define these specific visuomotor cell groups in monkey brainstem sections and combined with orexin-A immunostaining. The dense supply by orexin-A boutons around adjacent neurons in the dorsal raphe nucleus served as a control standard for a strong orexin-A input. The quantitative analysis assessing various functional cell groups of the oculomotor system revealed that almost no input from orexin-A terminals reached motoneurons supplying the singly-innervated muscle fibers of the extraocular muscles in the oculomotor nucleus, the omnipause neurons in the nucleus raphe interpositus and the premotor neurons in the rostral interstitial nucleus of the medial longitudinal fasciculus. In contrast, the motoneurons supplying the multiply-innervated muscle fibers of the extraocular muscles, the motoneurons of the levator palpebrae muscle in the central caudal nucleus, and especially the preganglionic neurons supplying the ciliary ganglion received a strong orexin input. We interpret these results as evidence that orexin-A does modulate pupil size, lid position, and possibly convergence and eye alignment via the motoneurons of multiply-innervated muscle fibres. However orexin-A does not directly modulate premotor pathways for saccades or the SIF motoneurons.
doi:10.1016/j.neuroscience.2009.08.039
PMCID: PMC2762011  PMID: 19703526
oculomotor; eyelid; pupil; accommodation; saccade
6.  Torsional deviations with voluntary saccades caused by a unilateral midbrain lesion 
Three dimensional eye rotations were measured using the magnetic search coil technique in a patient with a lesion of the right rostral interstitial nucleus of the medial longitudinal fasciculus (RIMLF) and in four control subjects. Up to 10° contralesional torsional deviations with each voluntary saccade were revealed, which also could be seen during bedside examination. There was no spontaneous nystagmus. Based on MRI criteria, the lesion involved the RIMLF but spared the interstitial nucleus of Cajal. To date, this deficit has not been described in patients. Our results support the hypothesis that the vertical–torsional saccade generator in humans is organised similarly as in monkeys: each RIMLF encodes torsional saccades in one direction, while both participate in vertical saccades.
doi:10.1136/jnnp.2007.119578
PMCID: PMC2117568  PMID: 17504883
7.  Ocular motor anatomy in a case of interrupted saccades 
Progress in brain research  2008;171:563-566.
Saccades normally place the eye on target with one smooth movement. In late-onset Tay—Sachs (LOTS), intrasaccadic transient decelerations occur that may result from (1) premature omnipause neuron (OPN) re-activation due to malfunction of the latch circuit that inhibits OPNs for the duration of the saccade or (2) premature inhibitory burst neuron (IBN) activation due to fastigial nucleus (FN) dysregulation by the dorsal cerebellar vermis. Neuroanatomic analysis of a LOTS brain was performed. Purkinje cells were absent and gliosis of the granular cell layer was present in the dorsal cerebellar vermis. Deep cerebellar nuclei contained large inclusions. IBNs were present with small inclusions. The sample did not contain the complete OPN region; however, neurons in the OPN region contained massive inclusions. Pathologic findings suggest that premature OPN re-activation and/or inappropriate firing of IBNs may be responsible for interrupted saccades in LOTS. Cerebellar clinical dysfunction, lack of saccadic slowing, and significant loss of cerebellar cells suggest that the second cause is more likely.
doi:10.1016/S0079-6123(08)00680-8
PMCID: PMC2752380  PMID: 18718354
fastigial nucleus; omnipause neurons; burst neurons; latch circuit; brainstem
8.  Functions of the nucleus of the optic tract (NOT) 
Ocular pursuit in monkeys, elicited by sinusoidal and triangular (constant velocity) stimuli, was studied before and after lesions of the nucleus of the optic tract (NOT). Before NOT lesions, pursuit gains (eye velocity/target velocity) were close to unity for sinusoidal and constant-velocity stimuli at frequencies up to 1 Hz. In this range, retinal slip was less than 2°. Electrode tracks made to identify the location of NOT caused deficits in ipsilateral pursuit, which later recovered. Small electrolytic lesions of NOT reduced ipsilateral pursuit gains to below 0.5 in all tested conditions. Pursuit was better, however, when the eyes moved from the contra-lateral side toward the center (centripetal pursuit) than from the center ipsilaterally (centrifugal pursuit), although the eyes remained in close proximity to the target with saccadic tracking. Effects of lesions on ipsilateral pursuit were not permanent, and pursuit gains had generally recovered to 60–80% of baseline after about 2 weeks. One animal had bilateral NOT lesions and lost pursuit for 4 days. Thereafter, it had a centrifugal pursuit deficit that lasted for more than 2 months. Vertical pursuit and visually guided saccades were not affected by the bilateral NOT lesions in this animal. We also compared effects of these and similar NOT lesions on opto-kinetic nystagmus (OKN) and optokinetic after-nystagmus (OKAN). Correlation of functional deficits with NOT lesions from this and previous studies showed that rostral lesions of NOT in and around the pretectal oli-vary nucleus, which interrupted cortical input through the brachium of the superior colliculus (BSC), affected both smooth pursuit and OKN. In two animals in which it was tested, NOT lesions that caused a deficit in pursuit also decreased the rapid and slow components of OKN slow-phase velocity and affected OKAN. It was previously shown that slightly more caudal NOT lesions were more effective in altering gain adaptation of the angular vestibulo-ocular relfex (aVOR). The present findings suggest that cortical pathways through rostral NOT play an important role in maintenance of ipsilateral ocular pursuit. Since lesions that affected ocular pursuit had similar effects on ipsilateral OKN, processing for these two functions is probably closely linked in NOT, as it is elsewhere.
PMCID: PMC2002478  PMID: 10803412
Monkey; Smooth pursuit; Optokinetic nystagmus; Nucleus of the optic tract (NOT); Eye movement

Results 1-8 (8)