PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Age-dependent climate-growth relationships and regeneration of Picea abies in a drought-prone mixed coniferous forest in the Alps 
Within dry inner Alpine environments climate warming is expected to affect the development of forest ecosystems by changing species composition and inducing shifts in forest distribution. By applying dendroecological techniques we evaluated climate sensitivity of radial growth and establishment of Picea abies in a drought-prone mixed-coniferous forest in the Austrian Alps. Time series of annual increments were developed from > 220 trees and assigned to four age classes. While radial growth of old P. abies trees (mean age 121 and 174 yr) responded highly significant to May-June precipitation, young trees (mean age 28 and 53 yr) were insensitive to precipitation in the current year. Because tree age was closely correlated to height and diameter (r2 = 0.709 and 0.784, respectively), we relate our findings to the increase in tree size rather than age per se. Synchronicity found among trend in basal area increment and tree establishment suggests that canopy openings increased light and water availability, which favoured growth and establishment of moderately shade-tolerant P. abies. We conclude that although P. abies is able to regenerate at this drought prone site, increasing inter-tree competition for water in dense stands gradually lowers competitive strength and restricts scattered occurrence to dry-mesic sites.
doi:10.1139/cjfr-2012-0426
PMCID: PMC3766819  PMID: 24027351
2.  Temporal dynamics of non-structural carbohydrates and xylem growth in Pinus sylvestris exposed to drought 
Wood formation requires a continuous supply of carbohydrates for structural growth and metabolism. In the montane belt of the central Austrian Alps we monitored the temporal dynamics of xylem growth and non-structural carbohydrates (NSC) in stem sapwood of Pinus sylvestris L. during the growing season 2009, which was characterized by exceptional soil dryness within the study area. Soil water content dropped below 10 % at the time of maximum xylem growth end of May. Histological analyses have been used to describe cambial activity and xylem growth. Determination of NSC was performed using specific enzymatic assays revealing that total NSC ranged from 0.8 to 1.7 % dry matter throughout the year. Significant variations (P < 0.05) of the size of the NSC pool were observed during the growing season. Starch showed persistent abundance throughout the year reaching a maximum shortly before onset of late wood formation in mid-July. Seasonal dynamics of NSC and xylem growth suggest that (i) high sink activity occurred at start of the growing season in spring and during late wood formation in summer and (ii) there was no particular shortage in NSC, which caused P. sylvestris to draw upon stem reserves more heavily during drought in 2009.
doi:10.1139/x11-085
PMCID: PMC3191854  PMID: 22003262

Results 1-2 (2)