PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Effect of High-Dose or Split-Dose Artesunate on Parasite Clearance in Artemisinin-Resistant Falciparum Malaria 
New treatment strategies are needed for artemisinin-resistant falciparum malaria. This randomized trial shows that neither increasing nor splitting the standard once-daily artesunate dose reverses the markedly reduced parasite clearance rate in patients with artemisinin-resistant falciparum malaria.
Background. The emergence of Plasmodium falciparum resistance to artemisinins on the Cambodian and Myanmar-Thai borders poses severe threats to malaria control. We investigated whether increasing or splitting the dose of the short-half-life drug artesunate improves parasite clearance in falciparum malaria in the 2 regions.
Methods. In Pailin, western Cambodia (from 2008 to 2010), and Wang Pha, northwestern Thailand (2009–2010), patients with uncomplicated falciparum malaria were randomized to oral artesunate 6 mg/kg/d as a once-daily or twice-daily dose for 7 days, or artesunate 8 mg/kg/d as a once-daily or twice-daily dose for 3 days, followed by mefloquine. Parasite clearance and recrudescence for up to 63 days of follow-up were assessed.
Results. A total of 159 patients were enrolled. Overall median (interquartile range [IQR]) parasitemia half-life (half-life) was 6.03 (4.89–7.28) hours in Pailin versus 3.42 (2.20–4.85) hours in Wang Pha (P = .0001). Splitting or increasing the artesunate dose did not shorten half-life in either site. Pharmacokinetic profiles of artesunate and dihydroartemisinin were similar between sites and did not correlate with half-life. Recrudescent infections occurred in 4 of 79 patients in Pailin and 5 of 80 in Wang Pha and was not different between treatment arms (P = .68).
Conclusions. Increasing the artesunate treatment dose up to 8 mg/kg/d or splitting the dose does not improve parasite clearance in either artemisinin resistant or more sensitive infections with P. falciparum.
Clinical Trials Registration. ISRCTN15351875.
doi:10.1093/cid/cis958
PMCID: PMC3563392  PMID: 23175556
artemisinins; drug resistance; Plasmodium falciparum; neutropenia; reticulocytopenia
2.  Artemisinin Resistance in Plasmodium falciparum Malaria 
The New England journal of medicine  2009;361(5):455-467.
BACKGROUND
Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai–Cambodian border, historically a site of emerging antimalarial-drug resistance.
METHODS
In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance.
RESULTS
We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate–mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P = 0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco–endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups.
CONCLUSIONS
P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.)
doi:10.1056/NEJMoa0808859
PMCID: PMC3495232  PMID: 19641202
3.  A major genome region underlying artemisinin resistance in malaria 
Science (New York, N.y.)  2012;336(6077):79-82.
Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia, has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CR) following treatment. We used a two-phase strategy to identify genome region(s) underlying this ongoing selective event. Geographical differentiation and haplotype structure at 6,969 polymorphic SNPs in 91 parasites from Cambodia, Thailand and Laos identified 33 genome regions under strong selection. We screened SNPs and microsatellites within these regions in 715 parasites from Thailand, identifying a selective sweep on chr 13 that shows strong association (P=10-6-10-12) with slow CR, illustrating the efficacy of targeted association for identifying the genetic basis of adaptive traits.
doi:10.1126/science.1215966
PMCID: PMC3355473  PMID: 22491853
4.  Artemisinin resistance in Plasmodium falciparum is associated with an altered temporal pattern of transcription 
BMC Genomics  2011;12:391.
Background
Artemisinin resistance in Plasmodium falciparum malaria has emerged in Western Cambodia. This is a major threat to global plans to control and eliminate malaria as the artemisinins are a key component of antimalarial treatment throughout the world. To identify key features associated with the delayed parasite clearance phenotype, we employed DNA microarrays to profile the physiological gene expression pattern of the resistant isolates.
Results
In the ring and trophozoite stages, we observed reduced expression of many basic metabolic and cellular pathways which suggests a slower growth and maturation of these parasites during the first half of the asexual intraerythrocytic developmental cycle (IDC). In the schizont stage, there is an increased expression of essentially all functionalities associated with protein metabolism which indicates the prolonged and thus increased capacity of protein synthesis during the second half of the resistant parasite IDC. This modulation of the P. falciparum intraerythrocytic transcriptome may result from differential expression of regulatory proteins such as transcription factors or chromatin remodeling associated proteins. In addition, there is a unique and uniform copy number variation pattern in the Cambodian parasites which may represent an underlying genetic background that contributes to the resistance phenotype.
Conclusions
The decreased metabolic activities in the ring stages are consistent with previous suggestions of higher resilience of the early developmental stages to artemisinin. Moreover, the increased capacity of protein synthesis and protein turnover in the schizont stage may contribute to artemisinin resistance by counteracting the protein damage caused by the oxidative stress and/or protein alkylation effect of this drug. This study reports the first global transcriptional survey of artemisinin resistant parasites and provides insight to the complexities of the molecular basis of pathogens with drug resistance phenotypes in vivo.
doi:10.1186/1471-2164-12-391
PMCID: PMC3163569  PMID: 21810278
Plasmodium falciparum, in vivo artemisinin-resistance; field isolates; comparative genomics; comparative transcriptomics
5.  High heritability of malaria parasite clearance rate indicates a genetic basis for artemisinin resistance in Western Cambodia 
The Journal of infectious diseases  2010;201(9):1326-1330.
In Western Cambodia malaria parasites clear slowly from the blood following treatment with artemisinin derivatives, but it is unclear whether this results from parasite, host, or other factors specific to this population. We measured heritability of clearance rate (CR), by examining patients infected with identical or non-identical parasite genotypes, using methods analogous to human twin studies. A substantial proportion (56-58%) of the variation in CR is explained by parasite genetics. This has two important implications: (1) selection with artemisinin derivatives will tend to drive resistance spread, (2) because heritability is high, genes underlying CR may be identified by genome-wide association.
doi:10.1086/651562
PMCID: PMC2853733  PMID: 20350192
Artemisinin; clearance time; heritability; twin studies; resistance; microsatellite
6.  Exploring the Contribution of Candidate Genes to Artemisinin Resistance in Plasmodium falciparum▿  
The reduced in vivo sensitivity of Plasmodium falciparum has recently been confirmed in western Cambodia. Identifying molecular markers for artemisinin resistance is essential for monitoring the spread of the resistant phenotype and identifying the mechanisms of resistance. Four candidate genes, including the P. falciparum mdr1 (pfmdr1) gene, the P. falciparum ATPase6 (pfATPase6) gene, the 6-kb mitochondrial genome, and ubp-1, encoding a deubiquitinating enzyme, of artemisinin-resistant P. falciparum strains from western Cambodia were examined and compared to those of sensitive strains from northwestern Thailand, where the artemisinins are still very effective. The artemisinin-resistant phenotype did not correlate with pfmdr1 amplification or mutations (full-length sequencing), mutations in pfATPase6 (full-length sequencing) or the 6-kb mitochondrial genome (full-length sequencing), or ubp-1 mutations at positions 739 and 770. The P. falciparum CRT K76T mutation was present in all isolates from both study sites. The pfmdr1 copy numbers in western Cambodia were significantly lower in parasite samples obtained in 2007 than in those obtained in 2005, coinciding with a local change in drug policy replacing artesunate-mefloquine with dihydroartemisinin-piperaquine. Artemisinin resistance in western Cambodia is not linked to candidate genes, as was suggested by earlier studies.
doi:10.1128/AAC.00032-10
PMCID: PMC2897287  PMID: 20421395
7.  Decreased In Vitro Susceptibility of Plasmodium falciparum Isolates to Artesunate, Mefloquine, Chloroquine, and Quinine in Cambodia from 2001 to 2007 ▿  
This study describes the results of in vitro antimalarial susceptibility assays and molecular polymorphisms of Plasmodium falciparum isolates from Cambodia. The samples were collected from patients enrolled in therapeutic efficacy studies (TES) conducted by the Cambodian National Malaria Control Program for the routine efficacy monitoring of artemisinin-based combination therapy (ACT) (artesunate-mefloquine and artemether-lumefantrine combinations). The isolates (n = 2,041) were obtained from nine sentinel sites during the years 2001 to 2007. Among these, 1,588 were examined for their in vitro susceptibilities to four antimalarials (artesunate, mefloquine, chloroquine, and quinine), and 851 isolates were genotyped for single nucleotide polymorphisms (SNPs). The geometric means of the 50% inhibitory concentrations (GMIC50s) of the four drugs tested were significantly higher for isolates from western Cambodia than for those from eastern Cambodia. GMIC50s for isolates from participants who failed artesunate-mefloquine therapy were significantly higher than those for patients who were cured (P, <0.001). In vitro correlation of artesunate with the other drugs was observed. The distributions of the SNPs differed between eastern and western Cambodia, suggesting different genetic backgrounds of the parasite populations in these two parts of the country. The GMIC50s of the four drugs tested increased significantly in eastern Cambodia during 2006 to 2007. These results are worrisome, because they may signal deterioration of the efficacy of artesunate-mefloquine beyond the Cambodian-Thai border.
doi:10.1128/AAC.01304-09
PMCID: PMC2863643  PMID: 20194689
8.  Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia 
Malaria Journal  2009;8:11.
Background
The combination of artesunate and mefloquine was introduced as the national first-line treatment for Plasmodium falciparum malaria in Cambodia in 2000. However, recent clinical trials performed at the Thai-Cambodian border have pointed to the declining efficacy of both artesunate-mefloquine and artemether-lumefantrine. Since pfmdr1 modulates susceptibility to mefloquine and artemisinin derivatives, the aim of this study was to assess the link between pfmdr1 copy number, in vitro susceptibility to individual drugs and treatment failure to combination therapy.
Methods
Blood samples were collected from P. falciparum-infected patients enrolled in two in vivo efficacy studies in north-western Cambodia: 135 patients were treated with artemether-lumefantrine (AL group) in Sampovloun in 2002 and 2003, and 140 patients with artesunate-mefloquine (AM group) in Sampovloun and Veal Veng in 2003 and 2004. At enrollment, the in vitro IC50 was tested and the strains were genotyped for pfmdr1 copy number by real-time PCR.
Results
The pfmdr1 copy number was analysed for 115 isolates in the AM group, and for 109 isolates in the AL group. Parasites with increased pfmdr1 copy number had significantly reduced in vitro susceptibility to mefloquine, lumefantrine and artesunate. There was no association between pfmdr1 polymorphisms and in vitro susceptibilities. In the patients treated with AM, the mean pfmdr1copy number was lower in subjects with adequate clinical and parasitological response compared to those who experienced late treatment failure (n = 112, p < 0.001). This was not observed in the patients treated with AL (n = 96, p = 0.364). The presence of three or more copies of pfmdr1 were associated with recrudescence in artesunate-mefloquine treated patients (hazard ratio (HR) = 7.80 [95%CI: 2.09–29.10], N = 115), p = 0.002) but not with recrudescence in artemether-lumefantrine treated patients (HR = 1.03 [95%CI: 0.24–4.44], N = 109, p = 0.969).
Conclusion
This study shows that pfmdr1 copy number is a molecular marker of AM treatment failure in falciparum malaria on the Thai-Cambodian border. However, while it is associated with increased IC50 for lumefantrine, pfmdr1 copy number is not associated with AL treatment failure in the area, suggesting involvement of other molecular mechanisms in AL treatment failures in Cambodia.
doi:10.1186/1475-2875-8-11
PMCID: PMC2627910  PMID: 19138391

Results 1-8 (8)