PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (287)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
more »
1.  Open-Label Crossover Study of Primaquine and Dihydroartemisinin-Piperaquine Pharmacokinetics in Healthy Adult Thai Subjects 
Antimicrobial Agents and Chemotherapy  2014;58(12):7340-7346.
Dihydroartemisinin-piperaquine is an artemisinin-based combination treatment (ACT) recommended by the WHO for uncomplicated Plasmodium falciparum malaria, and it is being used increasingly for resistant vivax malaria where combination with primaquine is required for radical cure. The WHO recently reinforced its recommendations to add a single dose of primaquine to ACTs to reduce P. falciparum transmission in low-transmission settings. The pharmacokinetics of primaquine and dihydroartemisinin-piperaquine were evaluated in 16 healthy Thai adult volunteers in a randomized crossover study. Volunteers were randomized to two groups of three sequential hospital admissions to receive 30 mg (base) primaquine, 3 tablets of dihydroartemisinin-piperaquine (120/960 mg), and the drugs together at the same doses. Blood sampling was performed over 3 days following primaquine and 36 days following dihydroartemisinin-piperaquine dosing. Pharmacokinetic assessment was done with a noncompartmental approach. The drugs were well tolerated. There were no statistically significant differences in dihydroartemisinin and piperaquine pharmacokinetics with or without primaquine. Dihydroartemisinin-piperaquine coadministration significantly increased plasma primaquine levels; geometric mean ratios (90% confidence interval [CI]) of primaquine combined versus primaquine alone for maximum concentration (Cmax), area under the concentration-time curve from 0 h to the end of the study (AUC0–last), and area under the concentration-time curve from 0 h to infinity (AUC0–∞) were 148% (117 to 187%), 129% (103 to 163%), and 128% (102 to 161%), respectively. This interaction is similar to that described recently with chloroquine and may result in an enhanced radical curative effect. (This study has been registered at ClinicalTrials.gov under registration no. NCT01525511.)
doi:10.1128/AAC.03704-14
PMCID: PMC4249579  PMID: 25267661
2.  A Simple Score to Predict the Outcome of Severe Malaria in Adults 
Background
World Health Organization treatment guidelines recommend that adults with severe malaria be admitted to an intensive care unit (ICU). However, ICU facilities are limited in the resource-poor settings where most malaria occurs. Identification of patients at greater risk of complications may facilitate their triage and resource allocation.
Methods
With use of data from a trial conducted in Southeast Asia (n = 868), a logistic regression model was built to identify independent predictors of mortality among adults with severe malaria. A scoring system based on this model was tested in the original dataset and then validated in 2 series from Bangladesh (n = 188) and Vietnam (n = 292).
Results
Acidosis (base deficit) and cerebral malaria (measured as Glasgow Coma Score) were the main independent predictors of outcome. The 5-point Coma Acidosis Malaria (CAM) score was simply derived from these 2 variables. Mortality increased steadily with increasing score. A CAM score <2 predicted survival with a positive predictive value (PPV) of 95.8% (95% confidence interval [CI], 93%–97.7%). Of the 14 of 331 patients who died with a CAM score <2, 11 (79%) had renal failure and death occurred late after hospital admission (median, 108 h; range, 40–360 h). Substitution of plasma bicarbonate as the measure of acidosis only slightly reduced the prognostic value of the model. Use of respiratory rate was inferior, but a score <2 still predicted survival with a PPV of 92.2% (95% CI, 89.1%–94.7%).
Conclusions
Patients with a CAM score <2 at hospital admission may be safely treated in a general ward, provided that renal function can be monitored.
doi:10.1086/649928
PMCID: PMC4313369  PMID: 20105074
3.  Pharmacokinetic Interactions between Primaquine and Chloroquine 
Chloroquine combined with primaquine has been the standard radical curative regimen for Plasmodium vivax and Plasmodium ovale malaria for over half a century. In an open-label crossover pharmacokinetic study, 16 healthy volunteers (4 males and 12 females) aged 20 to 47 years were randomized into two groups of three sequential hospital admissions to receive a single oral dose of 30 mg (base) primaquine, 600 mg (base) chloroquine, and the two drugs together. The coadministration of the two drugs did not affect chloroquine or desethylchloroquine pharmacokinetics but increased plasma primaquine concentrations significantly (P ≤ 0.005); the geometric mean (90% confidence interval [CI]) increases were 63% (47 to 81%) in maximum concentration and 24% (13 to 35%) in total exposure. There were also corresponding increases in plasma carboxyprimaquine concentrations (P ≤ 0.020). There were no significant electrocardiographic changes following primaquine administration, but there was slight corrected QT (QTc) (Fridericia) interval lengthening following chloroquine administration (median [range] = 6.32 [−1.45 to 12.3] ms; P < 0.001), which was not affected by the addition of primaquine (5.58 [1.74 to 11.4] ms; P = 0.642). This pharmacokinetic interaction may explain previous observations of synergy in preventing P. vivax relapse. This trial was registered at ClinicalTrials.gov under reference number NCT01218932.
doi:10.1128/AAC.02794-13
PMCID: PMC4068454  PMID: 24687509
4.  Laboratory Detection of Artemisinin-Resistant Plasmodium falciparum 
Conventional 48-h in vitro susceptibility tests have low sensitivity in identifying artemisinin-resistant Plasmodium falciparum, defined phenotypically by low in vivo parasite clearance rates. We hypothesized originally that this discrepancy was explained by a loss of ring-stage susceptibility and so developed a simple field-adapted 24-h trophozoite maturation inhibition (TMI) assay focusing on the ring stage and compared it to the standard 48-h schizont maturation inhibition (WHO) test. In Pailin, western Cambodia, where artemisinin-resistant P. falciparum is prevalent, the TMI test mean (95% confidence interval) 50% inhibitory concentration (IC50) for artesunate was 6.8 (5.2 to 8.3) ng/ml compared with 1.5 (1.2 to 1.8) ng/ml for the standard 48-h WHO test (P = 0.001). TMI IC50s correlated significantly with the in vivo responses to artesunate (parasite clearance time [r = 0.44, P = 0.001] and parasite clearance half-life [r = 0.46, P = 0.001]), whereas the standard 48-h test values did not. On continuous culture of two resistant isolates, the artemisinin-resistant phenotype was lost after 6 weeks (IC50s fell from 10 and 12 ng/ml to 2.7 and 3 ng/ml, respectively). Slow parasite clearance in falciparum malaria in western Cambodia results from reduced ring-stage susceptibility.
doi:10.1128/AAC.01924-13
PMCID: PMC4068498  PMID: 24663013
5.  Rapid Clinical Assessment to Facilitate the Triage of Adults with Falciparum Malaria, a Retrospective Analysis 
PLoS ONE  2014;9(1):e87020.
Background
Most adults dying from falciparum malaria will die within 48 hours of their hospitalisation. An essential component of early supportive care is the rapid identification of patients at greatest risk. In resource-poor settings, where most patients with falciparum malaria are managed, decisions regarding patient care must frequently be made using clinical evaluation alone.
Methods
We retrospectively analysed 4 studies of 1801 adults with severe falciparum malaria to determine whether the presence of simple clinical findings might assist patient triage.
Results
If present on admission, shock, oligo-anuria, hypo- or hyperglycaemia, an increased respiratory rate, a decreased Glasgow Coma Score and an absence of fever were independently predictive of death. The variables were used to construct a simple clinical algorithm. When applied to the 1801 patients, this algorithm’s positive predictive value for survival to 48 hours was 99.4 (95% confidence interval (CI) 97.8–99.9) and for survival to discharge 96.9% (95% CI 94.3–98.5). In the 712 patients receiving artesunate, the algorithm’s positive predictive value for survival to 48 hours was 100% (95% CI 97.3–100) and to discharge was 98.5% (95% CI 94.8–99.8).
Conclusions
Simple clinical findings are closely linked to the pathophysiology of severe falciparum malaria in adults. A basic algorithm employing these indices can facilitate the triage of patients in settings where intensive care services are limited. Patients classified as low-risk by this algorithm can be safely managed initially on a general ward whilst awaiting senior clinical review and laboratory data.
doi:10.1371/journal.pone.0087020
PMCID: PMC3906099  PMID: 24489828
6.  High-Throughput Ultrasensitive Molecular Techniques for Quantifying Low-Density Malaria Parasitemias 
Journal of Clinical Microbiology  2014;52(9):3303-3309.
The epidemiology of malaria in “low-transmission” areas has been underestimated. Molecular detection methods have revealed higher prevalences of malaria than conventional microscopy or rapid diagnostic tests, but these typically evaluate finger-prick capillary blood samples (∼5 μl) and therefore cannot detect parasite densities of <200/ml. Their use underestimates true parasite carriage rates. To characterize the epidemiology of malaria in low-transmission settings and plan elimination strategies, more sensitive quantitative PCR (qPCR) is needed to identify and quantify low-density malaria parasitemias. A highly sensitive “high-volume” quantitative PCR (qPCR) method based on Plasmodium sp. 18S RNA was adapted for blood sample volumes of ≥250 μl and scaled for high throughput. The methods were validated by assessment of the analytical sensitivity and specificity, diagnostic sensitivity, and specificity, efficiency, precision, analytical and diagnostic accuracies, limit of detection, root cause analysis of false positives, and robustness. The high-volume qPCR method based on Plasmodium sp. 18S RNA gave high PCR efficiency of 90 to 105%. Concentrations of parasite DNA from large volumes of blood gave a consistent analytical detection limit (LOD) of 22 parasites/ml (95% CI, 21.79 to 74.9), which is some 2,500 times more sensitive than conventional microscopy and 50 times more sensitive than currently used PCR methods from filter paper blood spots. The diagnostic specificity was 99.75%. Using automated procedures it was possible to process 700 blood samples per week. A very sensitive and specific high-throughput high-volume qPCR method for the detection of low-density parasitemias (>20 parasites/ml) was developed and validated.
doi:10.1128/JCM.01057-14
PMCID: PMC4313154  PMID: 24989601
7.  Ethics, Economics, and the Use of Primaquine to Reduce Falciparum Malaria Transmission in Asymptomatic Populations 
PLoS Medicine  2014;11(8):e1001704.
Yoel Lubell and colleagues consider ethical and economic perspectives on mass drug administration of primaquine to limit transmission of P. falciparum malaria.
Please see later in the article for the Editors' Summary
doi:10.1371/journal.pmed.1001704
PMCID: PMC4137981  PMID: 25137246
8.  Statistical Power Calculations for Mixed Pharmacokinetic Study Designs Using a Population Approach 
The AAPS Journal  2014;16(5):1110-1118.
Simultaneous modelling of dense and sparse pharmacokinetic data is possible with a population approach. To determine the number of individuals required to detect the effect of a covariate, simulation-based power calculation methodologies can be employed. The Monte Carlo Mapped Power method (a simulation-based power calculation methodology using the likelihood ratio test) was extended in the current study to perform sample size calculations for mixed pharmacokinetic studies (i.e. both sparse and dense data collection). A workflow guiding an easy and straightforward pharmacokinetic study design, considering also the cost-effectiveness of alternative study designs, was used in this analysis. Initially, data were simulated for a hypothetical drug and then for the anti-malarial drug, dihydroartemisinin. Two datasets (sampling design A: dense; sampling design B: sparse) were simulated using a pharmacokinetic model that included a binary covariate effect and subsequently re-estimated using (1) the same model and (2) a model not including the covariate effect in NONMEM 7.2. Power calculations were performed for varying numbers of patients with sampling designs A and B. Study designs with statistical power >80% were selected and further evaluated for cost-effectiveness. The simulation studies of the hypothetical drug and the anti-malarial drug dihydroartemisinin demonstrated that the simulation-based power calculation methodology, based on the Monte Carlo Mapped Power method, can be utilised to evaluate and determine the sample size of mixed (part sparsely and part densely sampled) study designs. The developed method can contribute to the design of robust and efficient pharmacokinetic studies.
doi:10.1208/s12248-014-9641-4
PMCID: PMC4147042  PMID: 25011414
mixed pharmacokinetic study designs; Monte Carlo Mapped Power; optimal pharmacokinetic study design; statistical power calculations
9.  Lethal Malaria: Marchiafava and Bignami Were Right 
The Journal of Infectious Diseases  2013;208(2):192-198.
One hundred and twenty years ago, the Italian malariologists Marchiafava and Bignami proposed that the fundamental pathological process underlying lethal falciparum malaria was microvascular obstruction. Since then, several alternative hypotheses have been proposed. These formed the basis for adjunctive interventions, which have either been ineffective or harmful. Recent evidence strongly suggests that Marchiafava and Bignami were right.
doi:10.1093/infdis/jit116
PMCID: PMC3685223  PMID: 23585685
P. falciparum; malaria; cerebral malaria; pathology
10.  Population pharmacokinetics of quinine in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda 
Journal of Antimicrobial Chemotherapy  2014;69(11):3033-3040.
Objectives
Oral quinine is used for the treatment of uncomplicated malaria during pregnancy, but few pharmacokinetic data are available for this population. Previous studies have reported a substantial effect of malaria on the pharmacokinetics of quinine resulting from increased α-1-acid glycoprotein levels and decreased cytochrome P450 3A4 activity. The aim of this study was to investigate the pharmacokinetic properties of oral quinine in pregnant women with uncomplicated malaria in Uganda using a population approach.
Methods
Data from 22 women in the second and third trimesters of pregnancy with uncomplicated Plasmodium falciparum malaria were analysed. Patients received quinine sulphate (10 mg of salt/kg) three times daily (0, 8 and 16 h) for 7 days. Plasma samples were collected daily and at frequent intervals after the first and last doses. A population pharmacokinetic model for quinine was developed accounting for different disposition, absorption, error and covariate models.
Results
Parasitaemia, as a time-varying covariate affecting relative bioavailability, and body temperature on admission as a covariate on elimination clearance, explained the higher exposure to quinine during acute malaria compared with the convalescent phase. Neither the estimated gestational age nor the trimester influenced the pharmacokinetic properties of quinine significantly.
Conclusions
A population model was developed that adequately characterized quinine pharmacokinetics in pregnant Ugandan women with acute malaria. Quinine exposure was lower than previously reported in patients who were not pregnant. The measurement of free quinine concentration will be necessary to determine the therapeutic relevance of these observations.
doi:10.1093/jac/dku228
PMCID: PMC4195470  PMID: 24970740
population models; P. falciparum; NONMEM
11.  Diagnosing Severe Falciparum Malaria in Parasitaemic African Children: A Prospective Evaluation of Plasma PfHRP2 Measurement 
PLoS Medicine  2012;9(8):e1001297.
Arjen Dondorp and colleagues investigate whether the plasma level of Plasmodium falciparum histidine-rich protein 2 can be used to distinguish between severe malaria and other severe febrile illness in African children with malaria.
Background
In African children, distinguishing severe falciparum malaria from other severe febrile illnesses with coincidental Plasmodium falciparum parasitaemia is a major challenge. P. falciparum histidine-rich protein 2 (PfHRP2) is released by mature sequestered parasites and can be used to estimate the total parasite burden. We investigated the prognostic significance of plasma PfHRP2 and used it to estimate the malaria-attributable fraction in African children diagnosed with severe malaria.
Methods and Findings
Admission plasma PfHRP2 was measured prospectively in African children (from Mozambique, The Gambia, Kenya, Tanzania, Uganda, Rwanda, and the Democratic Republic of the Congo) aged 1 month to 15 years with severe febrile illness and a positive P. falciparum lactate dehydrogenase (pLDH)-based rapid test in a clinical trial comparing parenteral artesunate versus quinine (the AQUAMAT trial, ISRCTN 50258054). In 3,826 severely ill children, Plasmadium falciparum PfHRP2 was higher in patients with coma (p = 0.0209), acidosis (p<0.0001), and severe anaemia (p<0.0001). Admission geometric mean (95%CI) plasma PfHRP2 was 1,611 (1,350–1,922) ng/mL in fatal cases (n = 381) versus 1,046 (991–1,104) ng/mL in survivors (n = 3,445, p<0.0001), without differences in parasitaemia as assessed by microscopy. There was a U-shaped association between log10 plasma PfHRP2 and risk of death. Mortality increased 20% per log10 increase in PfHRP2 above 174 ng/mL (adjusted odds ratio [AOR] 1.21, 95%CI 1.05–1.39, p = 0.009). A mechanistic model assuming a PfHRP2-independent risk of death in non-malaria illness closely fitted the observed data and showed malaria-attributable mortality less than 50% with plasma PfHRP2≤174 ng/mL. The odds ratio (OR) for death in artesunate versus quinine-treated patients was 0.61 (95%CI 0.44–0.83, p = 0.0018) in the highest PfHRP2 tertile, whereas there was no difference in the lowest tertile (OR 1.05; 95%CI 0.69–1.61; p = 0.82). A limitation of the study is that some conclusions are drawn from a mechanistic model, which is inherently dependent on certain assumptions. However, a sensitivity analysis of the model indicated that the results were robust to a plausible range of parameter estimates. Further studies are needed to validate our findings.
Conclusions
Plasma PfHRP2 has prognostic significance in African children with severe falciparum malaria and provides a tool to stratify the risk of “true” severe malaria-attributable disease as opposed to other severe illnesses in parasitaemic African children.
Please see later in the article for the Editors' Summary.
Editors' Summary
Background
Malaria is a life-threatening disease caused by parasites that are transmitted to people through the bites of infected mosquitoes. In 2010, malaria caused an estimated 655,000 deaths worldwide, mostly in Africa, where according to the World Health Organization, one African child dies every minute from the disease. There are four Plasmodium parasite species that cause malaria in humans, with one species, Plasmodium falciparum, causing the most severe disease. However, diagnosing severe falciparum malaria in children living in endemic areas is problematic, as many semi-immune children may have the malaria parasites in their blood (described as being parasitaemic) but do not have clinical disease. Therefore, a positive malaria blood smear may be coincidental and not be diagnostic of severe malaria, and unfortunately, neither are the clinical symptoms of severe malaria, such as shock, acidosis, or coma, which can also be caused by other childhood infections. For these reasons, the misdiagnosis of falciparum malaria in severely ill children is an important problem in sub-Saharan Africa, and may result in unnecessary child deaths.
Why Was This Study Done?
Previous studies have suggested that a parasite protein—P. falciparum histidine-rich protein-2 (PfHRP2)—is a measure of the total number of parasites in the patient. Unlike the circulating parasites detected on a blood film, which do not represent the parasites that get stuck in vital organs, PfHRP2 is distributed equally through the total blood plasma volume, and so can be considered a measure of the total parasite burden in the previous 48 hours. So in this study, the researchers assessed the prognostic value of plasma PfHRP2 in African children with severe malaria and whether this protein could distinguish children who really do have severe malaria from those who have severe febrile illness but coincidental parasitaemia, who may have another infection.
What Did the Researchers Do and Find?
The researchers assessed levels of plasma PfHRP2 in 3,826 out of a possible 5,425 African children who participated in a large multinational trial (in Mozambique, The Gambia, Rwanda, Tanzania, Kenya, Uganda, and the Democratic Republic of Congo) that compared the anti-malarial drugs quinine and artesunate for the treatment of severe malaria. All children had a clinical diagnosis of severe malaria confirmed by a rapid diagnostic test, and the researchers used clinical signs to define the severity of malaria. The researchers assessed the relationship between plasma PfHRP2 concentrations and risk of death taking other well established predictors of death, such as coma, convulsions, hypoglycaemia, respiratory distress, and shock, into account.
The researchers found that PfHRP2 was detectable in 3,800/3,826 (99%) children with severe malaria and that the average plasma PfHRP2 levels was significantly higher in the 381 children who died from malaria than in children who survived (1,611 ng/mL versus 1,046 ng/mL). Plasma PfHRP2 was also significantly higher in children with severe malaria signs and symptoms such as coma, acidosis, and severe anaemia. Importantly, the researchers found that high death rates were associated with either very low or very high values of plasma PfHRP2: the odds (chance) of death were 20% higher per unit increase in PfHRP2 above a specific threshold (174 ng/ml), but below this concentration, the risk of death increased with decreasing levels, probably because at lower levels disease was caused by a severe febrile disease other than malaria, like septicemia. Finally, the researchers found that in children within the highest PfHRP2 tertile, the chance of death when treated with the antimalarial drug artesunate versus quinine was 0.61 but that there was no difference in death rates in the lowest tertile, which supports that patients with very low plasma PfHRP2 have a different severe febrile illness than malaria. The researchers use mathematical modeling to provide cut-off values for plasma PfHRP2 denoting the proportion of patients with a diagnosis other than severe malaria.
What Do These Findings Mean?
These findings suggest that in areas of moderate or high malaria transmission where a high proportion of children are parasitaemic, plasma PfHRP2 levels taken on admission to hospital can differentiate children at highest risk of death from severe falciparum malaria from those likely to have alternative causes of severe febrile illness. Therefore, plasma PfHRP2 could be considered a valuable additional diagnostic tool and prognostic indicator in African children with severe falciparum malaria. This finding is important for clinicians treating children with severe febrile illnesses in malaria-endemic countries: while high levels of plasma PfHRP2 is indicative of severe malaria which needs urgent antimalarial treatment, low levels suggest that another severe infective disease should be considered, warranting additional investigations and urgent treatment with antibiotics.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001297.
A previous small study in PLOS ONE explores the relationship between plasma PfHRP2 and severe malaria in Tanzanian children
The WHO website and the website of Malaria No More have comprehensive information about malaria
doi:10.1371/journal.pmed.1001297
PMCID: PMC3424256  PMID: 22927801
12.  Genetic Variability of Plasmodium malariae dihydropteroate synthase (dhps) in Four Asian Countries 
PLoS ONE  2014;9(4):e93942.
The dihydropteroate synthase (dhps) genes of 44 P. malariae strains from four Asian countries were isolated. Only a limited number of polymorphisms were observed. Comparison with homologous mutations in other Plasmodium species showed that these polymorphisms are unlikely to be associated with sulfadoxine resistance.
doi:10.1371/journal.pone.0093942
PMCID: PMC3974843  PMID: 24699454
13.  Population Pharmacokinetic Assessment of the Effect of Food on Piperaquine Bioavailability in Patients with Uncomplicated Malaria 
Previously published literature reports various impacts of food on the oral bioavailability of piperaquine. The aim of this study was to use a population modeling approach to investigate the impact of concomitant intake of a small amount of food on piperaquine pharmacokinetics. This was an open, randomized comparison of piperaquine pharmacokinetics when administered as a fixed oral formulation once daily for 3 days with (n = 15) and without (n = 15) concomitant food to patients with uncomplicated Plasmodium falciparum malaria in Thailand. Nonlinear mixed-effects modeling was used to characterize the pharmacokinetics of piperaquine and the influence of concomitant food intake. A modified Monte Carlo mapped power approach was applied to evaluate the relationship between statistical power and various degrees of covariate effect sizes of the given study design. Piperaquine population pharmacokinetics were described well in fasting and fed patients by a three-compartment distribution model with flexible absorption. The final model showed a 25% increase in relative bioavailability per dose occasion during recovery from malaria but demonstrated no clinical impact of concomitant intake of a low-fat meal. Body weight and age were both significant covariates in the final model. The novel power approach concluded that the study was adequately powered to detect a food effect of at least 35%. This modified Monte Carlo mapped power approach may be a useful tool for evaluating the power to detect true covariate effects in mixed-effects modeling and a given study design. A small amount of food does not affect piperaquine absorption significantly in acute malaria.
doi:10.1128/AAC.02318-13
PMCID: PMC4023753  PMID: 24449770
14.  Pharmacokinetics of Orally Administered Oseltamivir in Healthy Obese and Nonobese Thai Subjects 
Oseltamivir is the most widely used anti-influenza drug. In the 2009 H1N1 pandemic, in which the influenza viruses were oseltamivir sensitive, obesity was identified as a risk factor for severe disease and unfavorable outcomes. The aim of this study was to investigate the pharmacokinetic properties of oseltamivir and its active metabolite, oseltamivir carboxylate, in obese and nonobese healthy subjects. A single-dose, randomized, two-sequence crossover study was conducted in 12 obese and 12 nonobese healthy Thai volunteers. Each volunteer was given 75 mg and 150 mg oseltamivir orally with an intervening washout period of more than 3 days. The pharmacokinetic properties of oseltamivir and oseltamivir carboxylate were evaluated using a noncompartmental approach. The median (range) body mass indexes (BMIs) for obese subjects were 33.8 kg/m2 (30.8 to 43.2) and 22.2 (18.8 to 24.2) for nonobese subjects. The pharmacokinetic parameters of oseltamivir carboxylate, the active metabolite of oseltamivir, were not significantly different between obese and nonobese subjects for both 75-mg and 150-mg doses. Both doses were well tolerated. Despite the lower dose per kilogram body weight in obese subjects, there was no significant difference in the exposure of oseltamivir carboxylate between the obese and nonobese groups. Standard dosing is appropriate for obese subjects. (The study was registered at ClinicalTrials.gov under registration no. NCT 01049763.)
doi:10.1128/AAC.01786-13
PMCID: PMC3957867  PMID: 24366750
15.  A Population Survey of the Glucose-6-Phosphate Dehydrogenase (G6PD) 563C>T (Mediterranean) Mutation in Afghanistan 
PLoS ONE  2014;9(2):e88605.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzyme defect and an important problem in areas with Plasmodium vivax infection because of the risk of haemolysis following administration of primaquine to treat the liver forms of the parasite. We undertook a genotypic survey of 713 male individuals across nine provinces of Afghanistan in which malaria is found, four in the north and five in the east. RFLP typing at nucleotide position 563 detected 40 individuals with the Mediterranean mutation 563C>T, an overall prevalence of 5.6%. This varied according to self-reported ethnicity, with prevalence in the Pashtun/Pashai group of 33/369 (8.9%) compared to 7/344 individuals in the rest of the population (2.0%; p<0.001, Chi-squared test). Multivariate analysis of ethnicity and geographical location indicated an adjusted odds ratio of 3.50 (95% CI 1.36–9.02) for the Pashtun/Pashai group, while location showed only a trend towards higher prevalence in eastern provinces (adjusted odds ratio = 1.73, 0.73–4.13). Testing of known polymorphic markers (1311C>T in exon 11, and C93T in intron XI) in a subset of 82 individuals wild-type at C563 revealed a mixture of 3 haplotypes in the background population and was consistent with data from the 1000 Genomes Project and published studies. By comparison individuals with G6PD deficiency showed a highly skewed haplotype distribution, with 95% showing the CT haplotype, a finding consistent with relatively recent appearance and positive selection of the Mediterranean variant in Afghanistan. Overall, the data confirm that the Mediterranean variant of G6PD is common in many ethnic groups in Afghanistan, indicating that screening for G6PD deficiency is required in all individuals before radical treatment of P. vivax with primaquine.
doi:10.1371/journal.pone.0088605
PMCID: PMC3931629  PMID: 24586352
16.  Motivations and perceptions of community advisory boards in the ethics of medical research: the case of the Thai-Myanmar border 
BMC Medical Ethics  2014;15:12.
Background
Community engagement is increasingly promoted as a marker of good, ethical practice in the context of international collaborative research in low-income countries. There is, however, no widely agreed definition of community engagement or of approaches adopted. Justifications given for its use also vary. Community engagement is, for example, variously seen to be of value in: the development of more effective and appropriate consent processes; improved understanding of the aims and forms of research; higher recruitment rates; the identification of important ethical issues; the building of better relationships between the community and researchers; the obtaining of community permission to approach potential research participants; and, the provision of better health care. Despite these diverse and potentially competing claims made for the importance of community engagement, there is very little published evidence on effective models of engagement or their evaluation.
Methods
In this paper, drawing upon interviews with the members of a Community Advisory Board on the Thai-Myanmar border, we describe and critically reflect upon an approach to community engagement which was developed in the context of international collaborative research in the border region.
Results and conclusions
Drawing on our analysis, we identify a number of considerations relevant to the development of an approach to evaluating community engagement in this complex research setting. The paper also identifies a range of important ways in which the Community Advisory Board is in practice understood by its members (and perhaps by community members beyond this) to have morally significant roles and responsibilities beyond those usually associated with the successful and appropriate conduct of research.
doi:10.1186/1472-6939-15-12
PMCID: PMC3929312  PMID: 24533875
Ethics; Evaluation; Community engagement; Community advisory boards; Developing countries; Thailand; Myanmar; Global health; International research
17.  Genetic Marker Suitable for Identification and Genotyping of Plasmodium ovale curtisi and Plasmodium ovale wallikeri 
Journal of Clinical Microbiology  2013;51(12):4213-4216.
We present a seminested PCR method that specifically discriminates between Plasmodium ovale curtisi and P. ovale wallikeri with high sensitivity. The test is based on species-specific amplification of a size-polymorphic fragment of the tryptophan-rich antigen gene, potra, which also permits discrimination of intraspecific sequence variants at this locus.
doi:10.1128/JCM.01527-13
PMCID: PMC3838052  PMID: 24068009
18.  A Comparison of Two Short-Course Primaquine Regimens for the Treatment and Radical Cure of Plasmodium vivax Malaria in Thailand 
Thai adult males (N = 85) with acute Plasmodium vivax malaria and normal glucose-6-phosphate dehydrogenase screening were randomized to receive 30 mg or 60 mg primaquine daily for 7 days (N = 43 and 42, respectively). The regimens were well tolerated and all patients recovered fully. Median fever clearance (47 hours; range 4 to 130 hours), mean ± SD parasite clearance times (87.7 ± 25.3 hours), gametocyte clearance, and adverse effects were similar in the 2 groups. Two patients, 1 from each group, had a 30% reduction in hematocrit. The cumulative 28 day relapse rate (95% confidence interval) by Kaplan Meier survival analysis was 29% (16–49%) in the 30 mg group compared with 7% (2–24%) in the 60 mg group; P = 0.027. Comparison with previous data obtained at this same site suggests that the recurrences comprised approximately 17% recrudescences and 12% relapses in the 30 mg/day group compared with 3% recrudescences and 4% relapses in the 60 mg/day group. These data suggest that the dose-response relationships for primaquine's asexual stage and hypnozoitocidal activities in-vivo are different. A 1 week course of primaquine 60 mg daily is an effective treatment of vivax malaria in this region.
doi:10.4269/ajtmh.2010.09-0428
PMCID: PMC2844579  PMID: 20348496
19.  Randomized Controlled Trial of Levamisole Hydrochloride as Adjunctive Therapy in Severe Falciparum Malaria With High Parasitemia 
The Journal of Infectious Diseases  2013;209(1):120-129.
Background. Cytoadherence and sequestration of erythrocytes containing mature stages of Plasmodium falciparum are central to the pathogenesis of severe malaria. The oral anthelminthic drug levamisole inhibits cytoadherence in vitro and reduces sequestration of late-stage parasites in uncomplicated falciparum malaria treated with quinine.
Methods. Fifty-six adult patients with severe malaria and high parasitemia admitted to a referral hospital in Bangladesh were randomized to receive a single dose of levamisole hydrochloride (150 mg) or no adjuvant to antimalarial treatment with intravenous artesunate.
Results. Circulating late-stage parasites measured as the median area under the parasite clearance curves were 2150 (interquartile range [IQR], 0–28 025) parasites/µL × hour in patients treated with levamisole and 5489 (IQR, 192–25 848) parasites/µL × hour in controls (P = .25). The “sequestration ratios” at 6 and 12 hours for all parasite stages and changes in microvascular blood flow did not differ between treatment groups (all P > .40). The median time to normalization of plasma lactate (<2 mmol/L) was 24 (IQR, 12–30) hours with levamisole vs 28 (IQR, 12–36) hours without levamisole (P = .15).
Conclusions. There was no benefit of a single-dose of levamisole hydrochloride as adjuvant to intravenous artesunate in the treatment of adults with severe falciparum malaria. Rapid parasite killing by intravenous artesunate might obscure the effects of levamisole.
doi:10.1093/infdis/jit410
PMCID: PMC3864382  PMID: 23943850
malaria; severe; falciparum; sequestration; artesunate; levamisole
20.  Sequestration and Microvascular Congestion Are Associated With Coma in Human Cerebral Malaria 
The Journal of Infectious Diseases  2011;205(4):663-671.
The pathogenesis of coma in severe Plasmodium falciparum malaria remains poorly understood. Obstruction of the brain microvasculature because of sequestration of parasitized red blood cells (pRBCs) represents one mechanism that could contribute to coma in cerebral malaria. Quantitative postmortem microscopy of brain sections from Vietnamese adults dying of malaria confirmed that sequestration in the cerebral microvasculature was significantly higher in patients with cerebral malaria (CM; n = 21) than in patients with non-CM (n = 23). Sequestration of pRBCs and CM was also significantly associated with increased microvascular congestion by infected and uninfected erythrocytes. Clinicopathological correlation showed that sequestration and congestion were significantly associated with deeper levels of premortem coma and shorter time to death. Microvascular congestion and sequestration were highly correlated as microscopic findings but were independent predictors of a clinical diagnosis of CM. Increased microvascular congestion accompanies coma in CM, associated with parasite sequestration in the cerebral microvasculature.
doi:10.1093/infdis/jir812
PMCID: PMC3266137  PMID: 22207648
21.  Population Pharmacokinetic and Pharmacodynamic Properties of Intramuscular Quinine in Tanzanian Children with Severe Falciparum Malaria 
Although artesunate is clearly superior, parenteral quinine is still used widely for the treatment of severe malaria. A loading-dose regimen has been recommended for 30 years but is still often not used. A population pharmacokinetic study was conducted with 75 Tanzanian children aged 4 months to 8 years with severe malaria who received quinine intramuscularly; 69 patients received a loading dose of 20 mg quinine dihydrochloride (salt)/kg of body weight. Twenty-one patients had plasma quinine concentrations detectable at baseline. A zero-order absorption model with one-compartment disposition pharmacokinetics described the data adequately. Body weight was the only significant covariate and was implemented as an allometric function on clearance and volume parameters. Population pharmacokinetic parameter estimates (and percent relative standard errors [%RSE]) of elimination clearance, central volume of distribution, and duration of zero-order absorption were 0.977 liters/h (6.50%), 16.7 liters (6.39%), and 1.42 h (21.5%), respectively, for a typical patient weighing 11 kg. Quinine exposure was reduced at lower body weights after standard weight-based dosing; there was 18% less exposure over 24 h in patients weighing 5 kg than in those weighing 25 kg. Maximum plasma concentrations after the loading dose were unaffected by body weight. There was no evidence of dose-related drug toxicity with the loading dosing regimen. Intramuscular quinine is rapidly and reliably absorbed in children with severe falciparum malaria. Based on these pharmacokinetic data, a loading dose of 20 mg salt/kg is recommended, provided that no loading dose was administered within 24 h and no routine dose was administered within 12 h of admission. (This study has been registered with Current Controlled Trials under registration number ISRCTN 50258054.)
doi:10.1128/AAC.01349-12
PMCID: PMC3553700  PMID: 23183442
22.  Rapid Isolation and Susceptibility Testing of Leptospira spp. Using a New Solid Medium, LVW Agar 
Pathogenic Leptospira spp., the causative agents of leptospirosis, are slow-growing Gram-negative spirochetes. Isolation of Leptospira from clinical samples and testing of antimicrobial susceptibility are difficult and time-consuming. Here, we describe the development of a new solid medium that facilitates more-rapid growth of Leptospira spp. and the use of this medium to evaluate the Etest's performance in determining antimicrobial MICs to drugs in common use for leptospirosis. The medium was developed by evaluating the effects of numerous factors on the growth rate of Leptospira interrogans strain NR-20157. These included the type of base agar, the concentration of rabbit serum (RS), and the concentration and duration of CO2 incubation during the initial period of culture. The highest growth rate of NR-20157 was achieved using a Noble agar base supplemented with 10% RS (named LVW agar), with an initial incubation at 30°C in 5% CO2 for 2 days prior to continuous culture in air at 30°C. These conditions were used to develop the Etest for three species, L. interrogans (NR-20161), L. kirschnerii (NR-20327), and L. borgpetersenii (NR-20151). The MICs were read on day 7 for all samples. The Etest was then performed on 109 isolates of pathogenic Leptospira spp. The MIC90 values for penicillin G, doxycycline, cefotaxime, ceftriaxone, and chloramphenicol were 0.64 units/ml and 0.19, 0.047, 0.5, and 2 μg/ml, respectively. The use of LVW agar, which enables rapid growth, isolation of single colonies, and simple antimicrobial susceptibility testing for Leptospira spp., provides an opportunity for new areas of fundamental and applied research.
doi:10.1128/AAC.01812-12
PMCID: PMC3535913  PMID: 23114772
23.  Effect of High-Dose or Split-Dose Artesunate on Parasite Clearance in Artemisinin-Resistant Falciparum Malaria 
New treatment strategies are needed for artemisinin-resistant falciparum malaria. This randomized trial shows that neither increasing nor splitting the standard once-daily artesunate dose reverses the markedly reduced parasite clearance rate in patients with artemisinin-resistant falciparum malaria.
Background. The emergence of Plasmodium falciparum resistance to artemisinins on the Cambodian and Myanmar-Thai borders poses severe threats to malaria control. We investigated whether increasing or splitting the dose of the short-half-life drug artesunate improves parasite clearance in falciparum malaria in the 2 regions.
Methods. In Pailin, western Cambodia (from 2008 to 2010), and Wang Pha, northwestern Thailand (2009–2010), patients with uncomplicated falciparum malaria were randomized to oral artesunate 6 mg/kg/d as a once-daily or twice-daily dose for 7 days, or artesunate 8 mg/kg/d as a once-daily or twice-daily dose for 3 days, followed by mefloquine. Parasite clearance and recrudescence for up to 63 days of follow-up were assessed.
Results. A total of 159 patients were enrolled. Overall median (interquartile range [IQR]) parasitemia half-life (half-life) was 6.03 (4.89–7.28) hours in Pailin versus 3.42 (2.20–4.85) hours in Wang Pha (P = .0001). Splitting or increasing the artesunate dose did not shorten half-life in either site. Pharmacokinetic profiles of artesunate and dihydroartemisinin were similar between sites and did not correlate with half-life. Recrudescent infections occurred in 4 of 79 patients in Pailin and 5 of 80 in Wang Pha and was not different between treatment arms (P = .68).
Conclusions. Increasing the artesunate treatment dose up to 8 mg/kg/d or splitting the dose does not improve parasite clearance in either artemisinin resistant or more sensitive infections with P. falciparum.
Clinical Trials Registration. ISRCTN15351875.
doi:10.1093/cid/cis958
PMCID: PMC3563392  PMID: 23175556
artemisinins; drug resistance; Plasmodium falciparum; neutropenia; reticulocytopenia
24.  Artemisinin Resistance in Plasmodium falciparum Malaria 
The New England journal of medicine  2009;361(5):455-467.
BACKGROUND
Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai–Cambodian border, historically a site of emerging antimalarial-drug resistance.
METHODS
In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance.
RESULTS
We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate–mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P = 0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco–endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups.
CONCLUSIONS
P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.)
doi:10.1056/NEJMoa0808859
PMCID: PMC3495232  PMID: 19641202
25.  Defining Falciparum-Malaria-Attributable Severe Febrile Illness in Moderate-to-High Transmission Settings on the Basis of Plasma PfHRP2 Concentration 
The Journal of Infectious Diseases  2012;207(2):351-361.
Background. In malaria-endemic settings, asymptomatic parasitemia complicates the diagnosis of malaria. Histidine-rich protein 2 (HRP2) is produced by Plasmodium falciparum, and its plasma concentration reflects the total body parasite burden. We aimed to define the malaria-attributable fraction of severe febrile illness, using the distributions of plasma P. falciparum HRP2 (PfHRP2) concentrations from parasitemic children with different clinical presentations.
Methods. Plasma samples were collected from and peripheral blood slides prepared for 1435 children aged 6−60 months in communities and a nearby hospital in northeastern Tanzania. The study population included children with severe or uncomplicated malaria, asymptomatic carriers, and healthy control subjects who had negative results of rapid diagnostic tests. The distributions of plasma PfHRP2 concentrations among the different groups were used to model severe malaria-attributable disease.
Results. The plasma PfHRP2 concentration showed a close correlation with the severity of infection. PfHRP2 concentrations of >1000 ng/mL denoted a malaria-attributable fraction of severe disease of 99% (95% credible interval [CI], 96%–100%), with a sensitivity of 74% (95% CI, 72%–77%), whereas a concentration of <200 ng/mL denoted severe febrile illness of an alternative diagnosis in >10% (95% CI, 3%–27%) of patients. Bacteremia was more common among patients in the lowest and highest PfHRP2 concentration quintiles.
Conclusions. The plasma PfHRP2 concentration defines malaria-attributable disease and distinguishes severe malaria from coincidental parasitemia in African children in a moderate-to-high transmission setting.
doi:10.1093/infdis/jis675
PMCID: PMC3532834  PMID: 23136222
case definition; severe malaria; Plasmodium falciparum; histidine-rich protein 2; malaria-attributable disease; asymptomatic parasitemia; bacteremia; Tanzania

Results 1-25 (287)