Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  SciClone: Inferring Clonal Architecture and Tracking the Spatial and Temporal Patterns of Tumor Evolution 
PLoS Computational Biology  2014;10(8):e1003665.
The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy.
Author Summary
Sequencing the genomic DNA of cancers has revealed that tumors are not homogeneous. As a tumor grows, new mutations accumulate in individual cells, and as these cells replicate, the mutations are passed on to their offspring, which comprise only a portion of the tumor when it is sampled. We present a method for identifying the fraction of cells containing specific mutations, clustering them into subclonal populations, and tracking the changes in these subclones. This allows us to follow the clonal evolution of cancers as they respond to chemotherapy or develop therapy resistance, processes which may radically alter the subclonal composition of a tumor. It also gives us insight into the spatial organization of tumors, and we show that multiple biopsies from a single breast cancer may harbor different subclones that respond differently to treatment. Finally, we show that sequencing multiple samples from a patient's tumor is often critical, as it reveals cryptic subclones that cannot be discerned from only one sample. This is the first tool that can efficiently leverage multiple samples to identify these as distinct subpopulations of cells, thus contributing to understanding the biology of the tumor and influencing clinical decisions about therapy.
PMCID: PMC4125065  PMID: 25102416
2.  Therapy related acute myeloid leukemia in breast cancer survivors, a population-based study 
The aim of this study was to determine the association between age and stage at diagnosis of breast cancer with the subsequent development of acute myeloid leukemia (AML). The National Cancer Institute’s Surveillance, Epidemiology, and End Results program were analyzed for incidence of second malignancies by age and stage at diagnosis of breast cancer. 420,076 female patients were identified. There was an age dependent risk of a subsequent diagnosis of AML in women younger than 50 years old (RR 4.14; P <0.001) and women 50–64 years old (RR 2.19; P <0.001), but not those 65 and older (RR 1.19; P = 0.123) when compared with the expected incidence of AML. A similar age dependent pattern was observed for second breast and ovarian cancers. There was also a stage dependent increase in risk of subsequent AML in younger women with stage III disease when compared with stage I disease (RR 2.92; P = 0.004), and to a lesser extent in middle age women (RR 2.24; P = 0.029), but not in older women (RR 0.79; P = 0.80).Younger age and stage III disease at the time of breast cancer diagnosis are associated with increased risk of a subsequent diagnosis of AML. This association maybe explained by either greater chemotherapy exposure or an interaction between therapy and genetic predisposition.
PMCID: PMC3400139  PMID: 19322652
Therapy-related acute myeloid leukemia; Breast cancer; Chemotherapy; SEER; Epidemiology; Radiation therapy
3.  The DNA Double-Strand Break Response Is Abnormal in Myeloblasts From Patients With Therapy-Related Acute Myeloid Leukemia 
Leukemia  2013;28(6):1242-1251.
The complex chromosomal aberrations found in therapy related acute myeloid leukemia (t-AML) suggest that the DNA double strand break (DSB) response may be altered. In this study we examined the DNA DSB response of primary bone marrow cells from t-AML patients and performed next-generation sequencing of 37 canonical homologous recombination (HR) and non-homologous end-joining (NHEJ) DNA repair genes, and a subset of DNA damage response genes using tumor and paired normal DNA obtained from t-AML patients. Our results suggest that the majority of t-AML patients (11 of 15) have tumor cell-intrinsic, functional dysregulation of their DSB response. Distinct patterns of abnormal DNA damage response in myeloblasts correlated with acquired genetic alterations in TP53 and the presence of inferred chromothripsis. Furthermore, the presence of trisomy 8 in tumor cells was associated with persistently elevated levels of DSBs. Although tumor-acquired point mutations or small indels in canonical HR and NHEJ genes do not appear to be a dominant means by which t-AML leukemogenesis occurs, our functional studies suggest that an abnormal response to DNA damage is a common finding in t-AML.
PMCID: PMC4047198  PMID: 24304937
therapy-related AML; DNA damage; DNA repair; Trisomy 8
4.  Clonal Architecture of Secondary Acute Myeloid Leukemia Defined by Single-Cell Sequencing 
PLoS Genetics  2014;10(7):e1004462.
Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions—the population frequency of individual clones, their genetic composition, and their evolutionary relationships—which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.
Author Summary
Human cancers are genetically diverse populations of cells that evolve over the course of their natural history or in response to the selective pressure of therapy. In theory, it is possible to infer how this variation is structured into related populations of cells based on the frequency of individual mutations in bulk samples, but the accuracy of these models has not been evaluated across a large number of variants in individual cells. Here, we report a strategy for analyzing hundreds of variants within a single cell, and we apply this method to assess models of tumor clonality derived from bulk samples in three cases of leukemia. The data largely support the predicted population structure, though they suggest specific refinements. This type of approach not only illustrates the biological complexity of human cancer, but it also has the potential to inform patient management. That is, precise knowledge of which variants are present in which populations of cells may allow physicians to more effectively target combinations of mutations and predict how patients will respond to therapy.
PMCID: PMC4091781  PMID: 25010716
Nature Genetics  2011;44(1):53-57.
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole genome sequencing to perform an unbiased comprehensive screen to discover all the somatic mutations in a sAML sample and genotyped these loci in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (S34) in U2AF1 was recurrently mutated in 13/150 (8.7%) de novo MDS patients, with suggestive evidence of an associated increased risk of progression to sAML. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3′ end of introns and mutations are located in highly conserved zinc fingers in U2AF11,2. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This novel, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.
PMCID: PMC3247063  PMID: 22158538
6.  Mutational landscape and significance across 12 major cancer types 
Nature  2013;502(7471):333-339.
The Cancer Genome Atlas (TCGA) has used the latest sequencing and analysis methods to identify somatic variants across thousands of tumours. Here we present data and analytical results for point mutations and small insertions/deletions from 3,281 tumours across 12 tumour types as part of the TCGA Pan-Cancer effort. We illustrate the distributions of mutation frequencies, types and contexts across tumour types, and establish their links to tissues of origin, environmental/carcinogen influences, and DNA repair defects. Using the integrated data sets, we identified 127 significantly mutated genes from well-known(forexample, mitogen-activatedprotein kinase, phosphatidylinositol-3-OH kinase,Wnt/β-catenin and receptor tyrosine kinase signalling pathways, and cell cycle control) and emerging (for example, histone, histone modification, splicing, metabolism and proteolysis) cellular processes in cancer. The average number of mutations in these significantly mutated genes varies across tumour types; most tumours have two to six, indicating that the numberof driver mutations required during oncogenesis is relatively small. Mutations in transcriptional factors/regulators show tissue specificity, whereas histone modifiers are often mutated across several cancer types. Clinical association analysis identifies genes having a significant effect on survival, and investigations of mutations with respect to clonal/subclonal architecture delineate their temporal orders during tumorigenesis. Taken together, these results lay the groundwork for developing new diagnostics and individualizing cancer treatment.
PMCID: PMC3927368  PMID: 24132290
9.  The origin and evolution of mutations in Acute Myeloid Leukemia 
Cell  2012;150(2):264-278.
Most mutations in cancer genomes are thought to be acquired after the initiating event, which may cause genomic instability, driving clonal evolution. However, for acute myeloid leukemia (AML), normal karyotypes are common, and genomic instability is unusual. To better understand clonal evolution in AML, we sequenced the genomes of AML samples with a known initiating event (PML-RARA) vs. normal karyotype AML samples, and the exomes of hematopoietic stem/progenitor cells (HSPCs) from healthy people. Collectively, the data suggest that most of the mutations found in AML genomes are actually random events that occurred in HSPCs before they acquired the initiating mutation; the mutational history of that cell is “captured” as the clone expands. In many cases, only one or two additional, cooperating mutations are needed to generate the malignant founding clone. Cells from the founding clone can acquire additional cooperating mutations, yielding subclones that can contribute to disease progression and/or relapse.
PMCID: PMC3407563  PMID: 22817890
10.  Clonal Architecture of Secondary Acute Myeloid Leukemia 
The New England Journal of Medicine  2012;366(12):1090-1098.
The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood.
We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations.
Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene.
Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.)
PMCID: PMC3320218  PMID: 22417201
11.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing 
Nature  2012;481(7382):506-510.
Most patients with acute myeloid leukemia (AML) die from progressive disease after relapse, which is associated with clonal evolution at the cytogenetic level1,2. To determine the mutational spectrum associated with relapse, we sequenced the primary tumor and relapse genomes from 8 AML patients, and validated hundreds of somatic mutations using deep sequencing; this allowed us to precisely define clonality and clonal evolution patterns at relapse. Besides discovering novel, recurrently mutated genes (e.g. WAC, SMC3, DIS3, DDX41, and DAXX) in AML, we found two major clonal evolution patterns during AML relapse: 1) the founding clone in the primary tumor gained mutations and evolved into the relapse clone, or 2) a subclone of the founding clone survived initial therapy, gained additional mutations, and expanded at relapse. In all cases, chemotherapy failed to eradicate the founding clone. The comparison of relapse-specific vs. primary tumor mutations in all 8 cases revealed an increase in transversions, probably due to DNA damage caused by cytotoxic chemotherapy. These data demonstrate that AML relapse is associated with the addition of new mutations and clonal evolution, which is shaped in part by the chemotherapy that the patients receive to establish and maintain remissions.
PMCID: PMC3267864  PMID: 22237025
12.  Recurrent DNMT3A Mutations in Patients with Myelodysplastic Syndromes 
Alterations in DNA methylation have been implicated in the pathogenesis of myelodysplastic syndromes (MDS), although the underlying mechanism remains largely unknown. Methylation of CpG dinucleotides is mediated by DNA methyltransferases, including DNMT1, DNMT3A, and DNMT3B. DNMT3A mutations have recently been reported in patients with de novo acute myeloid leukemia (AML), providing a rationale for examining the status of DNMT3A in MDS samples. Here, we report the frequency of DNMT3A mutations in patients with de novo MDS, and their association with secondary AML. We sequenced all coding exons of DNMT3A using DNA from bone marrow and paired normal cells from 150 patients with MDS and identified 13 heterozygous mutations with predicted translational consequences in 12/150 patients (8.0%). Amino acid R882, located in the methyltransferase domain of DNMT3A, was the most common mutation site, accounting for 4/13 mutations. DNMT3A mutations were expressed in the majority of cells in all tested mutant samples regardless of blast counts, suggesting that DNMT3A mutations occur early in the course of MDS. Patients with DNMT3A mutations had worse overall survival compared to patients without DNMT3A mutations (p=0.005) and more rapid progression to AML (p=0.007), suggesting that DNMT3A mutation status may have prognostic value in de novo MDS.
PMCID: PMC3202965  PMID: 21415852
myelodysplastic syndrome; DNMT3A; mutation
13.  Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome 
The New England journal of medicine  2009;361(11):1058-1066.
The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known.
We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome.
We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis.
By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.
PMCID: PMC3201812  PMID: 19657110
14.  DNMT3A Mutations in Acute Myeloid Leukemia 
The New England journal of medicine  2010;363(25):2424-2433.
The genetic alterations responsible for an adverse outcome in most patients with acute myeloid leukemia (AML) are unknown.
Using massively parallel DNA sequencing, we identified a somatic mutation in DNMT3A, encoding a DNA methyltransferase, in the genome of cells from a patient with AML with a normal karyotype. We sequenced the exons of DNMT3A in 280 additional patients with de novo AML to define recurring mutations.
A total of 62 of 281 patients (22.1%) had mutations in DNMT3A that were predicted to affect translation. We identified 18 different missense mutations, the most common of which was predicted to affect amino acid R882 (in 37 patients). We also identified six frameshift, six nonsense, and three splice-site mutations and a 1.5-Mbp deletion encompassing DNMT3A. These mutations were highly enriched in the group of patients with an intermediate-risk cytogenetic profile (56 of 166 patients, or 33.7%) but were absent in all 79 patients with a favorable-risk cytogenetic profile (P<0.001 for both comparisons). The median overall survival among patients with DNMT3A mutations was significantly shorter than that among patients without such mutations (12.3 months vs. 41.1 months, P<0.001). DNMT3A mutations were associated with adverse outcomes among patients with an intermediate-risk cytogenetic profile or FLT3 mutations, regardless of age, and were independently associated with a poor outcome in Cox proportional-hazards analysis.
DNMT3A mutations are highly recurrent in patients with de novo AML with an intermediate-risk cytogenetic profile and are independently associated with a poor outcome. (Funded by the National Institutes of Health and others.)
PMCID: PMC3201818  PMID: 21067377
15.  The identification of a novel TP53 cancer susceptibility mutation through whole genome sequencing of a patient with therapy-related AML 
The identification of patients with inherited cancer susceptibility syndromes facilitates early diagnosis, prevention, and treatment. However, in many cases of suspected cancer susceptibility, the family history is unclear and genetic testing of common cancer susceptibility genes is unrevealing.
To apply whole-genome sequencing to a patient with suspected cancer susceptibility (and lacking a clear family history of cancer and no BRCA1 and BRCA2 mutations) to identify rare or novel germline variants in cancer susceptibility genes.
Design, Setting, and Participant
Skin (normal) and bone marrow (leukemia) DNA were obtained from a patient with early-onset breast and ovarian cancer and therapy-related acute myeloid leukemia (t-AML), and analyzed with: 1) whole genome sequencing using paired end reads; 2) SNP genotyping; 3) RNA expression profiling; and 4) spectral karyotyping.
Main Outcome Measures
Structural variants, copy number alterations, single nucleotide variants and small insertions and deletions (indels) were detected and validated using the above platforms.
Whole genome sequencing revealed a novel, heterozygous 3 Kb deletion removing exons 7-9 of TP53 in the patient’s normal skin DNA, which was homozygous in the leukemia DNA as a result of uniparental disomy. In addition, a total of 28 validated somatic single nucleotide variations or indels in coding genes, 8 somatic structural variants, and 12 somatic copy number alterations were detected in the patient’s leukemia genome.
Whole genome sequencing can identify novel, cryptic variants in cancer susceptibility genes in addition to providing unbiased information on the spectrum of mutations in a cancer genome.
PMCID: PMC3170052  PMID: 21505135
16.  POU4F1 is associated with t(8;21) acute myeloid leukemia and contributes directly to its unique transcriptional signature 
The t(8;21)(q22;q22) translocation, present in ~5% of adult acute myeloid leukemia (AML) cases, produces the AML1/ETO fusion protein. Dysregulation of the POU domain-containing transcription factor POU4F1 is a recurring abnormality in t(8;21) AML. Here, we show that POU4F1 over-expression is highly correlated with, but not caused by AML1/ETO. AML1/ETO markedly increases the self-renewal capacity of myeloid progenitors from murine bone marrow or fetal liver and drives expansion of these cells in liquid culture. POU4F1 is neither necessary nor sufficient for these AML1/ETO-dependent properties, suggesting that it contributes to leukemia through novel mechanisms. To identify targets of POU4F1, we performed gene expression profiling in primary mouse cells with genetically defined levels of POU4F1 and identified 140 differentially expressed genes. This expression signature was significantly enriched in human t(8;21) AML samples and was sufficient to cluster t(8;21) AML samples in an unsupervised hierarchical analysis. Among the most highly differentially expressed genes, half are known AML1/ETO targets, implying that the unique transcriptional signature of t(8;21) AML is, in part, attributable to POU4F1 and not AML1/ETO itself. These genes provide novel candidates for understanding the biology and developing therapeutic approaches for t(8;21) AML.
PMCID: PMC2868953  PMID: 20376082
POU4F1; AML1/ETO; acute myeloid leukemia; gene expression profiling
17.  Next-generation sequencing of cancer genomes: back to the future 
Personalized medicine  2009;6(6):653.
The systematic karyotyping of bone marrow cells was the first genomic approach used to personalize therapy for patients with leukemia. The paradigm established by cytogenetic studies in leukemia (from gene discovery to therapeutic intervention) now has the potential to be rapidly extended with the use of whole-genome sequencing approaches for cancer, which are now possible. We are now entering a period of exponential growth in cancer gene discovery that will provide many novel therapeutic targets for a large number of cancer types. Establishing the pathogenetic relevance of individual mutations is a major challenge that must be solved. However, after thousands of cancer genomes have been sequenced, the genetic rules of cancer will become known and new approaches for diagnosis, risk stratification and individualized treatment of cancer patients will surely follow.
PMCID: PMC2821057  PMID: 20161678
array CGH; cancer; comparative genomic hybridization; genomics; next-generation sequencing; SNP array
18.  DNA sequencing of a cytogenetically normal acute myeloid leukemia genome 
Nature  2008;456(7218):66-72.
Lay Summary
Acute myeloid leukemia is a highly malignant hematopoietic tumor that affects about 13,000 adults yearly in the United States. The treatment of this disease has changed little in the past two decades, since most of the genetic events that initiate the disease remain undiscovered. Whole genome sequencing is now possible at a reasonable cost and timeframe to utilize this approach for unbiased discovery of tumor-specific somatic mutations that alter the protein-coding genes. Here we show the results obtained by sequencing a typical acute myeloid leukemia genome and its matched normal counterpart, obtained from the patient’s skin. We discovered 10 genes with acquired mutations; two were previously described mutations thought to contribute to tumor progression, and 8 were novel mutations present in virtually all tumor cells at presentation and relapse, whose function is not yet known. Our study establishes whole genome sequencing as an unbiased method for discovering initiating mutations in cancer genomes, and for identifying novel genes that may respond to targeted therapies.
We used massively parallel sequencing technology to sequence the genomic DNA of tumor and normal skin cells obtained from a patient with a typical presentation of FAB M1 Acute Myeloid Leukemia (AML) with normal cytogenetics. 32.7-fold ‘haploid’ coverage (98 billion bases) was obtained for the tumor genome, and 13.9-fold coverage (41.8 billion bases) was obtained for the normal sample. Of 2,647,695 well-supported Single Nucleotide Variants (SNVs) found in the tumor genome, 2,588,486 (97.7%) also were detected in the patient’s skin genome, limiting the number of variants that required further study. For the purposes of this initial study, we restricted our downstream analysis to the coding sequences of annotated genes: we found only eight heterozygous, non-synonymous somatic SNVs in the entire genome. All were novel, including mutations in protocadherin/cadherin family members (CDH24 and PCLKC), G-protein coupled receptors (GPR123 and EBI2), a protein phosphatase (PTPRT), a potential guanine nucleotide exchange factor (KNDC1), a peptide/drug transporter (SLC15A1), and a glutamate receptor gene (GRINL1B). We also detected previously described, recurrent somatic insertions in the FLT3 and NPM1 genes. Based on deep readcount data, we determined that all of these mutations (except FLT3) were present in nearly all tumor cells at presentation, and again at relapse 11 months later, suggesting that the patient had a single dominant clone containing all of the mutations. These results demonstrate the power of whole genome sequencing to discover novel cancer-associated mutations.
PMCID: PMC2603574  PMID: 18987736
19.  Integrated Genomic Analysis Implicates Haploinsufficiency of Multiple Chromosome 5q31.2 Genes in De Novo Myelodysplastic Syndromes Pathogenesis 
PLoS ONE  2009;4(2):e4583.
Deletions spanning chromosome 5q31.2 are among the most common recurring cytogenetic abnormalities detectable in myelodysplastic syndromes (MDS). Prior genomic studies have suggested that haploinsufficiency of multiple 5q31.2 genes may contribute to MDS pathogenesis. However, this hypothesis has never been formally tested. Therefore, we designed this study to systematically and comprehensively evaluate all 28 chromosome 5q31.2 genes and directly test whether haploinsufficiency of a single 5q31.2 gene may result from a heterozygous nucleotide mutation or microdeletion. We selected paired tumor (bone marrow) and germline (skin) DNA samples from 46 de novo MDS patients (37 without a cytogenetic 5q31.2 deletion) and performed total exonic gene resequencing (479 amplicons) and array comparative genomic hybridization (CGH). We found no somatic nucleotide changes in the 46 MDS samples, and no cytogenetically silent 5q31.2 deletions in 20/20 samples analyzed by array CGH. Twelve novel single nucleotide polymorphisms were discovered. The mRNA levels of 7 genes in the commonly deleted interval were reduced by 50% in CD34+ cells from del(5q) MDS samples, and no gene showed complete loss of expression. Taken together, these data show that small deletions and/or point mutations in individual 5q31.2 genes are not common events in MDS, and implicate haploinsufficiency of multiple genes as the relevant genetic consequence of this common deletion.
PMCID: PMC2642994  PMID: 19240791
20.  Expression Profiling of Murine Acute Promyelocytic Leukemia Cells Reveals Multiple Model-Dependent Progression Signatures†  
Molecular and Cellular Biology  2004;24(24):10882-10893.
Leukemia results from the expansion of self-renewing hematopoietic cells that are thought to contain mutations that contribute to disease initiation and progression. Studies of the gene expression profiles of human acute myeloid leukemia samples has allowed their classification based on the presence of translocations and French-American-British subtypes, but it is not yet clear whether their molecular signatures reflect the initiating mutations or mutations acquired during progression. To begin to address this question, we examined the expression profiles of normal murine promyelocyte-enriched samples, nontransformed murine promyelocytes expressing human promyelocytic leukemia-retinoic acid receptor alpha (PML-RARα) fusion gene, and primary acute promyelocytic leukemia cells. The expression profile of nontransformed cells expressing PML-RARα was remarkably similar to that of wild-type promyelocytes. In contrast, the expression profiles of fully transformed cells from three acute promyelocytic leukemia model systems were all different, suggesting that the expression signature of acute promyelocytic leukemia cells reflects the genetic changes that contributed to progression. To further evaluate these progression events, we compared two high-penetrance acute promyelocytic leukemia models that both commonly acquire an interstitial deletion of chromosome 2 during progression. The two models exhibited distinct gene expression profiles, suggesting that the dominant molecular signatures of murine acute promyelocytic leukemia can be influenced by several independent progression events.
PMCID: PMC533966  PMID: 15572690

Results 1-20 (20)