PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (39)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  β-escin reverses multidrug resistance through inhibition of the GSK3β/β-catenin pathway in cholangiocarcinoma 
AIM: To develop a safe and effective agent for cholangiocarcinoma (CCA) chemotherapy.
METHODS: A drug combination experiment was conducted to determine the effects of β-escin in combination with chemotherapy on CCA cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was performed to determine the effects of β-escin and common chemotherapeutics on the proliferation of human CCA cells (QBC939, Sk-ChA-1, and MZ-ChA-1). Immunocytochemistry was used to detect the expression of P-glycoprotein (P-gp) protein. Luciferase reporter assay was used to detect the activation of the Wnt/β-catenin pathway. The protein levels of P-gp, pS9-GSK3β, pT216-GSK3β, GSK3β, β-catenin, and p-β-catenin were further confirmed by western blotting.
RESULTS: The drug sensitivity of QBC939 and QBC939/5-fluorouracil (5-FU) cells to 5-FU, vincristine sulfate (VCR), or mitomycin C was significantly enhanced by β-escin compared with either agent alone (P < 0.05). In addition, the combination of β-escin (20 μmol/L) with 5-FU and VCR was synergic with a combination index < 1. Further investigation found that the mRNA and protein expression of P-gp was down-regulated by β-escin. Moreover, β-escin induced GSK3β phosphorylation at Tyr-216 and dephosphorylation at Ser-9, resulting in phosphorylation and degradation of β-catenin. Interestingly, activation of the GSK3β/β-catenin pathway induced by Wnt3a resulted in up-regulation of P-gp, which was effectively abolished by β-escin, indicating that β-escin down-regulated P-gp expression in a GSK3β-dependent manner.
CONCLUSION: β-escin was a potent reverser of P-gp-dependent multidrug resistance, with said effect likely being achieved via inhibition of the GSK3β/β-catenin pathway and thus suggesting a promising strategy of developing combination drugs for CCA.
doi:10.3748/wjg.v21.i4.1148
PMCID: PMC4306158  PMID: 25632187
β-escin; Multi-drug resistance; P-glycoprotein; GSK3β; Cholangiocarcinoma
2.  Impact of Glutathione S-Transferase M1 and T1 on Anti-Tuberculosis Drug–Induced Hepatotoxicity in Chinese Pediatric Patients 
PLoS ONE  2014;9(12):e115410.
Background
Anti-tuberculosis drug induced hepatotoxicity (ATDH) is a major adverse drug reaction associated for anti-tuberculosis therapy. The glutathione S-transferases (GST) plays a crucial role in the detoxification of hepatotoxic metabolites of anti-tuberculosis drugs.An association between GSTM1/GSTT1 null mutations and increased risk of ATDH has been demonstrated in adults. Given the ethnic differences and developmental changes, our study aims to investigate the potential impacts of GSTM1/GSTT1genotypes on the development of ATDH in Han Chinese children treated with anti-tuberculosis therapy.
Methods
Children receiving anti-tuberculosis therapy with or without evidence of ATDH were considered as the cases or controls, respectively. The GSTM1 and GSTT1 genotyping were performed using the polymerase chain reaction.
Results
One hundred sixty-three children (20 cases and 143 controls) with a mean age of 4.7 years (range: 2 months-14.1 years) were included. For the GSTM1, 14 (70.0%) cases and 96 (67.1%) controls had homozygous null mutations. For the GSTT1, 13 (65.0%) cases and 97 (67.8%) controls had homozygous null mutations. Neither the GSTM1, nor the GSTT1 polymorphism was significantly correlated with the occurrence of ATHD.
Conclusion
Ourresults did not support the GSTM1 and GSTT1 polymorphisms as the predictors of ADTH in Chinese Han children treated with anti-tuberculosis drugs. An age-related association between pharmacogenetics and ATHD need to be confirmed in the further study.
doi:10.1371/journal.pone.0115410
PMCID: PMC4272297  PMID: 25525805
3.  Real-Time PCR Assay for Rapid Detection of Epidemiologically and Clinically Significant Mycobacterium tuberculosis Beijing Genotype Isolates 
Journal of Clinical Microbiology  2014;52(5):1691-1693.
Mycobacterium tuberculosis Beijing genotype strains are rapidly disseminating, frequently hypervirulent, and multidrug resistant. Here, we describe a method for their rapid detection by real-time PCR that targets the specific IS6110 insertion in the dnaA-dnaN genome region. The method was evaluated with a geographically and genetically diverse collection representing areas in East Asia and the former Soviet Union in which the Beijing genotype is endemic and epidemic (i.e., major foci of its global propagation) and with clinical specimens.
doi:10.1128/JCM.03193-13
PMCID: PMC3993684  PMID: 24523461
4.  MGMT Promoter Methylation Correlates with an Overall Survival Benefit in Chinese High-Grade Glioblastoma Patients Treated with Radiotherapy and Alkylating Agent-Based Chemotherapy: A Single-Institution Study 
PLoS ONE  2014;9(9):e107558.
Promoter methylation of the O6-methylguanine-DNA-methyltransferase (MGMT) gene has been considered a prognostic marker and has become more important in the treatment of glioblastoma. However, reports on the correlation between MGMT and clinical outcomes in Chinese glioblastoma patients are very scarce. In this study, quantitative methylation data were obtained by the pyrosequencing of tumor tissues from 128 GBM patients. The median overall survival (OS) was 13.1 months, with a 1-year survival of 45.3%. The pyrosequencing data were reproducible based on archived samples yielding data for all glioblastomas. MGMT promoter methylation was detected in 75/128 cases (58.6%), whereas 53/128 (41.4%) cases were unmethylated. Further survival analysis also revealed that methylation was an independent prognostic factor associated with prolonged OS but not with progression-free survival (PFS) (p = 0.029 and p = 0.112, respectively); the hazard radios were 0.63 (95% CI: 0.42–0.96) and 0.72 (95% CI: 0.48–1.09), respectively. These data indicated that MGMT methylation has prognostic significance in patients with newly diagnosed high-grade glioblastoma undergoing alkylating agent-based chemotherapy after surgical resection.
doi:10.1371/journal.pone.0107558
PMCID: PMC4161443  PMID: 25211033
5.  Sedentary Behavior and Incident Cancer: A Meta-Analysis of Prospective Studies 
PLoS ONE  2014;9(8):e105709.
Background
Sedentary behavior is ubiquitous in modern adults' daily lives and it has been suggested to be associated with incident cancer. However, the results have been inconsistent. In this study, we performed a systematic review and meta-analysis of prospective cohort studies to clarify the association between sedentary behavior and incident cancer.
Method
PubMed and Embase databases were searched up to March 2014. All prospective cohort studies on the association between sedentary behavior and incident cancer were included. The summary relative risks (RRs) with 95% confidence intervals (CIs) were estimated using random effect model.
Results
A total of 17 prospective studies from 14 articles, including a total of 857,581 participants and 18,553 cases, were included in the analysis for sedentary behavior and risk of incident cancer. The overall meta-analysis suggested that sedentary behavior increased risk of cancer (RR = 1.20, 95%CI = 1.12–1.28), with no evidence of heterogeneity between studies (I2 = 7.3%, P = 0.368). Subgroup analyses demonstrated that there were statistical associations between sedentary behavior and some cancer types (endometrial cancer: RR = 1.28, 95% CI = 1.08–1.53; colorectal cancer: RR = 1.30, 95%CI = 1.12–1.49; breast cancer: RR = 1.17, 95%CI = 1.03–1.33; lung cancer: RR = 1.27, 95%CI = 1.06–1.52). However, there was no association of sedentary behavior with ovarian cancer (RR = 1.26, 95%CI = 0.87–1.82), renal cell carcinoma (RR = 1.11, 95%CI = 0.87–1.41) or non-Hodgkin lymphoid neoplasms (RR = 1.09, 95%CI = 0.82–1.43).
Conclusion
The present meta-analysis suggested that prolonged sedentary behavior was independently associated with an increased risk of incident endometrial, colorectal, breast, and lung cancers, but not with ovarian cancer, renal cell carcinoma or non-Hodgkin lymphoid neoplasms.
doi:10.1371/journal.pone.0105709
PMCID: PMC4143275  PMID: 25153314
6.  Potent DGAT1 Inhibitors in the Benzimidazole Class with a Pyridyl-oxy-cyclohexanecarboxylic Acid Moiety 
ACS Medicinal Chemistry Letters  2013;4(8):773-778.
We report the design and synthesis of a series of novel DGAT1 inhibitors in the benzimidazole class with a pyridyl-oxy-cyclohexanecarboxylic acid moiety. In particular, compound 11A is a potent DGAT1 inhibitor with excellent selectivity against ACAT1. Compound 11A significantly reduces triglyceride excursion in lipid tolerance tests (LTT) in both mice and dogs at low plasma exposure. An in vivo study in mice with des-fluoro analogue 10A indicates that this series of compounds appears to distribute in intestine preferentially over plasma. The propensity to target intestine over plasma could be advantageous in reducing potential side effects since lower circulating levels of drug are required for efficacy. However, in the preclinical species, compound 11A undergoes cis/trans epimerization in vivo, which could complicate further development due to the presence of an active metabolite.
doi:10.1021/ml400168h
PMCID: PMC4027454  PMID: 24900745
DGAT1; inhibitor; benzimidazole; ACAT1; cyclohexanecarboxylic acid; lipid tolerance test; epimerization; metabolite
7.  Rapid Diagnosis of Childhood Pulmonary Tuberculosis by Xpert MTB/RIF Assay Using Bronchoalveolar Lavage Fluid 
BioMed Research International  2014;2014:310194.
In order to evaluate the diagnostic accuracy of the Xpert MTB/RIF assay on childhood pulmonary tuberculosis (PTB) using bronchoalveolar lavage fluid (BALF), we evaluated the sensitivity, specificity, positive predictive value, and negative predictive value of Xpert MTB/RIF assay using BALF in comparison with acid-fast bacilli (AFB) microscopy and Mycobacterium tuberculosis (MTB) culture for diagnosing childhood PTB using Chinese “composite clinical reference standard” (CCRS) as reference standard. Two hundred fifty-five children with suspected PTB were enrolled at Beijing Children's Hospital from September 2010 to July 2013. Compared with Chinese CCRS, the sensitivity of AFB microscopy, MTB culture, and Xpert MTB/RIF assay was 8.4%, 28.9%, and 53.0%, respectively. The specificity of three assays was all 100%. Xpert MTB/RIF assay could detect 33.9% of cases with negative MTB culture, and 48.7% of cases with negative AFB microscopy. Younger age (<3 years), absence of BCG scar, and contact with TB patient were found significantly associated with a positive result of Xpert MTB/RIF assay. In conclusion, Xpert MTB/RIF assay using BALF can assist in diagnosing childhood PTB much faster when fiberoptic bronchoscopy is necessary according to the chest radiograph.
doi:10.1155/2014/310194
PMCID: PMC4140106  PMID: 25165698
8.  ALOX5 Is Associated with Tuberculosis in a Subset of the Pediatric Population of North China 
Background: Genetic factors are involved in the etiology of Mycobacterium tuberculosis infection. Recently, ALOX5 has been identified as a candidate gene for tuberculosis (TB) susceptibility. We investigated whether an association between ALOX5 and TB exists in a Chinese pediatric population from northern China. Methods: We conducted a case–control study comprising 488 individuals aged 2 months to 17 years by genotyping 18 tag-single-nucleotide polymorphisms (SNPs) from the ALOX5 gene. The tag-SNPs were selected from the international HapMap project. An Illumina BeadXpress Scanner was utilized for genotyping, supported by the high-density BeadArray technology in combination with an allele-specific extension, adapter ligation, and amplification assay. Statistical analyses were performed to determine correlations between genetic variation and disease. Results: Our study is the first to show that ALOX5 is associated with susceptibility to pediatric TB in a subset of children in northern China. The rs2115819 T allele of ALOX5 presents a risk factor for childhood TB disease.
doi:10.1089/gtmb.2012.0426
PMCID: PMC3609609  PMID: 23448388
9.  Impact of MSWI Bottom Ash Codisposed with MSW on Landfill Stabilization with Different Operational Modes 
BioMed Research International  2014;2014:167197.
The aim of the study was to investigate the impact of municipal solid waste incinerator (MSWI) bottom ash (BA) codisposed with municipal solid waste (MSW) on landfill stabilization according to the leachate quality in terms of organic matter and nitrogen contents. Six simulated landfills, that is, three conventional and three recirculated, were employed with different ratios of MSWI BA to MSW. The results depicted that, after 275-day operation, the ratio of MSWI BA to fresh refuse of 1 : 10 (V : V) in the landfill was still not enough to provide sufficient acid-neutralizing capacity for a high organic matter composition of MSW over 45.5% (w/w), while the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V) could act on it. Among the six experimental landfills, leachate quality only was improved in the landfill operated with the BA addition (the ratio of MSWI BA to fresh refuse of 1 : 5 (V : V)) and leachate recirculation.
doi:10.1155/2014/167197
PMCID: PMC3980989  PMID: 24779006
10.  A 3'UTR Polymorphism of IL-6R Is Associated with Chinese Pediatric Tuberculosis 
BioMed Research International  2014;2014:483759.
Background. IL-6 is a proinflammatory cytokine that plays a critical role in host defense against tuberculosis (TB). Genetic polymorphisms of IL-6 and its receptor IL-6R had been discussed in adult TB recently. However, their role in pediatric TB is still unclear. Due to the obvious differences in TB pathophysiology in children, which may also reflect differences in genetic background, further association studies in pediatric populations are needed. Methods. A case-control study was carried out in a Chinese pediatric population including 353 TB patients and 400 healthy controls. Tag-SNPs of IL-6 and IL-6R genes were selected by Haploview software, genotyped using MassArray, and analyzed statistically. Results. One polymorphism, rs2229238, in the 3'UTR region of IL-6R was observed to be associated with increased resistance to TB (adjusted P = 0.03). The rs2229238 T allele contributed to a reduced risk to TB in recessive heritable model (OR, 0.53; 95% CI, 0.35–0.78). Conclusions. By tag-SNP genotyping based case-control study, we identified a genetic polymorphism in the IL-6R 3'UTR that regulates host resistance to pediatric TB in a Chinese population.
doi:10.1155/2014/483759
PMCID: PMC3977562  PMID: 24772425
11.  Genetic Contribution of CISH Promoter Polymorphisms to Susceptibility to Tuberculosis in Chinese Children 
PLoS ONE  2014;9(3):e92020.
Tuberculosis (TB) is the leading cause of death due to an infectious disease worldwide, particularly in developing countries. A series of candidate genes have been suggested to be associated with development of TB disease. Among them, the human Cytokine-inducible Src homology 2(SH2) domain protein (CISH) gene has been very recently reported to be involved in T cell activation and differentiation in response to Mycobacterium tuberculosis infection. Here, we studied the association between CISH promoter polymorphisms and pediatric TB. A case-control study enrolled 352 TB patients and 527 healthy controls, who were of Han Chinese ethnicity and aged from 0.2 to 18 years. CISH gene promoter SNPs rs414171, rs622502 and rs809451 were genotyped in all subjects and transcriptional activity, mRNA level, and plasma cytokine level of subjects with different genotypes were further examined. Carriers with rs414171TT homozygotes and rs809451GC heterozygotes had a 1.78-fold (95% CI,1.16–2.74) and 1.86-fold (95% CI, 1.26–2.74) excess risk of developing TB compared to those with wild-type genotypes. A greater risk of TB disease was observed in population carrying C−809451-T−414171-C−622502 haplotype (OR 3.66, 95% CI:2.12–6.32). The G−809451-A−414171-C−622502-containing CISH promoter drove a 5.43-fold increased reporter expression compared to the C−809451-T−414171-C−622502-containing counterpart in Hela cell lines (P = 0.0009). PBMCs carrying rs414171TT homozygotes and rs809451GC heterozygotes showed a reduced CISH mRNA level compared to cells carrying wild type genotypes. Individuals with the rs414171TT genotype had significantly increased IL-12p40 and IL-10 production. In conclusion, CISH promoter rs414171 and rs809451 polymorphisms may play a vital role in mediating individual susceptibility to tuberculosis.
doi:10.1371/journal.pone.0092020
PMCID: PMC3954833  PMID: 24632804
12.  Oncogenic Activity of Retinoic Acid Receptor γ Is Exhibited through Activation of the Akt/NF-κB and Wnt/β-Catenin Pathways in Cholangiocarcinoma 
Molecular and Cellular Biology  2013;33(17):3416-3425.
Aberrant expression and function of retinoic acid receptor γ (RARγ) are often involved in the progression of several cancers. However, the role of RARγ in cholangiocarcinoma (CCA), chemoresistant bile duct carcinoma with a poor prognosis, remains unclear. In the present study, we found that RARγ was frequently overexpressed in human CCA specimens. Its overexpression was associated with poor differentiation, lymph node metastasis, high serum carbohydrate antigen 19-9 level, and poor prognosis of CCA. Downregulation of RARγ reduced CCA cell proliferation, migration, invasion, and colony formation ability in vitro and tumorigenic potential in nude mice. RARγ knockdown resulted in upregulation of cell cycle inhibitor P21, as well as downregulation of cyclin D1, proliferating cell nuclear antigen, and matrix metallopeptidase 9, in parallel with suppression of the Akt/NF-κB pathway. Furthermore, overexpression of RARγ contributed to the multidrug chemoresistance of CCA cells, at least in part due to upregulation of P glycoprotein via activation of the Wnt/β-catenin pathway. Molecular mechanism studies revealed that RARγ interacted with β-catenin and led to β-catenin nuclear translocation. Taken together, our results suggested that RARγ plays an important role in the proliferation, metastasis, and chemoresistance of CCA through simultaneous activation of the Akt/NF-κB and Wnt/β-catenin pathways, serving as a potential molecular target for CCA treatment.
doi:10.1128/MCB.00384-13
PMCID: PMC3753848  PMID: 23798555
13.  Identification and Characterization of Sebaceous Gland Atrophy-Sparing DGAT1 Inhibitors 
PLoS ONE  2014;9(2):e88908.
Inhibition of Diacylglycerol O-acyltransferase 1 (DGAT1) has been a mechanism of interest for metabolic disorders. DGAT1 inhibition has been shown to be a key regulator in an array of metabolic pathways; however, based on the DGAT1 KO mouse phenotype the anticipation is that pharmacological inhibition of DGAT1 could potentially lead to skin related adverse effects. One of the aims in developing small molecule DGAT1 inhibitors that target key metabolic tissues is to avoid activity on skin-localized DGAT1 enzyme. In this report we describe a modeling-based approach to identify molecules with physical properties leading to differential exposure distribution. In addition, we demonstrate histological and RNA based biomarker approaches that can detect sebaceous gland atrophy pre-clinically that could be used as potential biomarkers in a clinical setting.
doi:10.1371/journal.pone.0088908
PMCID: PMC3928314  PMID: 24558447
14.  Activating HER2 mutations in HER2 gene amplification negative breast cancer 
Cancer discovery  2012;3(2):224-237.
Data from eight breast cancer genome sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized thirteen HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGFR exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings demonstrate that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment.
doi:10.1158/2159-8290.CD-12-0349
PMCID: PMC3570596  PMID: 23220880
Genomics; Breast Cancer; Receptor Tyrosine Kinase; Oncogene
15.  Enhanced MGMT expression contributes to temozolomide resistance in glioma stem-like cells 
Chinese Journal of Cancer  2014;33(2):115-122.
O6-methylguanine DNA methyltransferase (MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells (GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide (TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line (SF-767) and 7 MGMT-negative cell lines (U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB (NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines (P < 0.05). However, there was no significant difference in the 50% inhibition concentration (IC50) of TMZ between MGMT-positive and MGMT-negative GSCs (P > 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132 (an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone (P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.
doi:10.5732/cjc.012.10236
PMCID: PMC3935013  PMID: 23958055
Glioma stem cell; MGMT; temozolomide; drug resistance; NF-κB
16.  Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts 
Cell reports  2013;4(6):10.1016/j.celrep.2013.08.022.
SUMMARY
To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation.
doi:10.1016/j.celrep.2013.08.022
PMCID: PMC3881975  PMID: 24055055
17.  The Gene Expression Profile of Peripheral Blood Mononuclear Cells from EV71-Infected Rhesus Infants and the Significance in Viral Pathogenesis 
PLoS ONE  2014;9(1):e83766.
Enterovirus 71 (EV71) is the major pathogen responsible for fatal hand, foot and mouth disease (HFMD). Our previous work reported on an EV71-infected rhesus monkey infant model that presented with histo-pathologic changes of the central nervous system (CNS) and lungs. This study is focused on the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs) from EV71-infected rhesus monkey infants. The expression of more than 500 functional genes associated with multiple pathways was modulated. The expression of genes associated with immune inflammatory responses was up-regulated during the period from days 4 to 10 post-infection. The expression of two genes (TAC1 and IL17A), which play major roles in inflammatory reactions, was remarkably up-regulated during the infection period. Furthermore, a higher expression level of the TAC1 gene was identified in the CNS compared to the lungs, but a high expression level of the IL-17A gene was observed in the lungs and not in the CNS. The results of this study suggest at least two facts about EV71 infection, which are that: the TAC1 gene that encodes substance P and neurokinin-A is present in both PBMCs and the hypothalamus; and the up-regulation of IL-17A is sustained in the peripheral blood.
doi:10.1371/journal.pone.0083766
PMCID: PMC3879270  PMID: 24392094
18.  A Country-Wide Study of Spoligotype and Drug Resistance Characteristics of Mycobacterium tuberculosis Isolates from Children in China 
PLoS ONE  2013;8(12):e84315.
Background
Tuberculosis (TB) is still a big threat to human health, especially in children. However, an isolation of Mycobacterium tuberculosis culture from pediatric cases remains a challenge. In order to provide some scientific basis for children TB control, we investigated the genotyping and drug resistance characteristics of M. tuberculosis isolates from pediatric cases in China.
Methodology/Principal Findings
In this study, a total of 440 strains including 90 from children (<15 years), 159 from adolescents (15–18 years) and 191 from adults (>18 years) isolated in 25 provinces across China were subjected to spoligotyping and drug susceptibility testing. As a result, Beijing family strains were shown to remain predominant in China (85.6%, 81.1% and 75.4% in three above groups, respectively), especially among new children cases (91.0% vs. 69.6% in previously treated cases, P = 0.03). The prevalence of the Beijing genotype isolates was higher in northern and central China in the total collection (85.1% in northern and 83.9% in central vs. 61.6% in southern China, P<0.001) and a similar trend was seen in all three age groups (P = 0.708, <0.001 and 0.025, respectively). In adolescents, the frequencies of isoniazid (INH)-resistant and ethambutol (EMB)-resistant isolates were significantly higher among Beijing strains compared to non-Beijing genotype strains (P = 0.028 for INH and P = 0.027 for EMB). Furthermore, strong association was observed between resistance to rifampicine (RIF), streptomycin (STR) and multidrug resistance (MDR) among Beijing compared to non-Beijing strains in previously treated cases of children (P = 0.01, 0.01 and 0.025, respectively).
Conclusion/Significance
Beijing family was more prevalent in northern and central China compared to southern China and these strains were predominant in all age groups. The genetic diversity of M. tuberculosis isolates from children was similar to that found in adolescents and adults. Beijing genotype was associated with RIF, STR and MDR resistance in previously treated children.
doi:10.1371/journal.pone.0084315
PMCID: PMC3875490  PMID: 24386365
19.  The Modulation of Phosphatase Expression Impacts the Proliferation Efficiency of HSV-1 in Infected Astrocytes 
PLoS ONE  2013;8(11):e79648.
Herpes Simplex Virus 1 (HSV-1) is a major pathogen that causes human neurological diseases, including herpes simplex encephalitis (HSE). Previous studies have shown that astrocytes are involved in HSV-1 systemic pathogenesis in the central nervous system (CNS), although the mechanism remains unclear. In this study, a high-throughput RNAi library screening method was used to analyze the effect of host phosphatase gene regulation on HSV-1 replication using Macaca mulatta primary astrocytes in an in vitro culture system. The results showed that the downregulation of five phosphatase genes (PNKP, SNAP23, PTPRU, LOC714621 and PPM1M) significantly inhibited HSV-1 infection, suggesting that these phosphatases were needed in HSV-1 replication in rhesus astrocytes. Although statistically significant, the effect of downregulation of these phosphatases on HSV-1 replication in a human astrocytoma cell line appears to be more limited. Our results suggest that the phosphatase genes in astrocytes may regulate the immunological and pathological reactions caused by HSV-1 CNS infection through the regulation of HSV-1 replication or of multiple signal transduction pathways.
doi:10.1371/journal.pone.0079648
PMCID: PMC3829861  PMID: 24260274
20.  A Functional Promoter Polymorphism of IFITM3 Is Associated with Susceptibility to Pediatric Tuberculosis in Han Chinese Population 
PLoS ONE  2013;8(7):e67816.
A susceptibility locus for tuberculosis, a re-emerging infectious disease throughout the world, was previously discovered to exist on chromosome 11p15. IFITM3 gene encoding for interferon inducible transmembrane protein 3, is located at 11p15. It acts as an effector molecule for interferon-gamma, which is essential for anti-tuberculosis immune response. In order to investigate the association between susceptibility to TB and genetic polymorphisms of the IFITM3 core promoter, a case-control study including 368 TB patients and 794 healthy controls was performed in Han Chinese children in northern China. The rs3888188 polymorphism showed significant association with susceptibility to TB. The rs3888188 G allele, acting recessively, was more frequent in TB patients (95% confidence interval: 1.08–1.56, Bonferroni P-value: 0.039). We further assessed the effect of rs3888188 polymorphism on IFITM3 transcription in vitro. As based on luciferase promoter assays, the promoter activity of haplotypes with rs3888188 G allele was lower than that of haplotypes with rs3888188 T allele. Moreover, peripheral-blood mononuclear cells carrying rs3888188 GG genotype showed a reduced IFITM3 mRNA level compared to cells carrying TT or GT genotype. In conclusion, rs3888188, a functional promoter polymorphism of IFITM3, was identified to influence the risk for pediatric TB in Han Chinese population.
doi:10.1371/journal.pone.0067816
PMCID: PMC3706438  PMID: 23874452
21.  Russian “Successful” Clone B0/W148 of Mycobacterium tuberculosis Beijing Genotype: a Multiplex PCR Assay for Rapid Detection and Global Screening 
Journal of Clinical Microbiology  2012;50(11):3757-3759.
We describe a multiplex PCR assay to detect the Mycobacterium tuberculosis Beijing genotype variant B0/W148, which is considered a “successful” clone of M. tuberculosis, widespread in Russia. Specificity and sensitivity of the assay were 100% based on the analysis of a collection of 516 M. tuberculosis isolates of different genotypes and origins. This assay may be used for accurate and simple detection and surveillance of this clinically and epidemiologically important variant of M. tuberculosis.
doi:10.1128/JCM.02001-12
PMCID: PMC3486266  PMID: 22933595
22.  Chemotherapy for gliomas in mainland China: An overview 
Oncology Letters  2013;5(5):1448-1452.
Chemotherapy is currently the standard treatment modality for malignant gliomas. Many patients with gliomas are treated in mainland China every year. The history and development of chemotherapy for glioma, however, are not well documented. In this study, an extensive literature search of Pubmed and major Chinese electronic databases was performed to identify clinical studies. A total of 210 publications were identified, with a total of 10,105 patients. Among these studies, 76.2% were retrospective and 23.8% were prospective. Chemotherapy was found to have been administered by the Department of Neurosurgery in 143 studies (68.1%). Oral or intravenous administration was found in 55.7% of studies, followed by intra-arterial (26.7%) and interstitial (15.7%) chemotherapy. Nitrosoureas were the most frequently used chemotherapeutic agents, as found in 133 studies (63.3%). Since 2003, 56 studies on temozolomide (TMZ) have been published. Studies on chemotherapy for gliomas began in the 1970s in mainland China but well-designed randomized controlled trials (RCTs) are rare. Much effort and collaboration should be made to carry out high-quality multicenter RCTs on chemotherapy for gliomas.
doi:10.3892/ol.2013.1264
PMCID: PMC3678589  PMID: 23761809
glioma; chemotherapy; mainland China
23.  Whole Genome Analysis Informs Breast Cancer Response to Aromatase Inhibition 
Nature  2012;486(7403):353-360.
Summary
To correlate the variable clinical features of estrogen receptor positive (ER+) breast cancer with somatic alterations, we studied pre-treatment tumour biopsies accrued from patients in a study of neoadjuvant aromatase inhibitor (AI) therapy by massively parallel sequencing and analysis. Eighteen significantly mutated genes were identified, including five genes (RUNX1, CBFB, MYH9, MLL3 and SF3B1) previously linked to hematopoietic disorders. Mutant MAP3K1 was associated with Luminal A status, low grade histology and low proliferation rates whereas mutant TP53 associated with the opposite pattern. Moreover, mutant GATA3 correlated with suppression of proliferation upon AI treatment. Pathway analysis demonstrated mutations in MAP2K4, a MAP3K1 substrate, produced similar perturbations as MAP3K1 loss. Distinct phenotypes in ER+ breast cancer are associated with specific patterns of somatic mutations that map into cellular pathways linked to tumor biology but most recurrent mutations are relatively infrequent. Prospective clinical trials based on these findings will require comprehensive genome sequencing.
doi:10.1038/nature11143
PMCID: PMC3383766  PMID: 22722193
24.  Protective Effects of Salidroside on Epirubicin-Induced Early Left Ventricular Regional Systolic Dysfunction in Patients with Breast Cancer 
Drugs in R&d  2012;12(2):101-106.
Background
Salidroside [2-(4-hydroxyphenyl)ethyl-β-D-glucopyranoside], one of the most potent ingredients extracted from the plant Rhodiola rosea L., has been shown to have a cardiovascular protective effect as an antioxidant, and early treatment of epirubicin-induced cardiotoxicity has been the focus of clinical chemotherapy in patients with breast cancer. However, the cardioprotective effects of salidroside on epirubicin-induced cardiotoxicity, especially early left ventricular regional systolic dysfunction, have to date been sparsely investigated.
Objective
The aim of this study was to investigate the protective effects of salidroside in preventing early left ventricular regional systolic dysfunction induced by epirubicin.
Methods
Sixty patients with histologically confirmed breast cancer were enrolled. Eligible patients were randomized to receive salidroside (600 mg/day; n= 30) or placebo (n = 30) starting 1 week before chemotherapy. Patients were investigated by means of echocardiography and strain rate (SR) imaging. We also measured plasma concentrations of reactive oxygen species (ROS). All parameters were assessed at baseline and 7 days after each new epirubicin dose of 100 mg/m2.
Results
A decline of the SR peak was observed at an epirubicin dose of 200 mg/m2, with no significant differences between salidroside and placebo (1.35 ± 0.36 vs 1.42 ± 0.49/second). At growing cumulative doses of epirubicin, the SR normalized only with salidroside, showing a significant difference in comparison with placebo at epirubicin doses of 300 mg/m2 (1.67 ± 0.43 vs 1.32 ± 0.53/second, p< 0.05) and 400 mg/m2 (1.68±0.29 vs 1.40 ± 0.23/second, p < 0.05). Moreover, a significant increase in plasma concentrations of ROS was found with placebo, but they remained unchanged with salidroside.
Conclusion
Salidroside can provide a protective effect on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer.
doi:10.2165/11632530-000000000-00000
PMCID: PMC3585960  PMID: 22770377
25.  Protective Effects of Salidroside on Epirubicin-Induced Early Left Ventricular Regional Systolic Dysfunction in Patients with Breast Cancer 
Drugs in R&D  2012;12(2):101-106.
Background
Salidroside [2-(4-hydroxyphenyl)ethyl-β-D-glucopyranoside], one of the most potent ingredients extracted from the plant Rhodiola rosea L., has been shown to have a cardiovascular protective effect as an antioxidant, and early treatment of epirubicin-induced cardiotoxicity has been the focus of clinical chemotherapy in patients with breast cancer. However, the cardioprotective effects of salidroside on epirubicin-induced cardiotoxicity, especially early left ventricular regional systolic dysfunction, have to date been sparsely investigated.
Objective
The aim of this study was to investigate the protective effects of salidroside in preventing early left ventricular regional systolic dysfunction induced by epirubicin.
Methods
Sixty patients with histologically confirmed breast cancer were enrolled. Eligible patients were randomized to receive salidroside (600 mg/day; n= 30) or placebo (n = 30) starting 1 week before chemotherapy. Patients were investigated by means of echocardiography and strain rate (SR) imaging. We also measured plasma concentrations of reactive oxygen species (ROS). All parameters were assessed at baseline and 7 days after each new epirubicin dose of 100 mg/m2.
Results
A decline of the SR peak was observed at an epirubicin dose of 200 mg/m2, with no significant differences between salidroside and placebo (1.35 ± 0.36 vs 1.42 ± 0.49/second). At growing cumulative doses of epirubicin, the SR normalized only with salidroside, showing a significant difference in comparison with placebo at epirubicin doses of 300 mg/m2 (1.67 ± 0.43 vs 1.32 ± 0.53/second, p< 0.05) and 400 mg/m2 (1.68±0.29 vs 1.40 ± 0.23/second, p < 0.05). Moreover, a significant increase in plasma concentrations of ROS was found with placebo, but they remained unchanged with salidroside.
Conclusion
Salidroside can provide a protective effect on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer.
doi:10.2165/11632530-000000000-00000
PMCID: PMC3585960  PMID: 22770377

Results 1-25 (39)