Search tips
Search criteria

Results 1-25 (46)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Pharmacokinetics of Orally Administered Oseltamivir in Healthy Obese and Nonobese Thai Subjects 
Oseltamivir is the most widely used anti-influenza drug. In the 2009 H1N1 pandemic, in which the influenza viruses were oseltamivir sensitive, obesity was identified as a risk factor for severe disease and unfavorable outcomes. The aim of this study was to investigate the pharmacokinetic properties of oseltamivir and its active metabolite, oseltamivir carboxylate, in obese and nonobese healthy subjects. A single-dose, randomized, two-sequence crossover study was conducted in 12 obese and 12 nonobese healthy Thai volunteers. Each volunteer was given 75 mg and 150 mg oseltamivir orally with an intervening washout period of more than 3 days. The pharmacokinetic properties of oseltamivir and oseltamivir carboxylate were evaluated using a noncompartmental approach. The median (range) body mass indexes (BMIs) for obese subjects were 33.8 kg/m2 (30.8 to 43.2) and 22.2 (18.8 to 24.2) for nonobese subjects. The pharmacokinetic parameters of oseltamivir carboxylate, the active metabolite of oseltamivir, were not significantly different between obese and nonobese subjects for both 75-mg and 150-mg doses. Both doses were well tolerated. Despite the lower dose per kilogram body weight in obese subjects, there was no significant difference in the exposure of oseltamivir carboxylate between the obese and nonobese groups. Standard dosing is appropriate for obese subjects. (The study was registered at under registration no. NCT 01049763.)
PMCID: PMC3957867  PMID: 24366750
2.  Combination therapy with amantadine, oseltamivir and ribavirin for influenza A infection: safety and pharmacokinetics 
Antiviral therapy  2012;18(3):377-386.
Antiviral resistance among influenza A viruses is associated with high morbidity and mortality in immunocompromised hosts. However, treatment strategies for drug-resistant influenza A are not established. A triple-combination antiviral drug (TCAD) regimen consisting of amantadine (AMT), oseltamivir (OSL) and ribavirin (RBV) demonstrated good efficacy in an animal model.
We first analysed the pharmacokinetics (PKs) of TCAD therapy in healthy volunteers. We then performed a pilot study of TCAD therapy in patients undergoing chemotherapy or haematopoietic cell transplantation. AMT (75 mg), OSL (50 mg) and RBV (200 mg) were administered three times a day for 10 days. The safety and PKs of TCAD therapy were monitored.
The PKs of TCAD therapy in healthy volunteers was shown to be similar to the PKs of each drug individually from a single dose. In the pilot study, six immunocompromised patients received TCAD therapy and one patient received OSL monotherapy. All but one patient completed 10 days of TCAD therapy without side effects; one patient receiving TCAD was withdrawn from the study because of respiratory failure and ultimately recovered. Viral load was decreased after TCAD therapy, despite the presence of either AMT- or OSL-resistant virus in two cases. One patient with 2009 influenza A/H1N1 receiving OSL monotherapy developed confirmed OSL resistance during treatment.
TCAD therapy had similar PKs to each individual antiviral during monotherapy following a single dose and can be administered safely in immunocompromised patients.
PMCID: PMC3912210  PMID: 23264438
3.  Liquid chromatographic–mass spectrometric method for simultaneous determination of small organic acids potentially contributing to acidosis in severe malaria☆ 
•Acidosis is an important contributor to mortality in patients with severe malaria.•A novel LC–MS method for simultaneous determination of 8 potential small organic acids contributing to acidosis.•Anion exchange SPE coupled with HILIC and ion trap LC–MS was utilized for separation and detection.•This new method demonstrated clinical applicability in plasma and urine of severe malaria patient.
Acidosis is an important cause of mortality in severe falciparum malaria. Lactic acid is a major contributor to metabolic acidosis, but accounts for only one-quarter of the strong anion gap. Other unidentified organic acids have an independent strong prognostic significance for a fatal outcome. In this study, a simultaneous bio-analytical method for qualitative and quantitative assessment in plasma and urine of eight small organic acids potentially contributing to acidosis in severe malaria was developed and validated. High-throughput strong anion exchange solid-phase extraction in a 96-well plate format was used for sample preparation. Hydrophilic interaction liquid chromatography (HILIC) coupled to negative mass spectroscopy was utilized for separation and detection. Eight possible small organic acids; l-lactic acid (LA), α-hydroxybutyric acid (aHBA), β-hydroxybutyric acid (bHBA), p-hydroxyphenyllactic acid (pHPLA), malonic acid (MA), methylmalonic acid (MMA), ethylmalonic acid (EMA) and α-ketoglutaric acid (aKGA) were analyzed simultaneously using a ZIC-HILIC column with an isocratic elution containing acetonitrile and ammonium acetate buffer. This method was validated according to U.S. Food and Drug Administration guidelines with additional validation procedures for endogenous substances. Accuracy for all eight acids ranged from 93.1% to 104.0%, and the within-day and between-day precisions (i.e. relative standard deviations) were lower than 5.5% at all tested concentrations. The calibration ranges were: 2.5–2500 μg/mL for LA, 0.125–125 μg/mL for aHBA, 7.5–375 μg/mL for bHBA, 0.1–100 μg/mL for pHPLA, 1–1000 μg/mL for MA, 0.25–250 μg/mL for MMA, 0.25–100 μg/mL for EMA, and 30–1500 μg/mL for aKGA. Clinical applicability was demonstrated by analyzing plasma and urine samples from five patients with severe falciparum malaria; five acids had increased concentrations in plasma (range LA = 177–1169 μg/mL, aHBA = 4.70–38.4 μg/mL, bHBA = 7.70–38.0 μg/mL, pHPLA = 0.900–4.30 μg/mL and aKGA = 30.2–32.0) and seven in urine samples (range LA = 11.2–513 μg/mL, aHBA = 1.50–69.5 μg/mL, bHBA = 8.10–111 μg/mL, pHPLA = 4.30–27.7 μg/mL, MMA = 0.300–13.3 μg/mL, EMA = 0.300–48.1 μg/mL and aKGA = 30.4–107 μg/mL). In conclusion, a novel bioanalytical method was developed and validated which allows for simultaneous quantification of eight small organic acids in plasma and urine. This new method may be a useful tool for the assessment of acidosis in patients with severe malaria, and other conditions complicated by acidosis.
PMCID: PMC3827507  PMID: 24200840
Acidosis; Severe malaria; Liquid chromatography; Mass spectrometry; Bio-analysis; Unidentified acids
4.  Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study 
The Lancet infectious diseases  2012;12(11):851-858.
Artemisinin-resistant Plasmodium falciparum has been reported in Pailin, western Cambodia, detected as a slow parasite clearance rate in vivo. Emergence of this phenotype in western Thailand and possibly elsewhere threatens to compromise the effectiveness of all artemisinin-based combination therapies. Parasite genetics is associated with parasite clearance rate but does not account for all variation. We investigated contributions of both parasite genetics and host factors to the artemisinin-resistance phenotype in Pursat, western Cambodia.
Between June 19 and Nov 28, 2009, and June 26 and Dec 6, 2010, we enrolled patients aged 10 years or older with uncomplicated falciparum malaria, a density of asexual parasites of at least 10 000 per μL of whole blood, no symptoms or signs of severe malaria, no other cause of febrile illness, and no chronic illness. We gave participants 4 mg/kg artesunate at 0, 24, and 48 h, 15 mg/kg mefloquine at 72 h, and 10 mg/kg mefloquine at 96 h. We assessed parasite density on thick blood films every 6 h until undetectable. The parasite clearance half-life was calculated from the parasite clearance curve. We genotyped parasites with 18 microsatellite markers and patients for haemoglobin E, α-thalassaemia, and a mutation of G6PD, which encodes glucose-6-phosphate dehydrogenase. To account for the possible effects of acquired immunity on half-life, we used three surrogates for increased likelihood of exposure to P falciparum: age, sex, and place of residence. This study is registered with, number NCT00341003.
We assessed 3504 individuals from all six districts of Pursat province seeking treatment for malaria symptoms. We enrolled 168 patients with falciparum malaria who met inclusion criteria. The geometric mean half-life was 5.85 h (95% CI 5.54–6.18) in Pursat, similar to that reported in Pailin (p=0.109). We identified two genetically different parasite clone groups: parasite group 1 (PG1) and parasite group 2 (PG2). Non-significant increases in parasite clearance half-life were seen in patients with haemoglobin E (0.55 h; p=0.078), those of male sex (0.96 h; p=0.064), and in 2010 (0.68 h; p=0.068); PG1 was associated with a significant increase (0.79 h; p=0.033). The mean parasite heritability of half-life was 0.40 (SD 0.17).
Heritable artemisinin resistance is established in a second Cambodian province. To accurately identify parasites that are intrinsically susceptible or resistant to artemisinins, future studies should explore the effect of erythrocyte polymorphisms and specific immune responses on half-life variation.
Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
PMCID: PMC3786328  PMID: 22940027
5.  Comparison of Oseltamivir and Oseltamivir Carboxylate Concentrations in Venous Plasma, Venous Blood, and Capillary Blood in Healthy Volunteers 
Oseltamivir and oseltamivir carboxylate concentrations were measured in venous plasma, venous blood, and capillary blood taken simultaneously from 24 healthy volunteers. Median (range) venous-blood-to-plasma ratios were 1.42 (0.920 to 1.97) for oseltamivir and 0.673 (0.564 to 0.814) for oseltamivir carboxylate. Capillary blood/venous plasma ratios were 1.32 (0.737 to 3.16) for oseltamivir and 0.685 (0.502 to 1.34) for oseltamivir carboxylate. Oseltamivir concentrations in venous and capillary blood were similar. Oseltamivir carboxylate showed a time-dependent distribution between venous and capillary blood.
PMCID: PMC3716162  PMID: 23507284
6.  Reduced Susceptibility of Plasmodium falciparum to Artesunate in Southern Myanmar 
PLoS ONE  2013;8(3):e57689.
Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.
A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days) was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia), parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope), and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.
The median (range) parasite clearance half-life and time were 4.8 (2.1–9.7) and 60 (24–96) hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours) in approximately 1/3 of infections. Fourteen of 52 participants (26.9%) had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.
A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread to this location from its site of origin in western Cambodia. Resistance containment efforts are underway in Myanmar.
Trial Registration
Australian New Zealand Clinical Trials Registry ACTRN12610000896077
PMCID: PMC3592920  PMID: 23520478
7.  Artesunate/dihydroartemisinin pharmacokinetics in acute falciparum malaria in pregnancy: absorption, bioavailability, disposition and disease effects 
To determine if reported lower plasma concentrations of artemisinin derivatives for malaria in pregnancy result from reduced oral bioavailability, expanded volume of distribution or increased clearance.
In a sequentially assigned crossover treatment study, pregnant women with uncomplicated falciparum malaria received i.v. artesunate (i.v. ARS) (4 mg kg−1) on the first day and oral ARS (4 mg kg−1) on the second, or, oral on the first and i.v. on the second, in both groups followed by oral ARS (4 mg kg−1 day−1) for 5 days. Plasma concentrations of ARS and dihyroartemisinin (DHA) were measured by liquid chromatography-mass-spectrometry on days 0, 1, 2 and 6. Controls were the same women restudied when healthy (3 months post partum).
I.v. ARS administration resulted in similar ARS and DHA pharmacokinetics in pregnant women with malaria (n = 20) and in controls (n = 14). Oral administration resulted in higher total drug exposure in pregnancy [AUC (95% CI) in (ng ml−1 h)/(mg kg−1)] of 55.1 (30.1, 100.0) vs. 26.5 (12.2, 54.3) for ARS, P = 0.002 and 673 (386, 1130) vs. 523 (351, 724) for DHA, P = 0.007. The corresponding median absolute oral bioavailability (F%) was 21.7 (12.6, 75.1) vs. 9.9 (6.0, 36.81) for ARS (P = 0.046) and 77.0 (42.2, 129) vs. 72.7 (42.0, 87.7) for DHA, P = 0.033. Total DHA exposure was lower at day 6 in pregnant women with malaria (P < 0.001) compared with day 0 or 1, but not in the controls (P = 0.084).
This study demonstrates the effects of malaria on oral ARS drug disposition are greater than those of pregnancy. This probably results from a disease related reduction in first pass metabolism. The data are reassuring regarding current dosing recommendations.
PMCID: PMC3370352  PMID: 21950338
artesunate; dihyroartemisinin; malaria; pharmacokinetics; post partum; pregnancy
8.  Population Pharmacokinetic and Pharmacodynamic Properties of Intramuscular Quinine in Tanzanian Children with Severe Falciparum Malaria 
Although artesunate is clearly superior, parenteral quinine is still used widely for the treatment of severe malaria. A loading-dose regimen has been recommended for 30 years but is still often not used. A population pharmacokinetic study was conducted with 75 Tanzanian children aged 4 months to 8 years with severe malaria who received quinine intramuscularly; 69 patients received a loading dose of 20 mg quinine dihydrochloride (salt)/kg of body weight. Twenty-one patients had plasma quinine concentrations detectable at baseline. A zero-order absorption model with one-compartment disposition pharmacokinetics described the data adequately. Body weight was the only significant covariate and was implemented as an allometric function on clearance and volume parameters. Population pharmacokinetic parameter estimates (and percent relative standard errors [%RSE]) of elimination clearance, central volume of distribution, and duration of zero-order absorption were 0.977 liters/h (6.50%), 16.7 liters (6.39%), and 1.42 h (21.5%), respectively, for a typical patient weighing 11 kg. Quinine exposure was reduced at lower body weights after standard weight-based dosing; there was 18% less exposure over 24 h in patients weighing 5 kg than in those weighing 25 kg. Maximum plasma concentrations after the loading dose were unaffected by body weight. There was no evidence of dose-related drug toxicity with the loading dosing regimen. Intramuscular quinine is rapidly and reliably absorbed in children with severe falciparum malaria. Based on these pharmacokinetic data, a loading dose of 20 mg salt/kg is recommended, provided that no loading dose was administered within 24 h and no routine dose was administered within 12 h of admission. (This study has been registered with Current Controlled Trials under registration number ISRCTN 50258054.)
PMCID: PMC3553700  PMID: 23183442
9.  Pharmaceutical development and optimization of azithromycin suppository for paediatric use 
International Journal of Pharmaceutics  2013;441(1-2):218-226.
Graphical abstract
Pharmaceutical development and manufacturing process optimization work was undertaken in order to propose a potential paediatric rectal formulation of azithromycin as an alternative to existing oral or injectable formulations. The target product profile was to be easy-to-use, cheap and stable in tropical conditions, with bioavailability comparable to oral forms, rapidly achieving and maintaining bactericidal concentrations. PEG solid solution suppositories were characterized in vitro using visual, HPLC, DSC, FTIR and XRD analyses. In vitro drug release and in vivo bioavailability were assessed; a study in rabbits compared the bioavailability of the optimized solid solution suppository to rectal solution and intra-venous product (as reference) and to the previous, non-optimized formulation (suspended azithromycin suppository). The bioavailability of azithromycin administered as solid solution suppositories relative to intra-venous was 43%, which compared well to the target of 38% (oral product in humans). The results of 3-month preliminary stability and feasibility studies were consistent with industrial production scale-up. This product has potential both as a classical antibiotic and as a product for use in severely ill children in rural areas. Industrial partners for further development are being sought.
PMCID: PMC3605574  PMID: 23220079
Azithromycin; Antibiotic; Rectal; Suppository; Pharmaceutical development; Paediatric solid dispersion
10.  A population pharmacokinetic model of piperaquine in pregnant and non-pregnant women with uncomplicated Plasmodium falciparum malaria in Sudan 
Malaria Journal  2012;11:398.
Pregnancy is associated with an increased risk of developing a malaria infection and a higher risk of developing severe malaria. The pharmacokinetic properties of many anti-malarials are also altered during pregnancy, often resulting in a decreased drug exposure. Piperaquine is a promising anti-malarial partner drug used in a fixed-dose combination with dihydroartemisinin. The aim of this study was to investigate the population pharmacokinetics of piperaquine in pregnant and non-pregnant Sudanese women with uncomplicated Plasmodium falciparum malaria.
Symptomatic patients received a standard dose regimen of the fixed dose oral piperaquine-dihydroartemisinin combination treatment. Densely sampled plasma aliquots were collected and analysed using a previously described LC-MS/MS method. Data from 12 pregnant and 12 non-pregnant women were analysed using nonlinear mixed-effects modelling. A Monte Carlo Mapped Power (MCMP) analysis was conducted based on a previously published study to evaluate the power of detecting covariates in this relatively small study.
A three-compartment disposition model with a transit-absorption model described the observed data well. Body weight was added as an allometric function on all clearance and volume parameters. A statistically significant decrease in estimated terminal piperaquine half-life in pregnant compared with non-pregnant women was found, but there were no differences in post-hoc estimates of total piperaquine exposure. The MCMP analysis indicated a minimum of 13 pregnant and 13 non-pregnant women were required to identify pregnancy as a covariate on relevant pharmacokinetic parameters (80% power and p=0.05). Pregnancy was, therefore, evaluated as a categorical and continuous covariate (i.e. estimate gestational age) in a full covariate approach. Using this approach pregnancy was not associated with any major change in piperaquine elimination clearance. However, a trend of increasing elimination clearance with increasing gestational age could be seen.
The population pharmacokinetic properties of piperaquine were well described by a three-compartment disposition model in pregnant and non-pregnant women with uncomplicated malaria. The modelling approach showed no major difference in piperaquine exposure between the two groups and data presented here do not warrant a dose adjustment in pregnancy in this vulnerable population.
PMCID: PMC3551687  PMID: 23190801
Malaria; Piperaquine; Pregnancy; Population pharmacokinetics; Nonlinear mixed-effects modelling
11.  Effect of High-Dose or Split-Dose Artesunate on Parasite Clearance in Artemisinin-Resistant Falciparum Malaria 
New treatment strategies are needed for artemisinin-resistant falciparum malaria. This randomized trial shows that neither increasing nor splitting the standard once-daily artesunate dose reverses the markedly reduced parasite clearance rate in patients with artemisinin-resistant falciparum malaria.
Background. The emergence of Plasmodium falciparum resistance to artemisinins on the Cambodian and Myanmar-Thai borders poses severe threats to malaria control. We investigated whether increasing or splitting the dose of the short-half-life drug artesunate improves parasite clearance in falciparum malaria in the 2 regions.
Methods. In Pailin, western Cambodia (from 2008 to 2010), and Wang Pha, northwestern Thailand (2009–2010), patients with uncomplicated falciparum malaria were randomized to oral artesunate 6 mg/kg/d as a once-daily or twice-daily dose for 7 days, or artesunate 8 mg/kg/d as a once-daily or twice-daily dose for 3 days, followed by mefloquine. Parasite clearance and recrudescence for up to 63 days of follow-up were assessed.
Results. A total of 159 patients were enrolled. Overall median (interquartile range [IQR]) parasitemia half-life (half-life) was 6.03 (4.89–7.28) hours in Pailin versus 3.42 (2.20–4.85) hours in Wang Pha (P = .0001). Splitting or increasing the artesunate dose did not shorten half-life in either site. Pharmacokinetic profiles of artesunate and dihydroartemisinin were similar between sites and did not correlate with half-life. Recrudescent infections occurred in 4 of 79 patients in Pailin and 5 of 80 in Wang Pha and was not different between treatment arms (P = .68).
Conclusions. Increasing the artesunate treatment dose up to 8 mg/kg/d or splitting the dose does not improve parasite clearance in either artemisinin resistant or more sensitive infections with P. falciparum.
Clinical Trials Registration. ISRCTN15351875.
PMCID: PMC3563392  PMID: 23175556
artemisinins; drug resistance; Plasmodium falciparum; neutropenia; reticulocytopenia
12.  Artemisinin Resistance in Plasmodium falciparum Malaria 
The New England journal of medicine  2009;361(5):455-467.
Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai–Cambodian border, historically a site of emerging antimalarial-drug resistance.
In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance.
We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate–mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P = 0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco–endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups.
P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. ( number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.)
PMCID: PMC3495232  PMID: 19641202
13.  Population Pharmacokinetic and Pharmacodynamic Modeling of Amodiaquine and Desethylamodiaquine in Women with Plasmodium vivax Malaria during and after Pregnancy 
Antimicrobial Agents and Chemotherapy  2012;56(11):5764-5773.
Amodiaquine is effective for the treatment of Plasmodium vivax malaria, but there is little information on the pharmacokinetic and pharmacodynamic properties of amodiaquine in pregnant women with malaria. This study evaluated the population pharmacokinetic and pharmacodynamic properties of amodiaquine and its biologically active metabolite, desethylamodiaquine, in pregnant women with P. vivax infection and again after delivery. Twenty-seven pregnant women infected with P. vivax malaria on the Thai-Myanmar border were treated with amodiaquine monotherapy (10 mg/kg/day) once daily for 3 days. Nineteen women, with and without P. vivax infections, returned to receive the same amodiaquine dose postpartum. Nonlinear mixed-effects modeling was used to evaluate the population pharmacokinetic and pharmacodynamic properties of amodiaquine and desethylamodiaquine. Amodiaquine plasma concentrations were described accurately by lagged first-order absorption with a two-compartment disposition model followed by a three-compartment disposition of desethylamodiaquine under the assumption of complete in vivo conversion. Body weight was implemented as an allometric function on all clearance and volume parameters. Amodiaquine clearance decreased linearly with age, and absorption lag time was reduced in pregnant patients. Recurrent malaria infections in pregnant women were modeled with a time-to-event model consisting of a constant-hazard function with an inhibitory effect of desethylamodiaquine. Amodiaquine treatment reduced the risk of recurrent infections from 22.2% to 7.4% at day 35. In conclusion, pregnancy did not have a clinically relevant impact on the pharmacokinetic properties of amodiaquine or desethylamodiaquine. No dose adjustments are required in pregnancy.
PMCID: PMC3486620  PMID: 22926572
14.  Population pharmacokinetics of Artemether and dihydroartemisinin in pregnant women with uncomplicated Plasmodium falciparum malaria in Uganda 
Malaria Journal  2012;11:293.
Malaria in pregnancy increases the risk of maternal anemia, abortion and low birth weight. Approximately 85.3 million pregnancies occur annually in areas with Plasmodium falciparum transmission. Pregnancy has been reported to alter the pharmacokinetic properties of many anti-malarial drugs. Reduced drug exposure increases the risk of treatment failure. The objective of this study was to evaluate the population pharmacokinetic properties of artemether and its active metabolite dihydroartemisinin in pregnant women with uncomplicated P. falciparum malaria in Uganda.
Twenty-one women with uncomplicated P. falciparum malaria in the second and third trimesters of pregnancy received the fixed oral combination of 80 mg artemether and 480 mg lumefantrine twice daily for three days. Artemether and dihydroartemisinin plasma concentrations after the last dose administration were quantified using liquid chromatography coupled to tandem mass-spectroscopy. A simultaneous drug-metabolite population pharmacokinetic model for artemether and dihydroartemisinin was developed taking into account different disposition, absorption, error and covariate models. A separate modeling approach and a non-compartmental analysis (NCA) were also performed to enable a comparison with literature values and different modeling strategies.
The treatment was well tolerated and there were no cases of recurrent malaria. A flexible absorption model with sequential zero-order and transit-compartment absorption followed by a simultaneous one-compartment disposition model for both artemether and dihydroartemisinin provided the best fit to the data. Artemether and dihydroartemisinin exposure was lower than that reported in non-pregnant populations. An approximately four-fold higher apparent volume of distribution for dihydroartemisinin was obtained by non-compartmental analysis and separate modeling compared to that from simultaneous modeling of the drug and metabolite. This highlights a potential pitfall when analyzing drug/metabolite data with traditional approaches.
The population pharmacokinetic properties of artemether and dihydroartemisinin, in pregnant women with uncomplicated P. falciparum malaria in Uganda, were described satisfactorily by a simultaneous drug-metabolite model without covariates. Concentrations of artemether and its metabolite dihydroartemisinin were relatively low in pregnancy compared to literature data. However, this should be interpreted with caution considered the limited literature available. Further studies in larger series are urgently needed for this vulnerable group.
PMCID: PMC3502166  PMID: 22913677
Non-linear mixed effects modeling; Pharmacokinetics; Artemether; Dihydroartemisinin; Pregnancy; Malaria
15.  Optimal designs for population pharmacokinetic studies of the partner drugs co-administered with artemisinin derivatives in patients with uncomplicated falciparum malaria 
Malaria Journal  2012;11:143.
Artemisinin-based combination therapy (ACT) is currently recommended as first-line treatment for uncomplicated malaria, but of concern, it has been observed that the effectiveness of the main artemisinin derivative, artesunate, has been diminished due to parasite resistance. This reduction in effect highlights the importance of the partner drugs in ACT and provides motivation to gain more knowledge of their pharmacokinetic (PK) properties via population PK studies. Optimal design methodology has been developed for population PK studies, which analytically determines a sampling schedule that is clinically feasible and yields precise estimation of model parameters. In this work, optimal design methodology was used to determine sampling designs for typical future population PK studies of the partner drugs (mefloquine, lumefantrine, piperaquine and amodiaquine) co-administered with artemisinin derivatives.
The optimal designs were determined using freely available software and were based on structural PK models from the literature and the key specifications of 100 patients with five samples per patient, with one sample taken on the seventh day of treatment. The derived optimal designs were then evaluated via a simulation-estimation procedure.
For all partner drugs, designs consisting of two sampling schedules (50 patients per schedule) with five samples per patient resulted in acceptable precision of the model parameter estimates.
The sampling schedules proposed in this paper should be considered in future population pharmacokinetic studies where intensive sampling over many days or weeks of follow-up is not possible due to either ethical, logistic or economical reasons.
PMCID: PMC3394219  PMID: 22551019
Artemisinin-based combination therapy; Partner drugs; Optimal design
16.  Pharmacokinetics of Piperaquine in Pregnant Women in Sudan with Uncomplicated Plasmodium falciparum Malaria 
The pharmacokinetic properties of piperaquine were investigated in 12 pregnant and 12 well-matched, non-pregnant women receiving a three-day oral fixed dose combination regimen of dihydroartemisinin and piperaquine for treatment of uncomplicated Plasmodium falciparum at New Halfa Hospital in eastern Sudan. Frequent venous plasma samples were drawn from the patients over a 63-day period and a complete concentration–time profile was collected for 7 pregnant and 11 non-pregnant patients. Piperaquine was quantified using a liquid chromatography–mass spectrometry/mass spectrometry method. Pregnant women had a significantly higher total drug exposure (median area under the curve [range] = 1,770 [1,200–5,600] hr × ng/mL versus 858 [325–2,370] hr × ng/mL; P = 0.018) and longer time to maximal concentration (4.00 [1.50–4.03] hr versus 1.50 [0.500–8.00] hr; P = 0.02) after the first dose compared with non-pregnant women. There was no other significant difference observed in piperaquine pharmacokinetics between pregnant and non-pregnant women, including no difference in total drug exposure or maximum concentration. The overall pharmacokinetic properties of piperaquine in this study were consistent with previously published reports in non-pregnant patients.
PMCID: PMC3391055  PMID: 22764289
17.  Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults 
Co-administration of artemether/lumefantrine with antiretroviral therapy has potential for pharmacokinetic drug interactions. We investigated drug–drug interactions between artemether/lumefantrine and efavirenz or nevirapine.
We performed a cross-over study in which HIV-infected adults received standard six-dose artemether/lumefantrine 80/480 mg before and at efavirenz or nevirapine steady state. Artemether, dihydroartemisinin, lumefantrine, efavirenz and nevirapine plasma concentrations were measured and compared.
Efavirenz significantly reduced artemether maximum concentration (Cmax) and plasma AUC (median 29 versus 12 ng/mL, P < 0.01, and 119 versus 25 ng · h/mL, P < 0.01), dihydroartemisinin Cmax and AUC (median 120 versus 26 ng/mL, P < 0.01, and 341 versus 84 ng · h/mL, P < 0.01), and lumefantrine Cmax and AUC (median 8737 versus 6331 ng/mL, P = 0.03, and 280 370 versus 124 381 ng · h/mL, P < 0.01). Nevirapine significantly reduced artemether Cmax and AUC (median 28 versus 11 ng/mL, P < 0.01, and 123 versus 34 ng · h/mL, P < 0.01) and dihydroartemisinin Cmax and AUC (median 107 versus 59 ng/mL, P < 0.01, and 364 versus 228 ng · h/mL, P < 0.01). Lumefantrine Cmax and AUC were non-significantly reduced by nevirapine. Artemether/lumefantrine reduced nevirapine Cmax and AUC (median 8620 versus 4958 ng/mL, P < 0.01, and 66 329 versus 35 728 ng · h/mL, P < 0.01), but did not affect efavirenz exposure.
Co-administration of artemether/lumefantrine with efavirenz or nevirapine resulted in a reduction in artemether, dihydroartemisinin, lumefantrine and nevirapine exposure. These drug interactions may increase the risk of malaria treatment failure and development of resistance to artemether/lumefantrine and nevirapine. Clinical data from population pharmacokinetic and pharmacodynamic trials evaluating the impact of these drug interactions are urgently needed.
PMCID: PMC3465101  PMID: 22687893
antimalarial; antiretroviral; malaria; drugs
18.  Pharmacokinetics and pharmacodynamics of intravenous artesunate during severe malaria treatment in Ugandan adults 
Malaria Journal  2012;11:132.
Severe malaria is a medical emergency with high mortality. Prompt achievement of therapeutic concentrations of highly effective anti-malarial drugs reduces the risk of death. The aim of this study was to assess the pharmacokinetics and pharmacodynamics of intravenous artesunate in Ugandan adults with severe malaria.
Fourteen adults with severe falciparum malaria requiring parenteral therapy were treated with 2.4 mg/kg intravenous artesunate. Blood samples were collected after the initial dose and plasma concentrations of artesunate and dihydroartemisinin measured by solid-phase extraction and liquid chromatography-tandem mass spectrometry. The study was approved by the Makerere University Faculty of Medicine Research and Ethics Committee (Ref2010-015) and Uganda National Council of Science and Technology (HS605) and registered with (NCT01122134).
All study participants achieved prompt resolution of symptoms and complete parasite clearance with median (range) parasite clearance time of 17 (8–24) hours. Median (range) maximal artesunate concentration (Cmax) was 3260 (1020–164000) ng/mL, terminal elimination half-life (T1/2) was 0.25 (0.1-1.8) hours and total artesunate exposure (AUC) was 727 (290–111256) ng·h/mL. Median (range) dihydroartemisinin Cmax was 3140 (1670–9530) ng/mL, with Tmax of 0.14 (0.6 – 6.07) hours and T1/2 of 1.31 (0.8–2.8) hours. Dihydroartemisinin AUC was 3492 (2183–6338) ng·h/mL. None of the participants reported adverse events.
Plasma concentrations of artesunate and dihydroartemisinin were achieved rapidly with rapid and complete symptom resolution and parasite clearance with no adverse events.
PMCID: PMC3489518  PMID: 22540954
Pharmacokinetics; Pharmacodynamics; Intravenous; Artesunate; Severe malaria
19.  Population Pharmacokinetics of Dihydroartemisinin and Piperaquine in Pregnant and Nonpregnant Women with Uncomplicated Malaria 
Pregnant women are particularly vulnerable to malaria. The pharmacokinetic properties of antimalarial drugs are often affected by pregnancy, resulting in lower drug concentrations and a consequently higher risk of treatment failure. The objective of this study was to evaluate the population pharmacokinetic properties of piperaquine and dihydroartemisinin in pregnant and nonpregnant women with uncomplicated malaria. Twenty-four pregnant and 24 matched nonpregnant women on the Thai-Myanmar boarder were treated with a standard fixed oral 3-day treatment, and venous plasma concentrations of both drugs were measured frequently for pharmacokinetic evaluation. Population pharmacokinetics were evaluated with nonlinear mixed-effects modeling. The main pharmacokinetic finding was an unaltered total exposure to piperaquine but reduced exposure to dihydroartemisinin in pregnant compared to nonpregnant women with uncomplicated malaria. Piperaquine was best described by a three-compartment disposition model with a 45% higher elimination clearance and a 47% increase in relative bioavailability in pregnant women compared with nonpregnant women. The resulting net effect of pregnancy was an unaltered total exposure to piperaquine but a shorter terminal elimination half-life. Dihydroartemisinin was best described by a one-compartment disposition model with a 38% lower relative bioavailability in pregnant women than nonpregnant women. The resulting net effect of pregnancy was a decreased total exposure to dihydroartemisinin. The shorter terminal elimination half-life of piperaquine and lower exposure to dihydroartemisinin will shorten the posttreatment prophylactic effect and might affect cure rates. The clinical impact of these pharmacokinetic findings in pregnant women with uncomplicated malaria needs to be evaluated in larger series.
PMCID: PMC3318332  PMID: 22252822
20.  Nevirapine-Based Antiretroviral Therapy Impacts Artesunate and Dihydroartemisinin Disposition in HIV-Infected Nigerian Adults 
AIDS Research and Treatment  2012;2012:703604.
Background. Nevirapine- (NVP-) based antiretroviral therapy (ART) and artesunate-amodiaquine are frequently coprescribed in areas of HIV and malaria endemicity. We explored the impact of this practice on artesunate and dihydroartemisinin pharmacokinetics. Methods. We conducted a parallel-group pharmacokinetic comparison between HIV-infected patients receiving NVP-based ART (n = 10) and ART-naive controls (n = 11). Artesunate-amodiaquine 200/600 mg was given daily for three days. Measurement of drug concentrations occurred between 0 and 96 hours after the final dose. Pharmacokinetic parameters were determined using noncompartmental analysis. Results. Comparing the NVP group to controls, clearance of artesunate was reduced 50% (1950 versus 2995 L/h; P = 0.03), resulting in a 45% increase in the AUC0-96 (105 versus 69 ug∗hr/L; P = 0.02). The half-life of dihydroartemisinin was shorter in the NVP group (1.6 versuss 3.2 h; P = 0.004), but other dihydroartemisinin pharmacokinetic parameters were unchanged. A lower conversion of artesunate to dihydroartemisinin was observed in the NVP group (dihydroartemisinin: artesunate AUC0-96 = 5.6 versuss 8.5 in NVP and control groups, respectively, P = 0.008). Conclusion. Although NVP-containing ART impacted some pharmacokinetic parameters of artesunate and dihydroartemisinin, overall exposure was similar or better in the NVP group.
PMCID: PMC3303559  PMID: 22500218
21.  Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults 
Treatment of HIV/malaria-coinfected patients with antiretroviral therapy (ART) and artemisinin-based combination therapy has potential for drug interactions. We investigated the pharmacokinetics of artemether, dihydroartemisinin and lumefantrine after administration of a single dose of 80/480 mg of artemether/lumefantrine to HIV-infected adults, taken with and without lopinavir/ritonavir.
A two-arm parallel study of 13 HIV-infected ART-naive adults and 16 HIV-infected adults stable on 400/100 mg of lopinavir/ritonavir plus two nucleoside reverse transcriptase inhibitors (, NCT 00619944). Each participant received a single dose of 80/480 mg of artemether/lumefantrine under continuous cardiac function monitoring. Plasma concentrations of artemether, dihydroartemisinin and lumefantrine were measured.
Co-administration of artemether/lumefantrine with lopinavir/ritonavir significantly reduced artemether maximum concentration (Cmax) and area under the concentration–time curve (AUC) [median (range): 112 (20–362) versus 56 (17–236) ng/mL, P = 0.03; and 264 (92–1129) versus 151 (38–606) ng · h/mL, P < 0.01]. Dihydroartemisinin Cmax and AUC were not affected [66 (10–111) versus 73 (31–224) ng/mL, P = 0.55; and 213 (68–343) versus 175 (118–262) ng · h/mL P = 0.27]. Lumefantrine Cmax and AUC increased during co-administration [2532 (1071–5957) versus 7097 (2396–9462) ng/mL, P < 0.01; and 41 119 (12 850–125 200) versus 199 678 (71 205–251 015) ng · h/mL, P < 0.01].
Co-administration of artemether/lumefantrine with lopinavir/ritonavir significantly increases lumefantrine exposure, but decreases artemether exposure. Population pharmacokinetic and pharmacodynamic trials will be highly valuable in evaluating the clinical significance of this interaction and determining whether dosage modifications are indicated.
PMCID: PMC3324422  PMID: 22316571
antiretrovirals; antimalarials; drug interactions
22.  Valacyclovir for Herpes Simplex Encephalitis ▿ 
The recommended treatment for herpes simplex encephalitis (HSE) remains intravenous acyclovir. In resource-poor countries, however, intravenous formulations are usually unavailable or unaffordable. We report the penetration of acyclovir into the cerebrospinal fluid (CSF) in patients with HSE, treated with the oral prodrug valacyclovir at 1,000 mg three times daily. The oral therapy achieved adequate acyclovir concentrations in the CSF and may be an acceptable early treatment for suspected HSE in resource-limited settings.
PMCID: PMC3122427  PMID: 21576427
23.  Pharmacokinetics of Dihydroartemisinin and Piperaquine in Pregnant and Nonpregnant Women with Uncomplicated Falciparum Malaria▿† 
Antimicrobial Agents and Chemotherapy  2011;55(12):5500-5506.
Dihydroartemisinin-piperaquine is a fixed-dose artemisinin-based combination treatment. Some antimalarials have altered pharmacokinetics in pregnancy. Pregnant women in the 2nd or 3rd trimester and matched nonpregnant women with uncomplicated falciparum malaria were treated with a total of 6.4 mg/kg of body weight dihydroartemisinin and 51.2 mg/kg piperaquine once daily for 3 days. Venous blood samples were drawn at prespecified time points over 9 weeks. Plasma dihydroartemisinin and piperaquine concentrations were analyzed by liquid chromatography-mass spectrometry. Piperaquine and dihydroartemisinin pharmacokinetics were well described. There were no significant differences in total piperaquine exposure (P = 0.80) or drug exposure during the terminal elimination phase (72 h to infinity) (P = 0.64) between the two groups. The apparent volume of distribution of piperaquine was significantly smaller (602 liters/kg versus 877 liters/kg) in pregnant women than in nonpregnant women (P = 0.0057), and the terminal elimination half-life was significantly shorter (17.8 days versus 25.6 days; P = 0.0023). Dihydroartemisinin exposure after the first dose was significantly lower (844 h × ng/ml versus 1,220 h × ng/ml, P = 0.0021) in pregnant women, but there were no significant differences in total dihydroartemisinin exposure or maximum concentrations between the two groups. There were no significant differences in any pharmacokinetic parameters between the second and third trimester. These results obtained through noncompartmental analysis suggest that in the treatment of falciparum malaria, there are no clinically important differences in the pharmacokinetics of dihydroartemisinin or piperaquine between pregnant and nonpregnant women. However, a more detailed analysis using population pharmacokinetic modeling is needed to fully investigate the differences found for some of the pharmacokinetic parameters, such as the terminal half-life.
PMCID: PMC3232755  PMID: 21947392
24.  Dihydroartemisinin-Piperaquine Versus Chloroquine in the Treatment of Plasmodium vivax Malaria in Thailand: A Randomized Controlled Trial 
The efficacy of chloroquine in the treatment of Plasmodium vivax malaria is declining on the Northwestern border of Thailand. This randomized controlled trial in 500 adults and children shows that dihydroartemisinin-piperaquine is a safe and effective alternative treatment.
Background. Chloroquine (CQ) remains the treatment of choice for Plasmodium vivax malaria. Initially confined to parts of Indonesia and Papua, resistance of P. vivax to CQ seems to be spreading, and alternative treatments are required.
Methods. We conducted a randomized controlled study to compare the efficacy and the tolerability of CQ and dihydroartemisinin-piperaquine (DP) in 500 adults and children with acute vivax malaria on the Northwestern border of Thailand.
Results. Both drugs were well tolerated. Fever and parasite clearance times were slower in the CQ than in the DP group (P < .001). By day 28, recurrent infections had emerged in 18 of 207 CQ recipients compared with 5 of 230 treated with DP (relative risk, 4.0; 95% confidence interval [CI], 1.51–10.58; P = .0046). The cumulative risk of recurrence with P. vivax at 9 weeks was 79.1% (95% CI, 73.5%–84.8%) in patients treated with CQ compared with 54.9% (95% CI, 48.2%–61.6%) in those receiving DP (hazard ratio [HR], 2.27; 95% CI, 1.8–2.9; P < .001). Children <5 years old were at greater risk of recurrent P. vivax infection (74.4%; 95% CI, 63.2%–85.6%) than older patients (55.3% [95% CI, 50.2%–60.4%]; HR, 1.58 [95% CI, 1.1–2.2]; P = .005). In vitro susceptibility testing showed that 13% of the tested isolates had a CQ median inhibitory concentration >100 nmol/L, suggesting reduced susceptibility.
Conclusions. The efficacy of CQ in the treatment of P. vivax infections is declining on the Thai-Myanmar border. DP is an effective alternative treatment.
Clinical Trials Registration. ISRCTN87827353.
PMCID: PMC3193831  PMID: 22002979
25.  A Small Amount of Fat Does Not Affect Piperaquine Exposure in Patients with Malaria▿† 
Dihydroartemisinin-piperaquine is a new, highly effective, and well-tolerated combination treatment for uncomplicated falciparum malaria. The lipophilic characteristic of piperaquine suggests that administration together with fat will increase the oral bioavailability of the drug, and this has been reported for healthy volunteers. This pharmacokinetic study monitored 30 adult patients with uncomplicated falciparum malaria for 4.5 months to evaluate the effects of the concomitant intake of fat on the total piperaquine exposure. The fixed-drug combination of dihydroartemisinin-piperaquine was given with water to fasting patients (n = 15) or was coadministered with 200 ml milk containing 6.4 g fat (n = 15). The drug combination was generally well tolerated, and there were no severe adverse effects reported for either group during the study. Total piperaquine exposure (area under the concentration-time curve from zero to infinity [AUC0-∞]; results are given as medians [ranges]) were not statistically different between fed (29.5 h · μg/ml [20.6 to 58.7 h · μg/ml]) and fasting (23.9 h · μg/ml [11.9 to 72.9 h · μg/ml]) patients, but the interindividual variation was reduced in the fed group. Overall, none of the pharmacokinetic parameters differed statistically between the groups. Total piperaquine exposure correlated well with the day 7 concentrations in the fasted group, but the fed group showed a poor correlation. In conclusion, the coadministration of 6.4 g fat did not have any significant effect on piperaquine pharmacokinetics in the treatment of uncomplicated malaria.
PMCID: PMC3165307  PMID: 21709087

Results 1-25 (46)