PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Identification of Immunodominant CD4-Restricted Epitopes Co-Located with Antibody Binding Sites in Individuals Vaccinated with ALVAC-HIV and AIDSVAX B/E 
PLoS ONE  2015;10(2):e0115582.
We performed fine epitope mapping of the CD4+ responses in the ALVAC-HIV-AIDSVAX B/E prime-boost regimen in the Thai Phase III trial (RV144). Non-transformed Env-specific T cell lines established from RV144 vaccinees were used to determine the fine epitope mapping of the V2 and C1 responses and the HLA class II restriction. Data showed that there are two CD4+ epitopes contained within the V2 loop: one encompassing the α4β7 integrin binding site (AA179-181) and the other nested between two previously described genetic sieve signatures (AA169, AA181). There was no correlation between the frequencies of CD4+ fine epitope responses and binding antibody.
doi:10.1371/journal.pone.0115582
PMCID: PMC4321833  PMID: 25665096
2.  Cryptic Determinant of α4β7 Binding in the V2 Loop of HIV-1 gp120 
PLoS ONE  2014;9(9):e108446.
The peptide segment of the second variable loop of HIV-1 spanning positions 166–181 harbors two functionally important sites. The first, spanning positions 179–181, engages the human α4β7 integrin receptor which is involved in T-cell gut-homing and may play a role in human immunodeficiency virus (HIV)-host cell interactions. The second, at positions 166–178, is a major target of anti-V2 antibodies elicited by the ALVAC/AIDSVAX vaccine used in the RV144 clinical trial. Notably, these two sites are directly adjacent, but do not overlap. Here, we report the identity of a second determinant of α4β7 binding located at positions 170–172 of the V2 loop. This segment – tripeptide QRV170–172– is located within the second site, yet functionally affects the first site. The absence of this segment abrogates α4β7 binding in peptides bearing the same sequence from position 173–185 as the V2 loops of the RV144 vaccines. However, peptides exhibiting V2 loop sequences from heterologous HIV-1 strains that include this QRV170–172 motif bind the α4β7 receptor on cells. Therefore, the peptide segment at positions 166–178 of the V2 loop of HIV-1 viruses appears to harbor a cryptic determinant of α4β7 binding. Prior studies show that the anti-V2 antibody response elicited by the RV144 vaccine, along with immune pressure inferred from a sieve analysis, is directed to this same region of the V2 loop. Accordingly, the anti-V2 antibodies that apparently reduced the risk of infection in the RV144 trial may have functioned by blocking α4β7-mediated HIV-host cell interactions via this cryptic determinant.
doi:10.1371/journal.pone.0108446
PMCID: PMC4180765  PMID: 25265384
3.  Vaccine Induction of Antibodies Against a Structurally Heterogeneous Site of Immune Pressure within HIV-1 Envelope Protein Variable Regions 1 and 2 
Immunity  2013;38(1):176-186.
Summary
The RV144 HIV-1 trial of the canary pox vector (ALVAC-HIV) plus the gp120 AIDSVAX B/E vaccine demonstrated an estimated efficacy of 31%, that correlated directly with antibodies to HIV-1 envelope variable regions 1 and 2 (V1–V2). Genetic analysis of trial viruses revealed increased vaccine efficacy against viruses matching the vaccine strain at V2 residue 169. Here, we isolated four V2 monoclonal antibodies from RV144 vaccinees that recognize residue 169, neutralize laboratory-adapted HIV-1, and mediate killing of field isolate HIV-1-infected CD4+ T cells. Crystal structures of two of the V2 antibodies demonstrated residue 169 can exist within divergent helical and loop conformations, which contrasted dramatically with the beta strand conformation previously observed with a broadly neutralizing antibody PG9. Thus, RV144 vaccine-induced immune pressure appears to target a region that may be both sequence variable and structurally polymorphic. Variation may signal sites of HIV-1 envelope vulnerability, providing vaccine designers with new options.
doi:10.1016/j.immuni.2012.11.011
PMCID: PMC3569735  PMID: 23313589
4.  The Thai Phase III HIV Type 1 Vaccine Trial (RV144) Regimen Induces Antibodies That Target Conserved Regions Within the V2 Loop of gp120 
AIDS Research and Human Retroviruses  2012;28(11):1444-1457.
Abstract
The Thai Phase III clinical trial (RV144) showed modest efficacy in preventing HIV-1 acquisition. Plasma collected from HIV-1-uninfected trial participants completing all injections with ALVAC-HIV (vCP1521) prime and AIDSVAX B/E boost were tested for antibody responses against HIV-1 gp120 envelope (Env). Peptide microarray analysis from six HIV-1 subtypes and group M consensus showed that vaccination induced antibody responses to the second variable (V2) loop of gp120 of multiple subtypes. We further evaluated V2 responses by ELISA and surface plasmon resonance using cyclic (Cyc) and linear V2 loop peptides. Thirty-one of 32 vaccine recipients tested (97%) had antibody responses against Cyc V2 at 2 weeks postimmunization with a reciprocal geometric mean titer (GMT) of 1100 (range: 200–3200). The frequency of detecting plasma V2 antibodies declined to 19% at 28 weeks post-last injection (GMT: 110, range: 100–200). Antibody responses targeted the mid-region of the V2 loop that contains conserved epitopes and has the amino acid sequence KQKVHALFYKLDIVPI (HXB2 Numbering sequence 169–184). Valine at position 172 was critical for antibody binding. The frequency of V3 responses at 2 weeks postimmunization was modest (18/32, 56%) with a GMT of 185 (range: 100–800). In contrast, naturally infected HIV-1 individuals had a lower frequency of antibody responses to V2 (10/20, 50%; p=0.003) and a higher frequency of responses to V3 (19/20, 95%), with GMTs of 400 (range: 100–3200) and 3570 (range: 200–12,800), respectively. RV144 vaccination induced antibodies that targeted a region of the V2 loop that contains conserved epitopes. Early HIV-1 transmission events involve V2 loop interactions, raising the possibility that anti-V2 antibodies in RV144 may have contributed to viral inhibition.
doi:10.1089/aid.2012.0103
PMCID: PMC3484815  PMID: 23035746
5.  Vitamin C antagonizes the cytotoxic effects of antineoplastic drugs 
Cancer research  2008;68(19):8031-8038.
Purpose
Vitamin C is an antioxidant vitamin that has been hypothesized to antagonize the effects of reactive oxygen species-generating antineoplastic drugs.
Experimental Design
The therapeutic efficacy of the widely-used antineoplastic drugs, doxorubicin, cisplatin, vincristine, methotrexate and imatinib were compared in leukemia (K562) and lymphoma (RL) cell lines with and without pre-treatment with dehydroascorbic acid, the commonly transported form of vitamin C. The impact of vitamin C on viability, clonogenicity, apoptosis, P-glycoprotein, reactive oxygen species (ROS) and mitochondrial membrane potential was determined.
Results
Pre-treatment with vitamin C caused a dose-dependent attenuation of cytotoxicity as measured by trypan blue exclusion and colony formation after treatment with all anti-neoplastic agents tested. Vitamin C administered prior to doxorubicin treatment led to a substantial reduction of therapeutic efficacy in mice with RL cell-derived xenogeneic tumors. Vitamin C treatment led to a dose-dependent decrease in apoptosis in cells treated with the antineoplastic agents that was not due to up-regulation of P-glycoprotein or vitamin C retention modulated by anti-neoplastics. Vitamin C had only modest effects on intracellular ROS and a more general cytoprotective profile than N-acetylcysteine; suggesting a mechanism of action that is not mediated by ROS. All antineoplastic agents tested caused mitochondrial membrane depolarization that was inhibited by vitamin C.
Conclusions
These findings indicate that vitamin C administered prior to mechanistically dissimilar antineoplastic agents antagonizes therapeutic efficacy in a model of human hematopoietic cancers by preserving mitochondrial membrane potential. These results support the hypothesis that vitamin C supplementation during cancer treatment may detrimentally affect therapeutic response.
doi:10.1158/0008-5472.CAN-08-1490
PMCID: PMC3695824  PMID: 18829561
cancer; reactive oxygen species; mitochondria; apoptosis
6.  Analysis of V2 Antibody Responses Induced in Vaccinees in the ALVAC/AIDSVAX HIV-1 Vaccine Efficacy Trial 
PLoS ONE  2013;8(1):e53629.
The RV144 clinical trial of a prime/boost immunizing regimen using recombinant canary pox (ALVAC-HIV) and two gp120 proteins (AIDSVAX B and E) was previously shown to have a 31.2% efficacy rate. Plasma specimens from vaccine and placebo recipients were used in an extensive set of assays to identify correlates of HIV-1 infection risk. Of six primary variables that were studied, only one displayed a significant inverse correlation with risk of infection: the antibody (Ab) response to a fusion protein containing the V1 and V2 regions of gp120 (gp70-V1V2). This finding prompted a thorough examination of the results generated with the complete panel of 13 assays measuring various V2 Abs in the stored plasma used in the initial pilot studies and those used in the subsequent case-control study. The studies revealed that the ALVAC-HIV/AIDSVAX vaccine induced V2-specific Abs that cross-react with multiple HIV-1 subgroups and recognize both conformational and linear epitopes. The conformational epitope was present on gp70-V1V2, while the predominant linear V2 epitope mapped to residues 165–178, immediately N-terminal to the putative α4β7 binding motif in the mid-loop region of V2. Odds ratios (ORs) were calculated to compare the risk of infection with data from 12 V2 assays, and in 11 of these, the ORs were ≤1, reaching statistical significance for two of the variables: Ab responses to gp70-V1V2 and to overlapping V2 linear peptides. It remains to be determined whether anti-V2 Ab responses were directly responsible for the reduced infection rate in RV144 and whether anti-V2 Abs will prove to be important with other candidate HIV vaccines that show efficacy, however, the results support continued dissection of Ab responses to the V2 region which may illuminate mechanisms of protection from HIV-1 infection and may facilitate the development of an effective HIV-1 vaccine.
doi:10.1371/journal.pone.0053629
PMCID: PMC3547933  PMID: 23349725
7.  Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial 
The New England Journal of Medicine  2012;366(14):1275-1286.
BACKGROUND
In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case–control analysis to identify antibody and cellular immune correlates of infection risk.
METHODS
In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up.
RESULTS
Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P = 0.02; q = 0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P = 0.03; q = 0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies.
CONCLUSIONS
This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
doi:10.1056/NEJMoa1113425
PMCID: PMC3371689  PMID: 22475592
8.  Monoclonal Antibodies to Phosphatidylinositol Phosphate Neutralize Human Immunodeficiency Virus Type 1: Role of Phosphate-Binding Subsites▿  
Journal of Virology  2006;81(4):2087-2091.
Both a murine monoclonal antibody to phosphatidylinositol phosphate (PIP) and a human monoclonal antibody (4E10) that is known to have broadly neutralizing capabilities against primary isolates of human immunodeficiency virus type 1 (HIV-1) bound to PIP, as determined by enzyme-linked immunosorbent assay. Each of the antibodies had antigen subsite binding specificities in aqueous medium for small phosphate-containing molecules and for inositol. The anti-PIP monoclonal antibody inhibited infection by two HIV-1 primary isolates in neutralization assays employing primary human peripheral blood mononuclear cells. The data suggest that PIP or related lipids having free phosphates could serve as targets for the neutralization of HIV-1.
doi:10.1128/JVI.02011-06
PMCID: PMC1797582  PMID: 17151131

Results 1-8 (8)