PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (51)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Genetic Variability of Plasmodium malariae dihydropteroate synthase (dhps) in Four Asian Countries 
PLoS ONE  2014;9(4):e93942.
The dihydropteroate synthase (dhps) genes of 44 P. malariae strains from four Asian countries were isolated. Only a limited number of polymorphisms were observed. Comparison with homologous mutations in other Plasmodium species showed that these polymorphisms are unlikely to be associated with sulfadoxine resistance.
doi:10.1371/journal.pone.0093942
PMCID: PMC3974843  PMID: 24699454
2.  A Population Survey of the Glucose-6-Phosphate Dehydrogenase (G6PD) 563C>T (Mediterranean) Mutation in Afghanistan 
PLoS ONE  2014;9(2):e88605.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzyme defect and an important problem in areas with Plasmodium vivax infection because of the risk of haemolysis following administration of primaquine to treat the liver forms of the parasite. We undertook a genotypic survey of 713 male individuals across nine provinces of Afghanistan in which malaria is found, four in the north and five in the east. RFLP typing at nucleotide position 563 detected 40 individuals with the Mediterranean mutation 563C>T, an overall prevalence of 5.6%. This varied according to self-reported ethnicity, with prevalence in the Pashtun/Pashai group of 33/369 (8.9%) compared to 7/344 individuals in the rest of the population (2.0%; p<0.001, Chi-squared test). Multivariate analysis of ethnicity and geographical location indicated an adjusted odds ratio of 3.50 (95% CI 1.36–9.02) for the Pashtun/Pashai group, while location showed only a trend towards higher prevalence in eastern provinces (adjusted odds ratio = 1.73, 0.73–4.13). Testing of known polymorphic markers (1311C>T in exon 11, and C93T in intron XI) in a subset of 82 individuals wild-type at C563 revealed a mixture of 3 haplotypes in the background population and was consistent with data from the 1000 Genomes Project and published studies. By comparison individuals with G6PD deficiency showed a highly skewed haplotype distribution, with 95% showing the CT haplotype, a finding consistent with relatively recent appearance and positive selection of the Mediterranean variant in Afghanistan. Overall, the data confirm that the Mediterranean variant of G6PD is common in many ethnic groups in Afghanistan, indicating that screening for G6PD deficiency is required in all individuals before radical treatment of P. vivax with primaquine.
doi:10.1371/journal.pone.0088605
PMCID: PMC3931629  PMID: 24586352
3.  Genetic Marker Suitable for Identification and Genotyping of Plasmodium ovale curtisi and Plasmodium ovale wallikeri 
Journal of Clinical Microbiology  2013;51(12):4213-4216.
We present a seminested PCR method that specifically discriminates between Plasmodium ovale curtisi and P. ovale wallikeri with high sensitivity. The test is based on species-specific amplification of a size-polymorphic fragment of the tryptophan-rich antigen gene, potra, which also permits discrimination of intraspecific sequence variants at this locus.
doi:10.1128/JCM.01527-13
PMCID: PMC3838052  PMID: 24068009
4.  An In-Solution Hybridisation Method for the Isolation of Pathogen DNA from Human DNA-rich Clinical Samples for Analysis by NGS 
The open genomics journal  2012;5:10.2174/1875693X01205010018.
Studies on DNA from pathogenic organisms, within clinical samples, are often complicated by the presence of large amounts of host, e.g., human DNA. Isolation of pathogen DNA from these samples would improve the efficiency of next-generation sequencing (NGS) and pathogen identification. Here we describe a solution-based hybridisation method for isolation of pathogen DNA from a mixed population. This straightforward and inexpensive technique uses probes made from whole-genome DNA and off-the-shelf reagents.
In this study, Escherichia coli DNA was successfully enriched from a mixture of E.coli and human DNA. After enrichment, genome coverage following NGS was significantly higher and the evenness of coverage and GC content were unaffected. This technique was also applied to samples containing a mixture of human and Plasmodium falciparum DNA. The P.falciparum genome is particularly difficult to sequence due to its high AT content (80.6%) and repetitive nature. Post enrichment, a bias in the recovered DNA was observed, with a poorer representation of the AT-rich non-coding regions. This uneven coverage was also observed in pre-enrichment samples, but to a lesser degree. Despite the coverage bias in enriched samples, SNP (single-nucleotide polymorphism) calling in coding regions was unaffected and the majority of samples had over 90% of their coding region covered at 5× depth.
This technique shows significant promise as an effective method to enrich pathogen DNA from samples with heavy human contamination, particularly when applied to GC-neutral genomes.
doi:10.2174/1875693X01205010018
PMCID: PMC3837216  PMID: 24273626
AT-rich DNA; clinical samples; E.coli; enrichment; host DNA contamination; in-solution hybridisation; next generation sequencing; P.falciparum
5.  Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia 
Nature genetics  2013;45(6):10.1038/ng.2624.
We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination.
doi:10.1038/ng.2624
PMCID: PMC3807790  PMID: 23624527
6.  Evaluation of the phenotypic test and genetic analysis in the detection of glucose-6-phosphate dehydrogenase deficiency 
Malaria Journal  2013;12:289.
Background
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is particularly prevalent in historically malaria-endemic countries. Although most individuals with G6PD deficiency are asymptomatic, deficiency can result in acute haemolytic anaemia after exposure to oxidative agents. A reliable test is necessary for diagnosing the deficiency to prevent an acute haemolytic crisis following, for example, anti-malarial treatment. The aim of this study was to investigate which method was the best predictor of this disorder.
Methods
The present study investigated four G6PD activity detections (fluorescence spot (FS), methaemoglobin reduction (MR), biochemical and cytochemical test). These methods accompanied with mutation analysis of blood samples were taken from 295 apparently healthy individuals with unknown G6PD deficiency status.
Results
Molecular characterization of 295 Thai adults revealed an overall prevalence of 14.2%. The G6PD Viangchan (871 G>A) was the most common (83.3%), followed by G6PD Mahidol (487G>A) (11.9%), and G6PD Union (1360 C>T) (4.8%). There were two cases of G6PD deficiency carrying the double mutations of Viangchan (871G > A)-Mahidol (487G > A) and Viangchan (871G > A)-Union (1360C > T). In comparison, the prevalence of G6PD deficiency was 6.1% by FS test and 7.1% by MR test. G6PD activity was 11 ± 2.5 IU/gHb in non-deficient females (mean ± SD), and 10.9 ± 0.6 IU/gHb in non-deficient males. The upper and lower limit cut-off points for partial and severe deficiency in adults were 5.7 IU/gHb (60% of the normal mean) and 0.95 IU/gHb (10% of the normal mean), respectively. All hemizygote, homozygote and double mutations were associated with severe enzyme deficiency (the residual enzyme activity <10% of the normal mean), whereas only 14.3% of the heterozygote mutations showed severe enzyme deficiency. Based on the cut-off value <5.7 IU/gHb, the quantitative G6PD assay diagnosed 83% of cases as G6PD-deficient. Using a cut-off number of negative cell >20% in the cytochemical assay to define G6PD deficiency, the prevalence of G6PD deficiency was closest to the molecular analysis (12.9% G6PD-deficient) compared to the others methods.
Conclusion
The cytochemical method is a significant predictor of this disease, while FS and MR test are recommended for the detection of severe G6PD deficiency in developing countries.
doi:10.1186/1475-2875-12-289
PMCID: PMC3765345  PMID: 23965028
Glucose-6-phosphate dehydrogenase deficiency; Fluorescent spot test; Methaemoglobin reduction test; Enzymatic assay; Cytochemical method
7.  Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing 
Nature  2012;487(7407):375-379.
Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.
doi:10.1038/nature11174
PMCID: PMC3738909  PMID: 22722859
8.  Microsatellite genotyping of Plasmodium vivax infections and their relapses in pregnant and non-pregnant patients on the Thai-Myanmar border 
Malaria Journal  2013;12:275.
Background
Plasmodium vivax infections in pregnancy are associated with low birth weight and anaemia. This parasites species is also characterised by relapses, erythrocytic infections initiated by the activation of the dormant liver stages, the hypnozoites, to mature. Genotyping of P. vivax using microsatellite markers has opened the way to comparative investigations of parasite populations. The aim of the study was to assess whether there were any differences between the parasites found in pregnant and non-pregnant patients, and/or between the admission infections and recurrent episodes during follow-up.
Methods
Blood samples were collected from 18 pregnant and 18 non-pregnant patients, who had at least two recurrent episodes during follow-up, that were recruited in two previous trials on the efficacy of chloroquine treatment of P. vivax infections on the Thai-Myanmar border. DNA was purified and the P. vivax populations genotyped with respect to eight polymorphic microsatellite markers. Analyses of the genetic diversity, multiplicity of infection (MOI), and a comparison of the genotypes in the samples from each patient were conducted.
Results
The P. vivax parasites present in the samples exhibited high genetic diversity (6 to 15 distinct allelic variants found for the 8 loci). Similar expected heterozygosity (He) values were obtained for isolates from pregnant (0.837) and non-pregnant patients (0.852). There were modest differences between the MOI values calculated for both admission and recurrence samples from the pregnant patients (2.00 and 2.05, respectively) and the equivalent samples from the non-pregnant patients (1.67 and 1.64, respectively). Furthermore, the mean number of distinct alleles enumerated in the admission samples from the pregnant (6.88) and non-pregnant (7.63) patients were significantly lower than that found in the corresponding recurrent episodes samples (9.25 and 9.63, respectively).
Conclusions
The P. vivax populations circulating in inhabitants along the Thai-Myanmar border, an area of low malaria transmission, displayed high genetic diversity. A subtle increase in the multiplicity of P. vivax infections in pregnant patients suggests a higher susceptibility to infection. The higher allelic diversity in the relapse as compared to the admission samples in both patient groups is consistent with the hypothesis that a febrile episode promotes the activation of hypnozoites.
doi:10.1186/1475-2875-12-275
PMCID: PMC3750759  PMID: 23915022
Genetic diversity; Malaria; Plasmodium vivax; Pregnancy; Relapse
9.  A Randomized Comparison of Dihydroartemisinin-Piperaquine and Artesunate-Amodiaquine Combined With Primaquine for Radical Treatment of Vivax Malaria in Sumatera, Indonesia 
The Journal of Infectious Diseases  2013;208(11):1906-1913.
Background. A high prevalence of chloroquine-resistant Plasmodium vivax in Indonesia has shifted first-line treatment to artemisinin-based combination therapies, combined with primaquine (PQ) for radical cure. Which combination is most effective and safe remains to be established.
Methods. We conducted a prospective open-label randomized comparison of 14 days of PQ (0.25 mg base/kg) plus either artesunate-amodiaquine (AAQ + PQ) or dihydroartemisinin-piperaquine (DHP + PQ) for the treatment of uncomplicated monoinfection P. vivax malaria in North Sumatera, Indonesia. Patients were randomized and treatments were given without prior testing for G6PD status. The primary outcome was parasitological failure at day 42. Patients were followed up to 1 year.
Results. Between December 2010 and April 2012, 331 patients were included. After treatment with AAQ + PQ, recurrent infection occurred in 0 of 167 patients within 42 days and in 15 of 130 (11.5%; 95% confidence interval [CI], 6.6%–18.3%) within a year. With DHP + PQ, this was 1 of 164 (0.6%; 95% CI, 0.01%–3.4%) and 13 of 143 (9.1%; 95% CI, 4.9%–15.0%), respectively (P > .2). Intravascular hemolysis occurred in 5 patients, of which 3 males were hemizygous for the G6PD-Mahidol mutation. Minor adverse events were more frequent with AAQ + PQ.
Conclusions. In North Sumatera, Indonesia, AAQ and DHP, both combined with PQ, were effective for blood-stage parasite clearance of uncomplicated P. vivax malaria. Both treatments were safe, but DHP + PQ was better tolerated.
Clinical Trials Registration. NCT01288820.
doi:10.1093/infdis/jit407
PMCID: PMC3814843  PMID: 23926329
primaquine; radical cure; Plasmodium vivax; Indonesia
10.  Prevalence of antifolate resistance mutations in Plasmodium falciparum isolates in Afghanistan 
Malaria Journal  2013;12:96.
Background
Artesunate plus sulphadoxine-pyrimethamine (AS+SP) is now first-line treatment for Plasmodium falciparum infection in several south Asian countries, including Afghanistan. Molecular studies provide a sensitive means to investigate the current state of drug susceptibility to the SP component, and can also provide information on the likely efficacy of other potential forms of artemisinin-combination therapy.
Methods
During the years 2007 to 2010, 120 blood spots from patients with P. falciparum malaria were obtained in four provinces of Afghanistan. PCR-based methods were used to detect drug-resistance mutations in dhfr, dhps, pfcrt and pfmdr1, as well as to determine copy number of pfmdr1.
Results
The majority (95.5%) of infections had a double mutation in the dhfr gene (C59R, S108N); no mutations at dhfr positions 16, 51 or 164 were seen. Most isolates were wild type across the dhps gene, but five isolates from the provinces of Kunar and Nangarhar in eastern Afghanistan had the triple mutation A437G / K540E / A581G; all five cases were successfully treated with three receiving AS+SP and two receiving dihydroartemisinin-piperaquine. All isolates showed the pfcrt SVNMT chloroquine resistance haplotype. Five of 79 isolates had the pfmdr1 N86Y mutation, while 52 had pfmdr1 Y184F; positions 1034, 1042 and 1246 were wild type in all isolates. The pfmdr1 gene was not amplified in any sample.
Conclusions
This study indicates that shortly after the adoption of AS+SP as first-line treatment in Afghanistan, most parasites had a double mutation haplotype in dhfr, and a small number of isolates from eastern Afghanistan harboured a triple mutation haplotype in dhps. The impact of these mutations on the efficacy of AS+SP remains to be assessed in significant numbers of patients, but these results are clearly concerning since they suggest a higher degree of SP resistance than previously detected. Further focused molecular and clinical studies in this region are urgently required.
doi:10.1186/1475-2875-12-96
PMCID: PMC3607912  PMID: 23497229
Plasmodium falciparum; Malaria; Artemisinin combination therapy; Sulphadoxine-pyrimethamine; Dihydrofolate reductase; Dihydropteroate synthase
11.  Malaria in the Post-Partum Period; a Prospective Cohort Study 
PLoS ONE  2013;8(3):e57890.
Background
Several studies have shown a prolonged or increased susceptibility to malaria in the post-partum period. A matched cohort study was conducted to evaluate prospectively the susceptibility to malaria of post-partum women in an area where P.falciparum and P.vivax are prevalent.
Methods
In an area of low seasonal malaria transmission on the Thai-Myanmar border pregnant women attending antenatal clinics were matched to a non-pregnant, non-post-partum control and followed up prospectively until 12 weeks after delivery.
Results
Post-partum women (n = 744) experienced significantly less P.falciparum episodes than controls (hazard ratio (HR) 0.39 (95%CI 0.21–0.72) p = 0.003) but significantly more P.vivax (HR 1.34 (1.05–1.72) p = 0.018). The reduced risk of falciparum malaria was accounted for by reduced exposure, whereas a history of P.vivax infection during pregnancy was a strong risk factor for P.vivax in post-partum women (HR 13.98 (9.13–21.41), p<0.001). After controlling for effect modification by history of P.vivax, post-partum women were not more susceptible to P.vivax than controls (HR: 0.33 (0.21–0.51), p<0.001). Genotyping of pre-and post-partum infections (n⊕ = ⊕10) showed that each post-partum P.falciparum was a newly acquired infection.
Conclusions
In this area of low seasonal malaria transmission post-partum women were less likely to develop falciparum malaria but more likely to develop vivax malaria than controls. This was explained by reduced risk of exposure and increased risk of relapse, respectively. There was no evidence for altered susceptibility to malaria in the post-partum period. The treatment of vivax malaria during and immediately after pregnancy needs to be improved.
doi:10.1371/journal.pone.0057890
PMCID: PMC3596341  PMID: 23516418
12.  Reduced Susceptibility of Plasmodium falciparum to Artesunate in Southern Myanmar 
PLoS ONE  2013;8(3):e57689.
Background
Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.
Methods
A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days) was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia), parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope), and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.
Results
The median (range) parasite clearance half-life and time were 4.8 (2.1–9.7) and 60 (24–96) hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours) in approximately 1/3 of infections. Fourteen of 52 participants (26.9%) had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.
Conclusions
A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread to this location from its site of origin in western Cambodia. Resistance containment efforts are underway in Myanmar.
Trial Registration
Australian New Zealand Clinical Trials Registry ACTRN12610000896077
doi:10.1371/journal.pone.0057689
PMCID: PMC3592920  PMID: 23520478
13.  Effect of High-Dose or Split-Dose Artesunate on Parasite Clearance in Artemisinin-Resistant Falciparum Malaria 
New treatment strategies are needed for artemisinin-resistant falciparum malaria. This randomized trial shows that neither increasing nor splitting the standard once-daily artesunate dose reverses the markedly reduced parasite clearance rate in patients with artemisinin-resistant falciparum malaria.
Background. The emergence of Plasmodium falciparum resistance to artemisinins on the Cambodian and Myanmar-Thai borders poses severe threats to malaria control. We investigated whether increasing or splitting the dose of the short-half-life drug artesunate improves parasite clearance in falciparum malaria in the 2 regions.
Methods. In Pailin, western Cambodia (from 2008 to 2010), and Wang Pha, northwestern Thailand (2009–2010), patients with uncomplicated falciparum malaria were randomized to oral artesunate 6 mg/kg/d as a once-daily or twice-daily dose for 7 days, or artesunate 8 mg/kg/d as a once-daily or twice-daily dose for 3 days, followed by mefloquine. Parasite clearance and recrudescence for up to 63 days of follow-up were assessed.
Results. A total of 159 patients were enrolled. Overall median (interquartile range [IQR]) parasitemia half-life (half-life) was 6.03 (4.89–7.28) hours in Pailin versus 3.42 (2.20–4.85) hours in Wang Pha (P = .0001). Splitting or increasing the artesunate dose did not shorten half-life in either site. Pharmacokinetic profiles of artesunate and dihydroartemisinin were similar between sites and did not correlate with half-life. Recrudescent infections occurred in 4 of 79 patients in Pailin and 5 of 80 in Wang Pha and was not different between treatment arms (P = .68).
Conclusions. Increasing the artesunate treatment dose up to 8 mg/kg/d or splitting the dose does not improve parasite clearance in either artemisinin resistant or more sensitive infections with P. falciparum.
Clinical Trials Registration. ISRCTN15351875.
doi:10.1093/cid/cis958
PMCID: PMC3563392  PMID: 23175556
artemisinins; drug resistance; Plasmodium falciparum; neutropenia; reticulocytopenia
14.  Artemisinin Resistance in Plasmodium falciparum Malaria 
The New England journal of medicine  2009;361(5):455-467.
BACKGROUND
Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai–Cambodian border, historically a site of emerging antimalarial-drug resistance.
METHODS
In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance.
RESULTS
We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate–mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P = 0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco–endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups.
CONCLUSIONS
P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.)
doi:10.1056/NEJMoa0808859
PMCID: PMC3495232  PMID: 19641202
16.  Long-term storage limits PCR-based analyses of malaria parasites in archival dried blood spots 
Malaria Journal  2012;11:339.
Background
Blood samples collected in epidemiological and clinical investigations and then stored, often at room temperature, as blood spots dried on a filter paper have become one of the most popular source of material for further molecular analyses of malaria parasites. The dried blood spots are often archived so that they can be used for further retrospective investigations of parasite prevalence, or as new genetic markers come to the fore. However, the suitability of the template obtained from dried blood spots that have been stored for long periods for DNA amplification is not known.
Methods
DNA from 267 archived blood spots collected over a period of 12 years from persons with microscopically confirmed Plasmodium falciparum infection was purified by one of two methods, Chelex and Qiagen columns. These templates were subjected to highly sensitive nested PCR amplification targeting three parasite loci that differ in length and/or copy number.
Results
When a 1.6 kb fragment of the parasites’ small subunit ribosomal RNA was targeted (primary amplification), the efficiency of P. falciparum detection decreased in samples archived for more than six years, reaching very low levels for those stored for more than 10 years. Positive amplification was generally obtained more often with Qiagen-extracted templates. P. falciparum could be detected in 32 of the 40 negative Qiagen-extracted templates when a microsatellite of about 180 bp was targeted. The remaining eight samples gave a positive amplification when a small region of 238 bp of the higher copy number (20 to 200) mitochondrial genome was targeted.
Conclusions
The average length of DNA fragments that can be recovered from dried blood spots decreases with storage time. Recovery of the DNA is somewhat improved, especially in older samples, by the use of a commercial DNA purification column, but targets larger than 1.5 kb are unlikely to be present 10 years after the initial blood collection, when the average length of the DNA fragments present is likely to be around a few hundred bp. In conclusion, the utility of archived dried blood spots for molecular analyses decreases with storage time.
doi:10.1186/1475-2875-11-339
PMCID: PMC3507721  PMID: 23043522
Archival blood spots; Plasmodium falciparum; Polymerase chain reaction
17.  A major genome region underlying artemisinin resistance in malaria 
Science (New York, N.y.)  2012;336(6077):79-82.
Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia, has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CR) following treatment. We used a two-phase strategy to identify genome region(s) underlying this ongoing selective event. Geographical differentiation and haplotype structure at 6,969 polymorphic SNPs in 91 parasites from Cambodia, Thailand and Laos identified 33 genome regions under strong selection. We screened SNPs and microsatellites within these regions in 715 parasites from Thailand, identifying a selective sweep on chr 13 that shows strong association (P=10-6-10-12) with slow CR, illustrating the efficacy of targeted association for identifying the genetic basis of adaptive traits.
doi:10.1126/science.1215966
PMCID: PMC3355473  PMID: 22491853
18.  Sequence variation does not confound the measurement of plasma PfHRP2 concentration in African children presenting with severe malaria 
Malaria Journal  2012;11:276.
Background
Plasmodium falciparum histidine-rich protein PFHRP2 measurement is used widely for diagnosis, and more recently for severity assessment in falciparum malaria. The Pfhrp2 gene is highly polymorphic, with deletion of the entire gene reported in both laboratory and field isolates. These issues potentially confound the interpretation of PFHRP2 measurements.
Methods
Studies designed to detect deletion of Pfhrp2 and its paralog Pfhrp3 were undertaken with samples from patients in seven countries contributing to the largest hospital-based severe malaria trial (AQUAMAT). The quantitative relationship between sequence polymorphism and PFHRP2 plasma concentration was examined in samples from selected sites in Mozambique and Tanzania.
Results
There was no evidence for deletion of either Pfhrp2 or Pfhrp3 in the 77 samples with lowest PFHRP2 plasma concentrations across the seven countries. Pfhrp2 sequence diversity was very high with no haplotypes shared among 66 samples sequenced. There was no correlation between Pfhrp2 sequence length or repeat type and PFHRP2 plasma concentration.
Conclusions
These findings indicate that sequence polymorphism is not a significant cause of variation in PFHRP2 concentration in plasma samples from African children. This justifies the further development of plasma PFHRP2 concentration as a method for assessing African children who may have severe falciparum malaria. The data also add to the existing evidence base supporting the use of rapid diagnostic tests based on PFHRP2 detection.
doi:10.1186/1475-2875-11-276
PMCID: PMC3480887  PMID: 22898068
Malaria; Falciparum; Severe; Africa; Histidine-rich protein; Tandem repeat
19.  Genotyping of Plasmodium vivax Reveals Both Short and Long Latency Relapse Patterns in Kolkata 
PLoS ONE  2012;7(7):e39645.
Background
The Plasmodium vivax that was once prevalent in temperate climatic zones typically had an interval between primary infection and first relapse of 7–10 months, whereas in tropical areas P.vivax infections relapse frequently at intervals of 3–6 weeks. Defining the epidemiology of these two phenotypes from temporal patterns of illness in endemic areas is difficult or impossible, particularly if they overlap.
Methods
A prospective open label comparison of chloroquine (CQ) alone versus CQ plus unobserved primaquine for either 5 days or 14 days was conducted in patients presenting with acute vivax malaria in Kolkata. Patients were followed for 15 months and primary and recurrent infections were genotyped using three polymorphic antigen and up to 8 microsatellite markers.
Results
151 patients were enrolled of whom 47 (31%) had subsequent recurrent infections. Recurrence proportions were similar in the three treatment groups. Parasite genotyping revealed discrete temporal patterns of recurrence allowing differentiation of probable relapse from newly acquired infections. This suggested that 32 of the 47 recurrences were probable relapses of which 22 (69%) were genetically homologous. The majority (81%) of probable relapses occurred within three months (16 homologous, 10 heterologous) and six genetically homologous relapses (19%) were of the long latency (8–10 month interval) phenotype.
Conclusions
With long follow-up to assess temporal patterns of vivax malaria recurrence, genotyping of P.vivax can be used to assess relapse rates. A 14 day unobserved course of primaquine did not prevent relapse. Genotyping indicates that long latency P.vivax is prevalent in West Bengal, and that the first relapses after long latent periods are genetically homologous.
Trial Registration
Controlled-Trials.com ISRCTN14027467
doi:10.1371/journal.pone.0039645
PMCID: PMC3396609  PMID: 22808048
20.  Efficacy of artemether-lumefantrine, the nationally-recommended artemisinin combination for the treatment of uncomplicated falciparum malaria, in southern Laos 
Malaria Journal  2012;11:184.
Background
The Lao Government changed the national policy for uncomplicated Plasmodium falciparum malaria from chloroquine to artemether-lumefantrine (AL) in 2005. Since then, no information on AL efficacy has been reported. With evidence of resistance to artemisinin derivatives in adjacent Cambodia, there has been a concern as to AL efficacy. Monitoring of AL efficacy would help the Lao Government to make decisions on appropriate malaria treatment.
Methods
The efficacy of a three-day, twice daily oral artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Xepon District, Savannakhet Province, southern Laos was studied over 42 days follow-up. This was part of a trial of thiamin supplementation in falciparum malaria.
Results
Of 630 patients with P. falciparum enrolled in the trial of thiamin treatment, 549 (87%, 357 children ≤15 years and 192 adults) were included in this study. The per protocol 42-day cure rates were 97% (524/541) [96% (337/352) for children and 99% (187/189) for adults, p = 0.042]. By conventional intention-to-treat analysis, the 42-day cure rates adjusted for re-infection, were 97% (532/549) [96% (342/357) in children and 99% (190/192) in adults, p = 0.042]. The proportion of patients who remained parasitaemic at day 1 after treatment was significantly higher in children [33% (116/356)] compared to adults [15% (28/192)] (p < 0.001) and only one adult patient had detectable parasitaemia on day 2. There were no serious adverse events. Potential side effects after treatment were reported more commonly in adults (32%) compared to children (15%) (p < 0.001). Patients with recrudescent infections were significantly younger, had longer mean time to fever clearance, and had longer median time to parasite clearance compared to those who were cured.
Conclusions
The current nationally-recommended anti-malarial treatment (artemether-lumefantrine) remains highly efficacious for the treatment of uncomplicated falciparum malaria five years after introduction in Laos. Regular monitoring is required in case artemisinin-resistant P. falciparum parasites should appear.
Trial registration
ISRCTN85411059.
doi:10.1186/1475-2875-11-184
PMCID: PMC3523969  PMID: 22681769
Clinical trial; Plasmodium falciparum; Malaria; Artemisinin-based combination therapy (ACT); Artemether-lumefantrine; Coartem; Laos
21.  Cloning and heterologous expression of Plasmodium ovale dihydrofolate reductase-thymidylate synthase gene 
Parasitology International  2012;61(2):324-332.
Plasmodial bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a validated antimalarial drug target. In this study, expression of the putative dhfr-ts of Plasmodium ovale rescued the DHFR chemical knockout and a TS null bacterial strain, demonstrating its DHFR and TS catalytic functions. PoDHFR-TS was expressed in Escherichia coli BL21 (DE3) and affinity purified by Methotrexate Sepharose column. Biochemical and enzyme kinetics characterizations indicated that PoDHFR-TS is similar to other plasmodial enzymes, albeit with lower catalytic activity but better tolerance of acidic pH. Importantly, the PoDHFR from Thai isolate EU266602 remains sensitive to the antimalarials pyrimethamine and cycloguanil, in contrast to P. falciparum and P. vivax isolates where resistance to these drugs is widespread.
Graphical abstract
Highlights
► Polymorphism of P. ovale dihydrofolate reductase-thymidylate synthase was identified. ► Bacterial complementation assay revealed the function of the putative PoDHFR-TS. ► The protein was expressed and purified. ► Biochemical and kinetic properties including antifolate sensitivity were determined.
doi:10.1016/j.parint.2011.12.004
PMCID: PMC3444756  PMID: 22234170
DHFR, dihydrofolate reductase; TS, thymidylate synthase; JR, junction region; Pf, Plasmodium falciparum; Po, P. ovale; Pv, P. vivax; Tc, Trypanosoma cruzi; CYC, cycloguanil; DTT, dithiothreitol; dUMP, deoxyuridine monophosphate; EDTA, ethylenediaminetetraacetic acid; HCOH, formaldehyde; H2folate, 7,8-dihydrofolate; IPTG, iso-propyl-beta-d-thio-galactopyranoside; LC-MS/MS, liquid chromatography-mass spectrometry; MTX, methotrexate; NADPH, nicotinamide adenine dinucleotide phosphate; PVDF, polyvinylidene fluoride; PYR, pyrimethamine; TES, N-Tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid; TMP, trimethoprim; 6-[3H] FdUMP, 5-fluoro 2′-deoxyuridine 5′-monophosphate; (6R)-CH2H4folate, 5,10-methylene tetrahydrofolate; MM, minimum media; Plasmodium ovale; Dihydrofolate reductase-thymidylate synthase; Antifolates
22.  Investigations on anopheline mosquitoes close to the nest sites of chimpanzees subject to malaria infection in Ugandan Highlands 
Malaria Journal  2012;11:116.
Background
Malaria parasites (Plasmodium sp.), including new species, have recently been discovered as low grade mixed infections in three wild chimpanzees (Pan troglodytes schweinfurthii) sampled randomly in Kibale National Park, Uganda. This suggested a high prevalence of malaria infection in this community. The clinical course of malaria in chimpanzees and the species of the vectors that transmit their parasites are not known. The fact that these apes display a specific behaviour in which they consume plant parts of low nutritional value but that contain compounds with anti-malarial properties suggests that the apes health might be affected by the parasite. The avoidance of the night-biting anopheline mosquitoes is another potential behavioural adaptation that would lead to a decrease in the number of infectious bites and consequently malaria.
Methods
Mosquitoes were collected over two years using suction-light traps and yeast-generated CO2 traps at the nesting and the feeding sites of two chimpanzee communities in Kibale National Park. The species of the female Anopheles caught were then determined and the presence of Plasmodium was sought in these insects by PCR amplification.
Results
The mosquito catches yielded a total of 309 female Anopheles specimens, the only known vectors of malaria parasites of mammalians. These specimens belonged to 10 species, of which Anopheles implexus, Anopheles vinckei and Anopheles demeilloni dominated. Sensitive DNA amplification techniques failed to detect any Plasmodium-positive Anopheles specimens. Humidity and trap height influenced the Anopheles capture success, and there was a negative correlation between nest numbers and mosquito abundance. The anopheline mosquitoes were also less diverse and numerous in sites where chimpanzees were nesting as compared to those where they were feeding.
Conclusions
These observations suggest that the sites where chimpanzees build their nests every night might be selected, at least in part, in order to minimize contact with anopheline mosquitoes, which might lead to a reduced risk in acquiring malaria infections.
doi:10.1186/1475-2875-11-116
PMCID: PMC3515334  PMID: 22510395
Malaria; Chimpanzee; Anopheles; Plasmodium; Kibale National Park; Nesting behaviour
23.  No Evidence for Spread of Plasmodium falciparum Artemisinin Resistance to Savannakhet Province, Southern Laos 
We conducted an open-label, randomized clinical trial to assess parasite clearance times (PCT) and the efficacy of 4 mg/kg (group 1, n = 22) and 2 mg/kg (group 2, n = 22) of oral artesunate for three days followed by artemether-lumefantrine in patients with uncomplicated Plasmodium falciparum malaria at Xepon Interdistrict Hospital, Savannakhet Province in southern Laos. Slides were read in duplicate. The overall mean (95% confidence interval; range) PCT in hours was 23.2 (21.2–25.3; 12–46) and 22.4 (20.3–24.5; 12–46) for the first and second microscopists, respectively (P = 0.57). Ten (23%) patients remained parasitemic on day 1 after treatment (4 [18%] in group 1 and 6 [27%] in group 2; P = 0.47). No patient had patent asexual parasitemia on the second and third days of treatment. The 42-day polymerase chain reaction–corrected cure rates were 100% in both treatment groups. Serious adverse events did not develop during or after treatment in any patients. In conclusion, no evidence of P. falciparum in vivo resistance to artesunate was found in southern Laos.
doi:10.4269/ajtmh.2012.11-0497
PMCID: PMC3284353  PMID: 22403308
24.  Methotrexate Is Highly Potent Against Pyrimethamine-Resistant Plasmodium vivax 
The Journal of Infectious Diseases  2011;203(2):207-210.
Resistance of vivax malaria to treatment with antifolates, such as pyrimethamine (Pyr), is spreading as mutations in the dihydrofolatereductase (dhfr) genes are selected and disseminated. We tested the antitumor drug methotrexate (MTX), a potent competitive inhibitor of dhfr, against 11 Plasmodium vivax isolates ex vivo, 10 of which had multiple dhfr mutations associated with Pyr resistance. Despite high-grade resistance to Pyr (median 50% inhibitory concentration [IC50], 13,345 nM), these parasites were all highly susceptible to MTX (median IC50, 2.6 nM). Given its potency against Pyr-resistant P. vivax, the antimalarial potential of MTX deserves further investigation.
doi:10.1093/infdis/jiq024
PMCID: PMC3071051  PMID: 21288820
25.  The First Plasmodium vivax Relapses of Life Are Usually Genetically Homologous 
The Journal of Infectious Diseases  2011;205(4):680-683.
In a prospective infant cohort, 21 infants developed Plasmodium vivax malaria during their first year. Twelve of their mothers also had vivax malaria in the corresponding pregnancies or postpartum period. The genotypes of the maternal and infant infections were all different. Eight of the 12 mothers and 9 of the 21 infants had recurrent infections. Relapse parasite genotypes were different to the initial infection in 13 of 20 (65%) mothers compared with 5 of 24 (21%) infants (P = .02). The first P. vivax relapses of life are usually genetically homologous, whereas relapse in adults may result from activation of heterologous latent hypnozoites acquired from previous inoculations.
doi:10.1093/infdis/jir806
PMCID: PMC3266132  PMID: 22194628

Results 1-25 (51)