PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (58)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  Intervals to Plasmodium falciparum recurrence after anti-malarial treatment in pregnancy: a longitudinal prospective cohort 
Malaria Journal  2015;14:221.
Background
Plasmodium falciparum infections adversely affect pregnancy. Anti-malarial treatment failure is common. The objective of this study was to examine the duration of persistent parasite carriage following anti-malarial treatment in pregnancy.
Methods
The data presented here are a collation from previous studies carried out since 1994 in the Shoklo Malaria Research Unit (SMRU) on the Thailand-Myanmar border and performed using the same unique methodology detailed in the Materials and Methods section. Screening for malaria by microscopy is a routine part of weekly antenatal care (ANC) visits and therapeutic responses to anti-malarials were assessed in P. falciparum malaria cases. Women with microscopy confirmed P. falciparum malaria had a PCR blood spot from a finger-prick sample collected. Parasite DNA was extracted from the blood-spot samples using saponin lysis/Chelex extraction method and genotyped using polymorphic segments of MSP1, MSP2 and GLURP. Recurrent infections were classified by genotyping as novel, recrudescent or indeterminate. Factors associated with time to microscopy-detected recrudescence were analysed using multivariable regression techniques.
Results
From December 1994 to November 2009, 700 women were treated for P. falciparum and there were 909 recurrent episodes (481 novel and 428 recrudescent) confirmed by PCR genotyping. Most of the recurrences, 85 % (770/909), occurred after treatment with quinine monotherapy, artesunate monotherapy or artesunate-clindamycin. The geometric mean number of days to recurrence was significantly shorter in women with recrudescent infection, 24.5 (95 %: 23.4-25.8), compared to re-infection, 49.7 (95 %: 46.9-52.7), P <0.001. The proportion of recrudescent P. falciparum infections that occurred after days 28, 42 and 63 from the start of treatment was 29.1 % (124/428), 13.3 % (57/428) and 5.6 % (24/428). Recrudescent infections ≥100 days after treatment occurred with quinine and mefloquine monotherapy, and quinine + clindamycin and artesunate + atovaquone-proguanil combination therapy. Treatments containing an artemisinin derivative or an intercalated Plasmodium vivax infection increased the geometric mean interval to recrudescence by 1.28-fold (95 % CI: 1.09-1.51) and 2.19-fold (1.77-2.72), respectively. Intervals to recrudescence were decreased 0.83-fold (0.73-0.95) if treatment was not fully supervised (suggesting incomplete adherence) and 0.98-fold (0.96-0.99) for each doubling in baseline parasitaemia.
Conclusions
Prolonged time to recrudescence may occur in pregnancy, regardless of anti-malarial treatment. Long intervals to recrudescence are more likely with the use of artemisinin-containing treatments and also observed with intercalated P. vivax infections treated with chloroquine. Accurate determination of drug efficacy in pregnancy requires longer duration of follow-up, preferably until delivery or day 63, whichever occurs last.
doi:10.1186/s12936-015-0745-9
PMCID: PMC4449611  PMID: 26017553
2.  Spread of artemisinin-resistant Plasmodium falciparum in Myanmar: a cross-sectional survey of the K13 molecular marker 
The Lancet. Infectious Diseases  2015;15(4):415-421.
Summary
Background
Emergence of artemisinin resistance in southeast Asia poses a serious threat to the global control of Plasmodium falciparum malaria. Discovery of the K13 marker has transformed approaches to the monitoring of artemisinin resistance, allowing introduction of molecular surveillance in remote areas through analysis of DNA. We aimed to assess the spread of artemisinin-resistant P falciparum in Myanmar by determining the relative prevalence of P falciparum parasites carrying K13-propeller mutations.
Methods
We did this cross-sectional survey at malaria treatment centres at 55 sites in ten administrative regions in Myanmar, and in relevant border regions in Thailand and Bangladesh, between January, 2013, and September, 2014. K13 sequences from P falciparum infections were obtained mainly by passive case detection. We entered data into two geostatistical models to produce predictive maps of the estimated prevalence of mutations of the K13 propeller region across Myanmar.
Findings
Overall, 371 (39%) of 940 samples carried a K13-propeller mutation. We recorded 26 different mutations, including nine mutations not described previously in southeast Asia. In seven (70%) of the ten administrative regions of Myanmar, the combined K13-mutation prevalence was more than 20%. Geospatial mapping showed that the overall prevalence of K13 mutations exceeded 10% in much of the east and north of the country. In Homalin, Sagaing Region, 25 km from the Indian border, 21 (47%) of 45 parasite samples carried K13-propeller mutations.
Interpretation
Artemisinin resistance extends across much of Myanmar. We recorded P falciparum parasites carrying K13-propeller mutations at high prevalence next to the northwestern border with India. Appropriate therapeutic regimens should be tested urgently and implemented comprehensively if spread of artemisinin resistance to other regions is to be avoided.
Funding
Wellcome Trust–Mahidol University–Oxford Tropical Medicine Research Programme and the Bill & Melinda Gates Foundation.
doi:10.1016/S1473-3099(15)70032-0
PMCID: PMC4374103  PMID: 25704894
3.  Efficient in vitro refolding and functional characterization of recombinant human liver carboxylesterase (CES1) expressed in E. coli 
Highlights
•Expression of recombinant human carboxylesterase I in E. coli is mainly insoluble.•Refolding using a combination of 1% glycerol and 2 mM β-mercaptoethanol in Tris–HCl, pH 7.5 significantly improved solubility.•Purified recombinant human CES1 is functionally active and stable.•We provided efficient method to produce large amount and catalytically active CES1.
Human liver carboxylesterase 1 (CES1) plays a critical role in the hydrolysis of various ester- and amide-containing molecules, including active metabolites, drugs and prodrugs. However, it has been problematic to express recombinant CES1 in bacterial expression systems due to low solubility, with the CES1 protein being mainly expressed in inclusion bodies, accompanied by insufficient purity issues. In this study, we report an efficient in vitro method for refolding recombinant CES1 from inclusion bodies. A one-step purification with an immobilized-metal affinity column was utilized to purify His-tagged recombinant CES1. Conveniently, both denaturant and imidazole can be removed while the enzyme is refolded via buffer exchange, a dilution method. We show that the refolding of recombinant CES1 was successful in Tris–HCl at pH 7.5 containing a combination of 1% glycerol and 2 mM β-mercaptoethanol, whereas a mixture of other additives (trehalose, sorbitol and sucrose) and β-mercaptoethanol failed to recover a functional protein. His-tagged recombinant CES1 retains its biological activity after refolding and can be used directly without removing the fusion tag. Altogether, our results provide an alternative method for obtaining a substantial amount of functionally active protein, which is advantageous for further investigations such as structural and functional studies.
doi:10.1016/j.pep.2014.11.006
PMCID: PMC4294421  PMID: 25462813
Carboxylesterases; E. coli; Refolding; Inclusion bodies; Glycerol
4.  Assessment of therapeutic responses to gametocytocidal drugs in Plasmodium falciparum malaria 
Malaria Journal  2014;13:483.
Indirect clinical measures assessing anti-malarial drug transmission-blocking activity in falciparum malaria include measurement of the duration of gametocytaemia, the rate of gametocyte clearance or the area under the gametocytaemia-time curve (AUC). These may provide useful comparative information, but they underestimate dose-response relationships for transmission-blocking activity. Following 8-aminoquinoline administration P. falciparum gametocytes are sterilized within hours, whereas clearance from blood takes days. Gametocytaemia AUC and clearance times are determined predominantly by the more numerous female gametocytes, which are generally less drug sensitive than the minority male gametocytes, whereas transmission-blocking activity and thus infectivity is determined by the more sensitive male forms. In choosing doses of transmission-blocking drugs there is no substitute yet for mosquito-feeding studies.
doi:10.1186/1475-2875-13-483
PMCID: PMC4295364  PMID: 25486998
5.  Plasma Concentration of Parasite DNA as a Measure of Disease Severity in Falciparum Malaria 
The Journal of Infectious Diseases  2014;211(7):1128-1133.
In malaria-endemic areas, Plasmodium falciparum parasitemia is common in apparently healthy children and severe malaria is commonly misdiagnosed in patients with incidental parasitemia. We assessed whether the plasma Plasmodium falciparum DNA concentration is a useful datum for distinguishing uncomplicated from severe malaria in African children and Asian adults. P. falciparum DNA concentrations were measured by real-time polymerase chain reaction (PCR) in 224 African children (111 with uncomplicated malaria and 113 with severe malaria) and 211 Asian adults (100 with uncomplicated malaria and 111 with severe malaria) presenting with acute falciparum malaria. The diagnostic accuracy of plasma P. falciparum DNA concentrations in identifying severe malaria was 0.834 for children and 0.788 for adults, similar to that of plasma P. falciparum HRP2 levels and substantially superior to that of parasite densities (P < .0001). The diagnostic accuracy of plasma P. falciparum DNA concentrations plus plasma P. falciparum HRP2 concentrations was significantly greater than that of plasma P. falciparum HRP2 concentrations alone (0.904 for children [P = .004] and 0.847 for adults [P = .003]). Quantitative real-time PCR measurement of parasite DNA in plasma is a useful method for diagnosing severe falciparum malaria on fresh or archived plasma samples.
doi:10.1093/infdis/jiu590
PMCID: PMC4354984  PMID: 25344520
Plasmodium falciparum; malaria; severe disease; plasma DNA; diagnostic accuracy
6.  High-Throughput Ultrasensitive Molecular Techniques for Quantifying Low-Density Malaria Parasitemias 
Journal of Clinical Microbiology  2014;52(9):3303-3309.
The epidemiology of malaria in “low-transmission” areas has been underestimated. Molecular detection methods have revealed higher prevalences of malaria than conventional microscopy or rapid diagnostic tests, but these typically evaluate finger-prick capillary blood samples (∼5 μl) and therefore cannot detect parasite densities of <200/ml. Their use underestimates true parasite carriage rates. To characterize the epidemiology of malaria in low-transmission settings and plan elimination strategies, more sensitive quantitative PCR (qPCR) is needed to identify and quantify low-density malaria parasitemias. A highly sensitive “high-volume” quantitative PCR (qPCR) method based on Plasmodium sp. 18S RNA was adapted for blood sample volumes of ≥250 μl and scaled for high throughput. The methods were validated by assessment of the analytical sensitivity and specificity, diagnostic sensitivity, and specificity, efficiency, precision, analytical and diagnostic accuracies, limit of detection, root cause analysis of false positives, and robustness. The high-volume qPCR method based on Plasmodium sp. 18S RNA gave high PCR efficiency of 90 to 105%. Concentrations of parasite DNA from large volumes of blood gave a consistent analytical detection limit (LOD) of 22 parasites/ml (95% CI, 21.79 to 74.9), which is some 2,500 times more sensitive than conventional microscopy and 50 times more sensitive than currently used PCR methods from filter paper blood spots. The diagnostic specificity was 99.75%. Using automated procedures it was possible to process 700 blood samples per week. A very sensitive and specific high-throughput high-volume qPCR method for the detection of low-density parasitemias (>20 parasites/ml) was developed and validated.
doi:10.1128/JCM.01057-14
PMCID: PMC4313154  PMID: 24989601
7.  Thiamin supplementation does not reduce the frequency of adverse events after anti-malarial therapy among patients with falciparum malaria in southern Laos 
Malaria Journal  2014;13:275.
Background
In a recent study one third of Lao patients presenting with uncomplicated Plasmodium falciparum malaria had biochemical evidence of thiamin deficiency, which was associated with a higher incidence of adverse events. Thiamin supplementation might, therefore, reduce adverse events in this population.
Methods
An exploratory, double-blind, parallel group, placebo-controlled, superiority trial of thiamin supplementation in patients of all ages with uncomplicated and severe falciparum malaria was conducted in Xepon District, Savannakhet Province, southern Laos. Patients were randomly assigned to either oral thiamin 10 mg/day for 7 days immediately after standard anti-malarial treatment then 5 mg daily until day 42, or identical oral placebo.
Results
After interim analyses when 630 patients (314 in thiamin and 316 in placebo groups) had been recruited, the trial was discontinued on the grounds of futility. On admission biochemical thiamin deficiency (alpha ≥ 25%) was present in 27% of patients and 9% had severe deficiency (alpha > 31%). After 42 days of treatment, the frequency of thiamin deficiency was lower in the thiamin (2%, 1% severe) compared to the placebo (11%, 3% severe) groups (p < 0.001 and p = 0.05), respectively. Except for diarrhoea, 7% in the placebo compared to 3% in the thiamin group (p = 0.04), and dizziness on day 1 (33% vs 25%, p = 0.045), all adverse events were not significantly different between the groups (p > 0.05). Clinical, haematological, and parasitological responses to treatment did not differ significantly between the two groups.
Conclusion
Thiamin supplementation reduced biochemical thiamin deficiency among Lao malaria patients following anti-malarial drug treatment, but it did not reduce the frequency of adverse events after anti-malarial therapy or have any detected clinical or parasitological impact.
Trial registration
ISRCTN 85411059
doi:10.1186/1475-2875-13-275
PMCID: PMC4105794  PMID: 25027701
Plasmodium falciparum; Malaria; Treatment; Thiamin; Laos
8.  Genetic Variability of Plasmodium malariae dihydropteroate synthase (dhps) in Four Asian Countries 
PLoS ONE  2014;9(4):e93942.
The dihydropteroate synthase (dhps) genes of 44 P. malariae strains from four Asian countries were isolated. Only a limited number of polymorphisms were observed. Comparison with homologous mutations in other Plasmodium species showed that these polymorphisms are unlikely to be associated with sulfadoxine resistance.
doi:10.1371/journal.pone.0093942
PMCID: PMC3974843  PMID: 24699454
9.  A Population Survey of the Glucose-6-Phosphate Dehydrogenase (G6PD) 563C>T (Mediterranean) Mutation in Afghanistan 
PLoS ONE  2014;9(2):e88605.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzyme defect and an important problem in areas with Plasmodium vivax infection because of the risk of haemolysis following administration of primaquine to treat the liver forms of the parasite. We undertook a genotypic survey of 713 male individuals across nine provinces of Afghanistan in which malaria is found, four in the north and five in the east. RFLP typing at nucleotide position 563 detected 40 individuals with the Mediterranean mutation 563C>T, an overall prevalence of 5.6%. This varied according to self-reported ethnicity, with prevalence in the Pashtun/Pashai group of 33/369 (8.9%) compared to 7/344 individuals in the rest of the population (2.0%; p<0.001, Chi-squared test). Multivariate analysis of ethnicity and geographical location indicated an adjusted odds ratio of 3.50 (95% CI 1.36–9.02) for the Pashtun/Pashai group, while location showed only a trend towards higher prevalence in eastern provinces (adjusted odds ratio = 1.73, 0.73–4.13). Testing of known polymorphic markers (1311C>T in exon 11, and C93T in intron XI) in a subset of 82 individuals wild-type at C563 revealed a mixture of 3 haplotypes in the background population and was consistent with data from the 1000 Genomes Project and published studies. By comparison individuals with G6PD deficiency showed a highly skewed haplotype distribution, with 95% showing the CT haplotype, a finding consistent with relatively recent appearance and positive selection of the Mediterranean variant in Afghanistan. Overall, the data confirm that the Mediterranean variant of G6PD is common in many ethnic groups in Afghanistan, indicating that screening for G6PD deficiency is required in all individuals before radical treatment of P. vivax with primaquine.
doi:10.1371/journal.pone.0088605
PMCID: PMC3931629  PMID: 24586352
10.  Genetic Marker Suitable for Identification and Genotyping of Plasmodium ovale curtisi and Plasmodium ovale wallikeri 
Journal of Clinical Microbiology  2013;51(12):4213-4216.
We present a seminested PCR method that specifically discriminates between Plasmodium ovale curtisi and P. ovale wallikeri with high sensitivity. The test is based on species-specific amplification of a size-polymorphic fragment of the tryptophan-rich antigen gene, potra, which also permits discrimination of intraspecific sequence variants at this locus.
doi:10.1128/JCM.01527-13
PMCID: PMC3838052  PMID: 24068009
11.  An In-Solution Hybridisation Method for the Isolation of Pathogen DNA from Human DNA-rich Clinical Samples for Analysis by NGS 
The open genomics journal  2012;5:10.2174/1875693X01205010018.
Studies on DNA from pathogenic organisms, within clinical samples, are often complicated by the presence of large amounts of host, e.g., human DNA. Isolation of pathogen DNA from these samples would improve the efficiency of next-generation sequencing (NGS) and pathogen identification. Here we describe a solution-based hybridisation method for isolation of pathogen DNA from a mixed population. This straightforward and inexpensive technique uses probes made from whole-genome DNA and off-the-shelf reagents.
In this study, Escherichia coli DNA was successfully enriched from a mixture of E.coli and human DNA. After enrichment, genome coverage following NGS was significantly higher and the evenness of coverage and GC content were unaffected. This technique was also applied to samples containing a mixture of human and Plasmodium falciparum DNA. The P.falciparum genome is particularly difficult to sequence due to its high AT content (80.6%) and repetitive nature. Post enrichment, a bias in the recovered DNA was observed, with a poorer representation of the AT-rich non-coding regions. This uneven coverage was also observed in pre-enrichment samples, but to a lesser degree. Despite the coverage bias in enriched samples, SNP (single-nucleotide polymorphism) calling in coding regions was unaffected and the majority of samples had over 90% of their coding region covered at 5× depth.
This technique shows significant promise as an effective method to enrich pathogen DNA from samples with heavy human contamination, particularly when applied to GC-neutral genomes.
doi:10.2174/1875693X01205010018
PMCID: PMC3837216  PMID: 24273626
AT-rich DNA; clinical samples; E.coli; enrichment; host DNA contamination; in-solution hybridisation; next generation sequencing; P.falciparum
12.  Multiple populations of artemisinin-resistant Plasmodium falciparum in Cambodia 
Nature genetics  2013;45(6):10.1038/ng.2624.
We describe an analysis of genome variation in 825 Plasmodium falciparum samples from Asia and Africa that reveals an unusual pattern of parasite population structure at the epicentre of artemisinin resistance in western Cambodia. Within this relatively small geographical area we have discovered several distinct but apparently sympatric parasite subpopulations with extremely high levels of genetic differentiation. Of particular interest are three subpopulations, all associated with clinical resistance to artemisinin, which have skewed allele frequency spectra and remarkably high levels of haplotype homozygosity, indicative of founder effects and recent population expansion. We provide a catalogue of SNPs that show high levels of differentiation in the artemisinin-resistant subpopulations, including codon variants in various transporter proteins and DNA mismatch repair proteins. These data provide a population genetic framework for investigating the biological origins of artemisinin resistance and for defining molecular markers to assist its elimination.
doi:10.1038/ng.2624
PMCID: PMC3807790  PMID: 23624527
13.  Evaluation of the phenotypic test and genetic analysis in the detection of glucose-6-phosphate dehydrogenase deficiency 
Malaria Journal  2013;12:289.
Background
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is particularly prevalent in historically malaria-endemic countries. Although most individuals with G6PD deficiency are asymptomatic, deficiency can result in acute haemolytic anaemia after exposure to oxidative agents. A reliable test is necessary for diagnosing the deficiency to prevent an acute haemolytic crisis following, for example, anti-malarial treatment. The aim of this study was to investigate which method was the best predictor of this disorder.
Methods
The present study investigated four G6PD activity detections (fluorescence spot (FS), methaemoglobin reduction (MR), biochemical and cytochemical test). These methods accompanied with mutation analysis of blood samples were taken from 295 apparently healthy individuals with unknown G6PD deficiency status.
Results
Molecular characterization of 295 Thai adults revealed an overall prevalence of 14.2%. The G6PD Viangchan (871 G>A) was the most common (83.3%), followed by G6PD Mahidol (487G>A) (11.9%), and G6PD Union (1360 C>T) (4.8%). There were two cases of G6PD deficiency carrying the double mutations of Viangchan (871G > A)-Mahidol (487G > A) and Viangchan (871G > A)-Union (1360C > T). In comparison, the prevalence of G6PD deficiency was 6.1% by FS test and 7.1% by MR test. G6PD activity was 11 ± 2.5 IU/gHb in non-deficient females (mean ± SD), and 10.9 ± 0.6 IU/gHb in non-deficient males. The upper and lower limit cut-off points for partial and severe deficiency in adults were 5.7 IU/gHb (60% of the normal mean) and 0.95 IU/gHb (10% of the normal mean), respectively. All hemizygote, homozygote and double mutations were associated with severe enzyme deficiency (the residual enzyme activity <10% of the normal mean), whereas only 14.3% of the heterozygote mutations showed severe enzyme deficiency. Based on the cut-off value <5.7 IU/gHb, the quantitative G6PD assay diagnosed 83% of cases as G6PD-deficient. Using a cut-off number of negative cell >20% in the cytochemical assay to define G6PD deficiency, the prevalence of G6PD deficiency was closest to the molecular analysis (12.9% G6PD-deficient) compared to the others methods.
Conclusion
The cytochemical method is a significant predictor of this disease, while FS and MR test are recommended for the detection of severe G6PD deficiency in developing countries.
doi:10.1186/1475-2875-12-289
PMCID: PMC3765345  PMID: 23965028
Glucose-6-phosphate dehydrogenase deficiency; Fluorescent spot test; Methaemoglobin reduction test; Enzymatic assay; Cytochemical method
14.  Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing 
Nature  2012;487(7407):375-379.
Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.
doi:10.1038/nature11174
PMCID: PMC3738909  PMID: 22722859
15.  Microsatellite genotyping of Plasmodium vivax infections and their relapses in pregnant and non-pregnant patients on the Thai-Myanmar border 
Malaria Journal  2013;12:275.
Background
Plasmodium vivax infections in pregnancy are associated with low birth weight and anaemia. This parasites species is also characterised by relapses, erythrocytic infections initiated by the activation of the dormant liver stages, the hypnozoites, to mature. Genotyping of P. vivax using microsatellite markers has opened the way to comparative investigations of parasite populations. The aim of the study was to assess whether there were any differences between the parasites found in pregnant and non-pregnant patients, and/or between the admission infections and recurrent episodes during follow-up.
Methods
Blood samples were collected from 18 pregnant and 18 non-pregnant patients, who had at least two recurrent episodes during follow-up, that were recruited in two previous trials on the efficacy of chloroquine treatment of P. vivax infections on the Thai-Myanmar border. DNA was purified and the P. vivax populations genotyped with respect to eight polymorphic microsatellite markers. Analyses of the genetic diversity, multiplicity of infection (MOI), and a comparison of the genotypes in the samples from each patient were conducted.
Results
The P. vivax parasites present in the samples exhibited high genetic diversity (6 to 15 distinct allelic variants found for the 8 loci). Similar expected heterozygosity (He) values were obtained for isolates from pregnant (0.837) and non-pregnant patients (0.852). There were modest differences between the MOI values calculated for both admission and recurrence samples from the pregnant patients (2.00 and 2.05, respectively) and the equivalent samples from the non-pregnant patients (1.67 and 1.64, respectively). Furthermore, the mean number of distinct alleles enumerated in the admission samples from the pregnant (6.88) and non-pregnant (7.63) patients were significantly lower than that found in the corresponding recurrent episodes samples (9.25 and 9.63, respectively).
Conclusions
The P. vivax populations circulating in inhabitants along the Thai-Myanmar border, an area of low malaria transmission, displayed high genetic diversity. A subtle increase in the multiplicity of P. vivax infections in pregnant patients suggests a higher susceptibility to infection. The higher allelic diversity in the relapse as compared to the admission samples in both patient groups is consistent with the hypothesis that a febrile episode promotes the activation of hypnozoites.
doi:10.1186/1475-2875-12-275
PMCID: PMC3750759  PMID: 23915022
Genetic diversity; Malaria; Plasmodium vivax; Pregnancy; Relapse
16.  A Randomized Comparison of Dihydroartemisinin-Piperaquine and Artesunate-Amodiaquine Combined With Primaquine for Radical Treatment of Vivax Malaria in Sumatera, Indonesia 
The Journal of Infectious Diseases  2013;208(11):1906-1913.
Background. A high prevalence of chloroquine-resistant Plasmodium vivax in Indonesia has shifted first-line treatment to artemisinin-based combination therapies, combined with primaquine (PQ) for radical cure. Which combination is most effective and safe remains to be established.
Methods. We conducted a prospective open-label randomized comparison of 14 days of PQ (0.25 mg base/kg) plus either artesunate-amodiaquine (AAQ + PQ) or dihydroartemisinin-piperaquine (DHP + PQ) for the treatment of uncomplicated monoinfection P. vivax malaria in North Sumatera, Indonesia. Patients were randomized and treatments were given without prior testing for G6PD status. The primary outcome was parasitological failure at day 42. Patients were followed up to 1 year.
Results. Between December 2010 and April 2012, 331 patients were included. After treatment with AAQ + PQ, recurrent infection occurred in 0 of 167 patients within 42 days and in 15 of 130 (11.5%; 95% confidence interval [CI], 6.6%–18.3%) within a year. With DHP + PQ, this was 1 of 164 (0.6%; 95% CI, 0.01%–3.4%) and 13 of 143 (9.1%; 95% CI, 4.9%–15.0%), respectively (P > .2). Intravascular hemolysis occurred in 5 patients, of which 3 males were hemizygous for the G6PD-Mahidol mutation. Minor adverse events were more frequent with AAQ + PQ.
Conclusions. In North Sumatera, Indonesia, AAQ and DHP, both combined with PQ, were effective for blood-stage parasite clearance of uncomplicated P. vivax malaria. Both treatments were safe, but DHP + PQ was better tolerated.
Clinical Trials Registration. NCT01288820.
doi:10.1093/infdis/jit407
PMCID: PMC3814843  PMID: 23926329
primaquine; radical cure; Plasmodium vivax; Indonesia
17.  Prevalence of antifolate resistance mutations in Plasmodium falciparum isolates in Afghanistan 
Malaria Journal  2013;12:96.
Background
Artesunate plus sulphadoxine-pyrimethamine (AS+SP) is now first-line treatment for Plasmodium falciparum infection in several south Asian countries, including Afghanistan. Molecular studies provide a sensitive means to investigate the current state of drug susceptibility to the SP component, and can also provide information on the likely efficacy of other potential forms of artemisinin-combination therapy.
Methods
During the years 2007 to 2010, 120 blood spots from patients with P. falciparum malaria were obtained in four provinces of Afghanistan. PCR-based methods were used to detect drug-resistance mutations in dhfr, dhps, pfcrt and pfmdr1, as well as to determine copy number of pfmdr1.
Results
The majority (95.5%) of infections had a double mutation in the dhfr gene (C59R, S108N); no mutations at dhfr positions 16, 51 or 164 were seen. Most isolates were wild type across the dhps gene, but five isolates from the provinces of Kunar and Nangarhar in eastern Afghanistan had the triple mutation A437G / K540E / A581G; all five cases were successfully treated with three receiving AS+SP and two receiving dihydroartemisinin-piperaquine. All isolates showed the pfcrt SVNMT chloroquine resistance haplotype. Five of 79 isolates had the pfmdr1 N86Y mutation, while 52 had pfmdr1 Y184F; positions 1034, 1042 and 1246 were wild type in all isolates. The pfmdr1 gene was not amplified in any sample.
Conclusions
This study indicates that shortly after the adoption of AS+SP as first-line treatment in Afghanistan, most parasites had a double mutation haplotype in dhfr, and a small number of isolates from eastern Afghanistan harboured a triple mutation haplotype in dhps. The impact of these mutations on the efficacy of AS+SP remains to be assessed in significant numbers of patients, but these results are clearly concerning since they suggest a higher degree of SP resistance than previously detected. Further focused molecular and clinical studies in this region are urgently required.
doi:10.1186/1475-2875-12-96
PMCID: PMC3607912  PMID: 23497229
Plasmodium falciparum; Malaria; Artemisinin combination therapy; Sulphadoxine-pyrimethamine; Dihydrofolate reductase; Dihydropteroate synthase
18.  Malaria in the Post-Partum Period; a Prospective Cohort Study 
PLoS ONE  2013;8(3):e57890.
Background
Several studies have shown a prolonged or increased susceptibility to malaria in the post-partum period. A matched cohort study was conducted to evaluate prospectively the susceptibility to malaria of post-partum women in an area where P.falciparum and P.vivax are prevalent.
Methods
In an area of low seasonal malaria transmission on the Thai-Myanmar border pregnant women attending antenatal clinics were matched to a non-pregnant, non-post-partum control and followed up prospectively until 12 weeks after delivery.
Results
Post-partum women (n = 744) experienced significantly less P.falciparum episodes than controls (hazard ratio (HR) 0.39 (95%CI 0.21–0.72) p = 0.003) but significantly more P.vivax (HR 1.34 (1.05–1.72) p = 0.018). The reduced risk of falciparum malaria was accounted for by reduced exposure, whereas a history of P.vivax infection during pregnancy was a strong risk factor for P.vivax in post-partum women (HR 13.98 (9.13–21.41), p<0.001). After controlling for effect modification by history of P.vivax, post-partum women were not more susceptible to P.vivax than controls (HR: 0.33 (0.21–0.51), p<0.001). Genotyping of pre-and post-partum infections (n⊕ = ⊕10) showed that each post-partum P.falciparum was a newly acquired infection.
Conclusions
In this area of low seasonal malaria transmission post-partum women were less likely to develop falciparum malaria but more likely to develop vivax malaria than controls. This was explained by reduced risk of exposure and increased risk of relapse, respectively. There was no evidence for altered susceptibility to malaria in the post-partum period. The treatment of vivax malaria during and immediately after pregnancy needs to be improved.
doi:10.1371/journal.pone.0057890
PMCID: PMC3596341  PMID: 23516418
19.  Reduced Susceptibility of Plasmodium falciparum to Artesunate in Southern Myanmar 
PLoS ONE  2013;8(3):e57689.
Background
Plasmodium falciparum resistance to artemisinins, the first line treatment for malaria worldwide, has been reported in western Cambodia. Resistance is characterized by significantly delayed clearance of parasites following artemisinin treatment. Artemisinin resistance has not previously been reported in Myanmar, which has the highest falciparum malaria burden among Southeast Asian countries.
Methods
A non-randomized, single-arm, open-label clinical trial of artesunate monotherapy (4 mg/kg daily for seven days) was conducted in adults with acute blood-smear positive P. falciparum malaria in Kawthaung, southern Myanmar. Parasite density was measured every 12 hours until two consecutive negative smears were obtained. Participants were followed weekly at the study clinic for three additional weeks. Co-primary endpoints included parasite clearance time (the time required for complete clearance of initial parasitemia), parasite clearance half-life (the time required for parasitemia to decrease by 50% based on the linear portion of the parasite clearance slope), and detectable parasitemia 72 hours after commencement of artesunate treatment. Drug pharmacokinetics were measured to rule out delayed clearance due to suboptimal drug levels.
Results
The median (range) parasite clearance half-life and time were 4.8 (2.1–9.7) and 60 (24–96) hours, respectively. The frequency distributions of parasite clearance half-life and time were bimodal, with very slow parasite clearance characteristic of the slowest-clearing Cambodian parasites (half-life longer than 6.2 hours) in approximately 1/3 of infections. Fourteen of 52 participants (26.9%) had a measurable parasitemia 72 hours after initiating artesunate treatment. Parasite clearance was not associated with drug pharmacokinetics.
Conclusions
A subset of P. falciparum infections in southern Myanmar displayed markedly delayed clearance following artemisinin treatment, suggesting either emergence of artemisinin resistance in southern Myanmar or spread to this location from its site of origin in western Cambodia. Resistance containment efforts are underway in Myanmar.
Trial Registration
Australian New Zealand Clinical Trials Registry ACTRN12610000896077
doi:10.1371/journal.pone.0057689
PMCID: PMC3592920  PMID: 23520478
20.  Effect of High-Dose or Split-Dose Artesunate on Parasite Clearance in Artemisinin-Resistant Falciparum Malaria 
New treatment strategies are needed for artemisinin-resistant falciparum malaria. This randomized trial shows that neither increasing nor splitting the standard once-daily artesunate dose reverses the markedly reduced parasite clearance rate in patients with artemisinin-resistant falciparum malaria.
Background. The emergence of Plasmodium falciparum resistance to artemisinins on the Cambodian and Myanmar-Thai borders poses severe threats to malaria control. We investigated whether increasing or splitting the dose of the short-half-life drug artesunate improves parasite clearance in falciparum malaria in the 2 regions.
Methods. In Pailin, western Cambodia (from 2008 to 2010), and Wang Pha, northwestern Thailand (2009–2010), patients with uncomplicated falciparum malaria were randomized to oral artesunate 6 mg/kg/d as a once-daily or twice-daily dose for 7 days, or artesunate 8 mg/kg/d as a once-daily or twice-daily dose for 3 days, followed by mefloquine. Parasite clearance and recrudescence for up to 63 days of follow-up were assessed.
Results. A total of 159 patients were enrolled. Overall median (interquartile range [IQR]) parasitemia half-life (half-life) was 6.03 (4.89–7.28) hours in Pailin versus 3.42 (2.20–4.85) hours in Wang Pha (P = .0001). Splitting or increasing the artesunate dose did not shorten half-life in either site. Pharmacokinetic profiles of artesunate and dihydroartemisinin were similar between sites and did not correlate with half-life. Recrudescent infections occurred in 4 of 79 patients in Pailin and 5 of 80 in Wang Pha and was not different between treatment arms (P = .68).
Conclusions. Increasing the artesunate treatment dose up to 8 mg/kg/d or splitting the dose does not improve parasite clearance in either artemisinin resistant or more sensitive infections with P. falciparum.
Clinical Trials Registration. ISRCTN15351875.
doi:10.1093/cid/cis958
PMCID: PMC3563392  PMID: 23175556
artemisinins; drug resistance; Plasmodium falciparum; neutropenia; reticulocytopenia
21.  Artemisinin Resistance in Plasmodium falciparum Malaria 
The New England journal of medicine  2009;361(5):455-467.
BACKGROUND
Artemisinin-based combination therapies are the recommended first-line treatments of falciparum malaria in all countries with endemic disease. There are recent concerns that the efficacy of such therapies has declined on the Thai–Cambodian border, historically a site of emerging antimalarial-drug resistance.
METHODS
In two open-label, randomized trials, we compared the efficacies of two treatments for uncomplicated falciparum malaria in Pailin, western Cambodia, and Wang Pha, northwestern Thailand: oral artesunate given at a dose of 2 mg per kilogram of body weight per day, for 7 days, and artesunate given at a dose of 4 mg per kilogram per day, for 3 days, followed by mefloquine at two doses totaling 25 mg per kilogram. We assessed in vitro and in vivo Plasmodium falciparum susceptibility, artesunate pharmacokinetics, and molecular markers of resistance.
RESULTS
We studied 40 patients in each of the two locations. The overall median parasite clearance times were 84 hours (interquartile range, 60 to 96) in Pailin and 48 hours (interquartile range, 36 to 66) in Wang Pha (P<0.001). Recrudescence confirmed by means of polymerase-chain-reaction assay occurred in 6 of 20 patients (30%) receiving artesunate monotherapy and 1 of 20 (5%) receiving artesunate–mefloquine therapy in Pailin, as compared with 2 of 20 (10%) and 1 of 20 (5%), respectively, in Wang Pha (P = 0.31). These markedly different parasitologic responses were not explained by differences in age, artesunate or dihydroartemisinin pharmacokinetics, results of isotopic in vitro sensitivity tests, or putative molecular correlates of P. falciparum drug resistance (mutations or amplifications of the gene encoding a multidrug resistance protein [PfMDR1] or mutations in the gene encoding sarco–endoplasmic reticulum calcium ATPase6 [PfSERCA]). Adverse events were mild and did not differ significantly between the two treatment groups.
CONCLUSIONS
P. falciparum has reduced in vivo susceptibility to artesunate in western Cambodia as compared with northwestern Thailand. Resistance is characterized by slow parasite clearance in vivo without corresponding reductions on conventional in vitro susceptibility testing. Containment measures are urgently needed. (ClinicalTrials.gov number, NCT00493363, and Current Controlled Trials number, ISRCTN64835265.)
doi:10.1056/NEJMoa0808859
PMCID: PMC3495232  PMID: 19641202
23.  Long-term storage limits PCR-based analyses of malaria parasites in archival dried blood spots 
Malaria Journal  2012;11:339.
Background
Blood samples collected in epidemiological and clinical investigations and then stored, often at room temperature, as blood spots dried on a filter paper have become one of the most popular source of material for further molecular analyses of malaria parasites. The dried blood spots are often archived so that they can be used for further retrospective investigations of parasite prevalence, or as new genetic markers come to the fore. However, the suitability of the template obtained from dried blood spots that have been stored for long periods for DNA amplification is not known.
Methods
DNA from 267 archived blood spots collected over a period of 12 years from persons with microscopically confirmed Plasmodium falciparum infection was purified by one of two methods, Chelex and Qiagen columns. These templates were subjected to highly sensitive nested PCR amplification targeting three parasite loci that differ in length and/or copy number.
Results
When a 1.6 kb fragment of the parasites’ small subunit ribosomal RNA was targeted (primary amplification), the efficiency of P. falciparum detection decreased in samples archived for more than six years, reaching very low levels for those stored for more than 10 years. Positive amplification was generally obtained more often with Qiagen-extracted templates. P. falciparum could be detected in 32 of the 40 negative Qiagen-extracted templates when a microsatellite of about 180 bp was targeted. The remaining eight samples gave a positive amplification when a small region of 238 bp of the higher copy number (20 to 200) mitochondrial genome was targeted.
Conclusions
The average length of DNA fragments that can be recovered from dried blood spots decreases with storage time. Recovery of the DNA is somewhat improved, especially in older samples, by the use of a commercial DNA purification column, but targets larger than 1.5 kb are unlikely to be present 10 years after the initial blood collection, when the average length of the DNA fragments present is likely to be around a few hundred bp. In conclusion, the utility of archived dried blood spots for molecular analyses decreases with storage time.
doi:10.1186/1475-2875-11-339
PMCID: PMC3507721  PMID: 23043522
Archival blood spots; Plasmodium falciparum; Polymerase chain reaction
24.  A major genome region underlying artemisinin resistance in malaria 
Science (New York, N.y.)  2012;336(6077):79-82.
Evolving resistance to artemisinin-based compounds threatens to derail attempts to control malaria. Resistance has been confirmed in western Cambodia, has recently emerged in western Thailand, but is absent from neighboring Laos. Artemisinin resistance results in reduced parasite clearance rates (CR) following treatment. We used a two-phase strategy to identify genome region(s) underlying this ongoing selective event. Geographical differentiation and haplotype structure at 6,969 polymorphic SNPs in 91 parasites from Cambodia, Thailand and Laos identified 33 genome regions under strong selection. We screened SNPs and microsatellites within these regions in 715 parasites from Thailand, identifying a selective sweep on chr 13 that shows strong association (P=10-6-10-12) with slow CR, illustrating the efficacy of targeted association for identifying the genetic basis of adaptive traits.
doi:10.1126/science.1215966
PMCID: PMC3355473  PMID: 22491853
25.  Sequence variation does not confound the measurement of plasma PfHRP2 concentration in African children presenting with severe malaria 
Malaria Journal  2012;11:276.
Background
Plasmodium falciparum histidine-rich protein PFHRP2 measurement is used widely for diagnosis, and more recently for severity assessment in falciparum malaria. The Pfhrp2 gene is highly polymorphic, with deletion of the entire gene reported in both laboratory and field isolates. These issues potentially confound the interpretation of PFHRP2 measurements.
Methods
Studies designed to detect deletion of Pfhrp2 and its paralog Pfhrp3 were undertaken with samples from patients in seven countries contributing to the largest hospital-based severe malaria trial (AQUAMAT). The quantitative relationship between sequence polymorphism and PFHRP2 plasma concentration was examined in samples from selected sites in Mozambique and Tanzania.
Results
There was no evidence for deletion of either Pfhrp2 or Pfhrp3 in the 77 samples with lowest PFHRP2 plasma concentrations across the seven countries. Pfhrp2 sequence diversity was very high with no haplotypes shared among 66 samples sequenced. There was no correlation between Pfhrp2 sequence length or repeat type and PFHRP2 plasma concentration.
Conclusions
These findings indicate that sequence polymorphism is not a significant cause of variation in PFHRP2 concentration in plasma samples from African children. This justifies the further development of plasma PFHRP2 concentration as a method for assessing African children who may have severe falciparum malaria. The data also add to the existing evidence base supporting the use of rapid diagnostic tests based on PFHRP2 detection.
doi:10.1186/1475-2875-11-276
PMCID: PMC3480887  PMID: 22898068
Malaria; Falciparum; Severe; Africa; Histidine-rich protein; Tandem repeat

Results 1-25 (58)