PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (75)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
1.  C11ORF95-RELA FUSIONS DRIVE ONCOGENIC NF-KB SIGNALING IN EPENDYMOMA 
Neuro-Oncology  2014;16(Suppl 3):iii16.
BACKGROUND: The nuclear factor-kB (NF-kB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-kB signaling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-kB activity in cancer. METHODS: To identify additional genetic alterations that drive ependymoma, we sequenced the whole genomes (WGS) of 41 tumours and matched normal blood, and the transcriptomes (RNAseq) of 77 tumours. The transforming significance of alterations were tested in mouse NSCs that we showed previously to be cells of origin of ependymoma. RESULTS: Here, we show that more than two thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-kB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-kB target genes, and rapidly transformed neural stem cells—the cell of origin of ependymoma—to form these tumours in mice. CONCLUSIONS: Our data identify the first highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma. SECONDARY CATEGORY: Neuropathology & Tumor Biomarkers.
doi:10.1093/neuonc/nou206.57
PMCID: PMC4144525
2.  Epigenomic analysis of the HOX gene loci reveals mechanisms that may control canonical expression patterns in AML and normal hematopoietic cells 
Leukemia  2015;29(6):1279-1289.
HOX genes are highly expressed in many acute myeloid leukemia (AML) samples, but the patterns of expression and associated regulatory mechanisms are not clearly understood. We analyzed RNA sequencing data from 179 primary AML samples and normal hematopoietic cells to understand the range of expression patterns in normal versus leukemic cells. HOX expression in AML was restricted to specific genes in the HOXA or HOXB loci, and was highly correlated with recurrent cytogenetic abnormalities. However, the majority of samples expressed a canonical set of HOXA and HOXB genes that was nearly identical to the expression signature of normal hematopoietic stem/progenitor cells (HSPCs). Transcriptional profiles at the HOX loci were similar between normal cells and AML samples, and involved bidirectional transcription at the center of each gene cluster. Epigenetic analysis of a subset of AML samples also identified common regions of chromatin accessibility in AML samples and normal CD34+ cells that displayed differences in methylation depending on HOX expression patterns. These data provide an integrated epigenetic view of the HOX gene loci in primary AML samples, and suggest that HOX expression in most AML samples represents a normal stem cell program that is controlled by epigenetic mechanisms at specific regulatory elements.
doi:10.1038/leu.2015.6
PMCID: PMC4456213  PMID: 25600023
3.  A Dominant Mutation in Hexokinase 1 (HK1) Causes Retinitis Pigmentosa 
Purpose.
To identify the cause of retinitis pigmentosa (RP) in UTAD003, a large, six-generation Louisiana family with autosomal dominant retinitis pigmentosa (adRP).
Methods.
A series of strategies, including candidate gene screening, linkage exclusion, genome-wide linkage mapping, and whole-exome next-generation sequencing, was used to identify a mutation in a novel disease gene on chromosome 10q22.1. Probands from an additional 404 retinal degeneration families were subsequently screened for mutations in this gene.
Results.
Exome sequencing in UTAD003 led to identification of a single, novel coding variant (c.2539G>A, p.Glu847Lys) in hexokinase 1 (HK1) present in all affected individuals and absent from normal controls. One affected family member carries two copies of the mutation and has an unusually severe form of disease, consistent with homozygosity for this mutation. Screening of additional adRP probands identified four other families (American, Canadian, and Sicilian) with the same mutation and a similar range of phenotypes. The families share a rare 450-kilobase haplotype containing the mutation, suggesting a founder mutation among otherwise unrelated families.
Conclusions.
We identified an HK1 mutation in five adRP families. Hexokinase 1 catalyzes phosphorylation of glucose to glucose-6-phosphate. HK1 is expressed in retina, with two abundant isoforms expressed at similar levels. The Glu847Lys mutation is located at a highly conserved position in the protein, outside the catalytic domains. We hypothesize that the effect of this mutation is limited to the retina, as no systemic abnormalities in glycolysis were detected. Prevalence of the HK1 mutation in our cohort of RP families is 1%.
Mutations in a novel gene, hexokinase 1 (HK1), account for 1% of cases of autosomal dominant retinitis pigmentosa.
doi:10.1167/iovs.14-15419
PMCID: PMC4224580  PMID: 25190649
retinitis pigmentosa; hexokinase; inherited retinal dystrophy
4.  The R882H DNMT3A Mutation Associated with AML Dominantly Inhibits WT DNMT3A by Blocking its Ability to Form Active Tetramers 
Cancer cell  2014;25(4):442-454.
Summary
Somatic mutations in DNMT3A, which encodes a de novo DNA methyltransferase, are found in ~30% of normal karyotype acute myeloid leukemia (AML) cases. Most mutations are heterozygous and alter R882 within the catalytic domain (most commonly R882H), suggesting the possibility of dominant negative consequences. The methyltransferase activity of R882H DNMT3A is reduced by ~80% compared to the WT enzyme. In vitro mixing of WT and R882H DNMT3A does not affect the WT activity but co-expression of the two proteins in cells profoundly inhibits the WT enzyme by disrupting its ability to homotetramerize. AML cells with the R882H mutation have severely reduced de novo methyltransferase activity and focal hypomethylation at specific CpGs throughout AML cell genomes.
doi:10.1016/j.ccr.2014.02.010
PMCID: PMC4018976  PMID: 24656771
5.  TYK2 Protein-Coding Variants Protect against Rheumatoid Arthritis and Autoimmunity, with No Evidence of Major Pleiotropic Effects on Non-Autoimmune Complex Traits 
PLoS ONE  2015;10(4):e0122271.
Despite the success of genome-wide association studies (GWAS) in detecting a large number of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack of information on the causal genes leaves important challenges to interpret GWAS results in the context of the disease biology. Here, we genetically fine-map the RA risk locus at 19p13 to define causal variants, and explore the pleiotropic effects of these same variants in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092 case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and targeted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three protein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A (rs34536443, OR = 0.66, P = 2.3x10-21), A928V (rs35018800, OR = 0.53, P = 1.2x10-9), and I684S (rs12720356, OR = 0.86, P = 4.6x10-7). Second, we show that the same three TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6x10-18), and provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also protect against inflammatory bowel disease (IBD; Pomnibus = 0.005). Finally, in a phenome-wide association study (PheWAS) assessing >500 phenotypes using electronic medical records (EMR) in >29,000 subjects, we found no convincing evidence for association of P1104A and A928V with complex phenotypes other than autoimmune diseases such as RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target for the treatment of autoimmune diseases.
doi:10.1371/journal.pone.0122271
PMCID: PMC4388675  PMID: 25849893
6.  Genetic Heterogeneity of Induced Pluripotent Stem Cells: Results from 24 Clones Derived from a Single C57BL/6 Mouse 
PLoS ONE  2015;10(3):e0120585.
Induced pluripotent stem cells (iPSCs) have tremendous potential as a tool for disease modeling, drug testing, and other applications. Since the generation of iPSCs “captures” the genetic history of the individual cell that was reprogrammed, iPSC clones (even those derived from the same individual) would be expected to demonstrate genetic heterogeneity. To assess the degree of genetic heterogeneity, and to determine whether some cells are more genetically “fit” for reprogramming, we performed exome sequencing on 24 mouse iPSC clones derived from skin fibroblasts obtained from two different sites of the same 8-week-old C57BL/6J male mouse. While no differences in the coding regions were detected in the two parental fibroblast pools, each clone had a unique genetic signature with a wide range of heterogeneity observed among the individual clones: a total of 383 iPSC variants were validated for the 24 clones (mean 16.0/clone, range 0–45). Since these variants were all present in the vast majority of the cells in each clone (variant allele frequencies of 40–60% for heterozygous variants), they most likely preexisted in the individual cells that were reprogrammed, rather than being acquired during reprogramming or cell passaging. We then tested whether this genetic heterogeneity had functional consequences for hematopoietic development by generating hematopoietic progenitors in vitro and enumerating colony forming units (CFUs). While there was a range of hematopoietic potentials among the 24 clones, only one clone failed to differentiate into hematopoietic cells; however, it was able to form a teratoma, proving its pluripotent nature. Further, no specific association was found between the mutational spectrum and the hematopoietic potential of each iPSC clone. These data clearly highlight the genetic heterogeneity present within individual fibroblasts that is captured by iPSC generation, and suggest that most of the changes are random, and functionally benign.
doi:10.1371/journal.pone.0120585
PMCID: PMC4370741  PMID: 25799070
7.  Functional heterogeneity of genetically defined subclones in acute myeloid leukemia 
Cancer cell  2014;25(3):379-392.
Summary
The relationships between clonal architecture and functional heterogeneity in acute myeloid leukemia (AML) samples are not yet clear. We used targeted sequencing to track AML subclones identified by whole genome sequencing using a variety of experimental approaches. We found that virtually all AML subclones trafficked from the marrow to the peripheral blood, but some were enriched in specific cell populations. Subclones showed variable engraftment potential in immunodeficient mice. Xenografts were predominantly comprised of a single genetically-defined subclone, but there was no predictable relationship between the engrafting subclone and the evolutionary hierarchy of the leukemia. These data demonstrate the importance of integrating genetic and functional data in studies of primary cancer samples, both in xenograft models and in patients.
doi:10.1016/j.ccr.2014.01.031
PMCID: PMC3983786  PMID: 24613412
8.  The Common Marmoset Genome Provides Insight into Primate Biology and Evolution 
Worley, Kim C. | Warren, Wesley C. | Rogers, Jeffrey | Locke, Devin | Muzny, Donna M. | Mardis, Elaine R. | Weinstock, George M. | Tardif, Suzette D. | Aagaard, Kjersti M. | Archidiacono, Nicoletta | Rayan, Nirmala Arul | Batzer, Mark A. | Beal, Kathryn | Brejova, Brona | Capozzi, Oronzo | Capuano, Saverio B. | Casola, Claudio | Chandrabose, Mimi M. | Cree, Andrew | Dao, Marvin Diep | de Jong, Pieter J. | del Rosario, Ricardo Cruz-Herrera | Delehaunty, Kim D. | Dinh, Huyen H. | Eichler, Evan | Fitzgerald, Stephen | Flicek, Paul | Fontenot, Catherine C. | Fowler, R. Gerald | Fronick, Catrina | Fulton, Lucinda A. | Fulton, Robert S. | Gabisi, Ramatu Ayiesha | Gerlach, Daniel | Graves, Tina A. | Gunaratne, Preethi H. | Hahn, Matthew W. | Haig, David | Han, Yi | Harris, R. Alan | Herrero, Javier M. | Hillier, LaDeana W. | Hubley, Robert | Hughes, Jennifer F. | Hume, Jennifer | Jhangiani, Shalini N. | Jorde, Lynn B. | Joshi, Vandita | Karakor, Emre | Konkel, Miriam K. | Kosiol, Carolin | Kovar, Christie L. | Kriventseva, Evgenia V. | Lee, Sandra L. | Lewis, Lora R. | Liu, Yih-shin | Lopez, John | Lopez-Otin, Carlos | Lorente-Galdos, Belen | Mansfield, Keith G. | Marques-Bonet, Tomas | Minx, Patrick | Misceo, Doriana | Moncrieff, J. Scott | Morgan, Margaret B. | Muthuswamy, Raveendran | Nazareth, Lynne V. | Newsham, Irene | Nguyen, Ngoc Bich | Okwuonu, Geoffrey O. | Prabhakar, Shyam | Perales, Lora | Pu, Ling-Ling | Puente, Xose S. | Quesada, Victor | Ranck, Megan C. | Raney, Brian J. | Deiros, David Rio | Rocchi, Mariano | Rodriguez, David | Ross, Corinna | Ruffier, Magali | Ruiz, San Juana | Sajjadian, S. | Santibanez, Jireh | Schrider, Daniel R. | Searle, Steve | Skaletsky, Helen | Soibam, Benjamin | Smit, Arian F. A. | Tennakoon, Jayantha B. | Tomaska, Lubomir | Ullmer, Brygg | Vejnar, Charles E. | Ventura, Mario | Vilella, Albert J. | Vinar, Tomas | Vogel, Jan-Hinnerk | Walker, Jerilyn A. | Wang, Qing | Warner, Crystal M. | Wildman, Derek E. | Witherspoon, David J. | Wright, Rita A. | Wu, Yuanqing | Xiao, Weimin | Xing, Jinchuan | Zdobnov, Evgeny M. | Zhu, Baoli | Gibbs, Richard A. | Wilson, Richard K.
Nature genetics  2014;46(8):850-857.
A first analysis of the genome sequence of the common marmoset (Callithrix jacchus), assembled using traditional Sanger methods and Ensembl annotation, has permitted genomic comparison with apes and that old world monkeys and the identification of specific molecular features a rapid reproductive capacity partly due to may contribute to the unique biology of diminutive The common marmoset has prevalence of this dizygotic primate. twins. Remarkably, these twins share placental circulation and exchange hematopoietic stem cells in utero, resulting in adults that are hematopoietic chimeras.
We observed positive selection or non-synonymous substitutions for genes encoding growth hormone / insulin-like growth factor (growth pathways), respiratory complex I (metabolic pathways), immunobiology, and proteases (reproductive and immunity pathways). In addition, both protein-coding and microRNA genes related to reproduction exhibit rapid sequence evolution. This New World monkey genome sequence enables significantly increased power for comparative analyses among available primate genomes and facilitates biomedical research application.
doi:10.1038/ng.3042
PMCID: PMC4138798  PMID: 25038751
9.  The DNA Double-Strand Break Response Is Abnormal in Myeloblasts From Patients With Therapy-Related Acute Myeloid Leukemia 
Leukemia  2013;28(6):1242-1251.
The complex chromosomal aberrations found in therapy related acute myeloid leukemia (t-AML) suggest that the DNA double strand break (DSB) response may be altered. In this study we examined the DNA DSB response of primary bone marrow cells from t-AML patients and performed next-generation sequencing of 37 canonical homologous recombination (HR) and non-homologous end-joining (NHEJ) DNA repair genes, and a subset of DNA damage response genes using tumor and paired normal DNA obtained from t-AML patients. Our results suggest that the majority of t-AML patients (11 of 15) have tumor cell-intrinsic, functional dysregulation of their DSB response. Distinct patterns of abnormal DNA damage response in myeloblasts correlated with acquired genetic alterations in TP53 and the presence of inferred chromothripsis. Furthermore, the presence of trisomy 8 in tumor cells was associated with persistently elevated levels of DSBs. Although tumor-acquired point mutations or small indels in canonical HR and NHEJ genes do not appear to be a dominant means by which t-AML leukemogenesis occurs, our functional studies suggest that an abnormal response to DNA damage is a common finding in t-AML.
doi:10.1038/leu.2013.368
PMCID: PMC4047198  PMID: 24304937
therapy-related AML; DNA damage; DNA repair; Trisomy 8
10.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma 
Nature genetics  2014;46(5):444-450.
Pediatric high-grade glioma (HGG) is a devastating disease with a two-year survival of less than 20%1. We analyzed 127 pediatric HGGs, including diffuse intrinsic pontine gliomas (DIPGs) and non-brainstem HGGs (NBS-HGGs) by whole genome, whole exome, and/or transcriptome sequencing. We identified recurrent somatic mutations in ACVR1 exclusively in DIPG (32%), in addition to the previously reported frequent somatic mutations in histone H3, TP53 and ATRX in both DIPG and NBS-HGGs2-5. Structural variants generating fusion genes were found in 47% of DIPGs and NBS-HGGs, with recurrent fusions involving the neurotrophin receptor genes NTRK1, 2, or 3 in 40% of NBS-HGGs in infants. Mutations targeting receptor tyrosine kinase/RAS/PI3K signaling, histone modification or chromatin remodeling, and cell cycle regulation were found in 68%, 73% and 59%, respectively, of pediatric HGGs, including DIPGs and NBS-HGGs. This comprehensive analysis provides insights into the unique and shared pathways driving pediatric HGG within and outside the brainstem.
doi:10.1038/ng.2938
PMCID: PMC4056452  PMID: 24705251
11.  Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators 
Nature  2014;508(7497):494-499.
The human X and Y chromosomes evolved from an ordinary pair of autosomes, but millions of years ago genetic decay ravaged the Y chromosome, and only three percent of its ancestral genes survived. We reconstructed the evolution of the Y chromosome across eight mammals to identify biases in gene content and the selective pressures that preserved the surviving ancestral genes. Our findings indicate that survival was non-random, and in two cases, convergent across placental and marsupial mammals. We conclude that the Y chromosome's gene content became specialized through selection to maintain the ancestral dosage of homologous X-Y gene pairs that function as broadly expressed regulators of transcription, translation and protein stability. We propose that beyond its roles in testis determination and spermatogenesis, the Y chromosome is essential for male viability, and plays unappreciated roles in Turner syndrome and in phenotypic differences between the sexes in health and disease.
doi:10.1038/nature13206
PMCID: PMC4139287  PMID: 24759411
12.  C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma 
Nature  2014;506(7489):451-455.
The nuclear factor-κB (NF-κB) family of transcriptional regulators are central mediators of the cellular inflammatory response. Although constitutive NF-κB signaling is present in most human tumours, mutations in pathway members are rare, complicating efforts to understand and block aberrant NF-κB activity in cancer. Here, we show that more than two thirds of supratentorial ependymomas contain oncogenic fusions between RELA, the principal effector of canonical NF-κB signalling, and an uncharacterized gene, C11orf95. In each case, C11orf95-RELA fusions resulted from chromothripsis involving chromosome 11q13.1. C11orf95-RELA fusion proteins translocated spontaneously to the nucleus to activate NF-κB target genes, and rapidly transformed neural stem cells—the cell of origin of ependymoma—to form these tumours in mice. Our data identify the first highly recurrent genetic alteration of RELA in human cancer, and the C11orf95-RELA fusion protein as a potential therapeutic target in supratentorial ependymoma.
doi:10.1038/nature13109
PMCID: PMC4050669  PMID: 24553141
13.  Application of Next-Generation Sequencing to Identify Genes and Mutations Causing Autosomal Dominant Retinitis Pigmentosa (adRP) 
The goal of our research is to identify genes and mutations causing auto-somal dominant retinitis pigmentosa (adRP). For this purpose we established a cohort of more than 250 independently ascertained families with adRP in the Houston Laboratory for Molecular Diagnosis of Inherited Eye Diseases. Affected members of each family were screened for disease-causing mutations in genes and gene regions that are commonly associated with adRP. By this approach, we detected mutations in 65 % of the families, leaving 85 families that are likely to harbor mutations outside of the “common” regions or in novel genes. Of these, 32 families were tested by several types of next-generation sequencing (NGS), including (a) targeted polymerase chain reaction (PCR) NGS, (b) whole exome NGS, and (c) targeted retinal-capture NGS. We detected mutations in 11 of these families (31 %) bringing the total detected in the adRP cohort to 70 %. Several large families have also been tested for linkage using Afymetrix single nucleotide polymorphism (SNP) arrays.
doi:10.1007/978-1-4614-3209-8_16
PMCID: PMC4121110  PMID: 24664689
Retinitis pigmentosa; Next-generation sequencing; Linkage mapping; Mutation prevalence; Retinal gene capture; Whole-exome sequencing
14.  Integrated Analysis of Germline and Somatic Variants in Ovarian Cancer 
Nature communications  2014;5:3156.
We report the first large-scale exome-wide analysis of the combined germline-somatic landscape in ovarian cancer. Here we analyze germline and somatic alterations in 429 ovarian carcinoma cases and 557 controls. We identify 3,635 high confidence, rare truncation and 22,953 missense variants with predicted functional impact. We find germline truncation variants and large deletions across Fanconi pathway genes in 20% of cases. Enrichment of rare truncations is shown in BRCA1, BRCA2, and PALB2. Additionally, we observe germline truncation variants in genes not previously associated with ovarian cancer susceptibility (NF1, MAP3K4, CDKN2B, and MLL3). Evidence for loss of heterozygosity was found in 100% and 76% of cases with germline BRCA1 and BRCA2 truncations respectively. Germline-somatic interaction analysis combined with extensive bioinformatics annotation identifies 237 candidate functional germline truncation and missense variants, including 2 pathogenic BRCA1 and 1 TP53 deleterious variants. Finally, integrated analyses of germline and somatic variants identify significantly altered pathways, including the Fanconi, MAPK, and MLL pathways.
doi:10.1038/ncomms4156
PMCID: PMC4025965  PMID: 24448499
15.  Clonal Architecture of Secondary Acute Myeloid Leukemia Defined by Single-Cell Sequencing 
PLoS Genetics  2014;10(7):e1004462.
Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions—the population frequency of individual clones, their genetic composition, and their evolutionary relationships—which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.
Author Summary
Human cancers are genetically diverse populations of cells that evolve over the course of their natural history or in response to the selective pressure of therapy. In theory, it is possible to infer how this variation is structured into related populations of cells based on the frequency of individual mutations in bulk samples, but the accuracy of these models has not been evaluated across a large number of variants in individual cells. Here, we report a strategy for analyzing hundreds of variants within a single cell, and we apply this method to assess models of tumor clonality derived from bulk samples in three cases of leukemia. The data largely support the predicted population structure, though they suggest specific refinements. This type of approach not only illustrates the biological complexity of human cancer, but it also has the potential to inform patient management. That is, precise knowledge of which variants are present in which populations of cells may allow physicians to more effectively target combinations of mutations and predict how patients will respond to therapy.
doi:10.1371/journal.pgen.1004462
PMCID: PMC4091781  PMID: 25010716
16.  Ancestry Estimation and Control of Population Stratification for Sequence-based Association Studies 
Nature genetics  2014;46(4):409-415.
Knowledge of individual ancestry is important for genetic association studies where population structure leads to false positive signals. Estimating individual ancestry with targeted sequence data, which constitutes the bulk of current sequence datasets, is challenging. Here, we propose a new method for accurate estimation of genetic ancestry. Our method skips genotype calling and directly analyzes sequence reads. We validate the method using simulated and empirical data and show that the method can accurately infer worldwide continental ancestry with whole genome shotgun coverage as low as 0.001X. For estimates of fine-scale ancestry within Europe, the method performs well with coverage of 0.1X. At an even finer-scale, the method improves discrimination between exome-sequenced participants originating from different provinces within Finland. Finally, we show that our method can be used to improve case-control matching in genetic association studies and reduce the risk of spurious findings due to population structure.
doi:10.1038/ng.2924
PMCID: PMC4084909  PMID: 24633160
17.  Identification of a Rare Coding Variant in Complement 3 Associated with Age-related Macular Degeneration 
Nature genetics  2013;45(11):10.1038/ng.2758.
Macular degeneration is a common cause of blindness in the elderly. To identify rare coding variants associated with a large increase in risk of age-related macular degeneration (AMD), we sequenced 2,335 cases and 789 controls in 10 candidate loci (57 genes). To increase power, we augmented our control set with ancestry-matched exome sequenced controls. An analysis of coding variation in 2,268 AMD cases and 2,268 ancestry matched controls revealed two large-effect rare variants; previously described R1210C in the CFH gene (fcase = 0.51%, fcontrol = 0.02%, OR = 23.11), and newly identified K155Q in the C3 gene (fcase = 1.06%, fcontrol = 0.39%, OR = 2.68). The variants suggest decreased inhibition of C3 by Factor H, resulting in increased activation of the alternative complement pathway, as a key component of disease biology.
doi:10.1038/ng.2758
PMCID: PMC3812337  PMID: 24036949
18.  Oil palm genome sequence reveals divergence of interfertile species in old and new worlds 
Nature  2013;500(7462):335-339.
Oil palm is the most productive oil-bearing crop. Planted on only 5% of the total vegetable oil acreage, palm oil accounts for 33% of vegetable oil, and 45% of edible oil worldwide, but increased cultivation competes with dwindling rainforest reserves. We report the 1.8 gigabase (Gb) genome sequence of the African oil palm Elaeis guineensis, the predominant source of worldwide oil production. 1.535 Gb of assembled sequence and transcriptome data from 30 tissue types were used to predict at least 34,802 genes, including oil biosynthesis genes and homologues of WRINKLED1 (WRI1), and other transcriptional regulators1, which are highly expressed in the kernel. We also report the draft sequence of the S. American oil palm Elaeis oleifera, which has the same number of chromosomes (2n=32) and produces fertile interspecific hybrids with E. guineensis2, but appears to have diverged in the new world. Segmental duplications of chromosome arms define the palaeotetraploid origin of palm trees. The oil palm sequence enables the discovery of genes for important traits as well as somaclonal epigenetic alterations which restrict the use of clones in commercial plantings3, and thus helps achieve sustainability for biofuels and edible oils, reducing the rainforest footprint of this tropical plantation crop.
doi:10.1038/nature12309
PMCID: PMC3929164  PMID: 23883927
19.  THE GENOMIC LANDSCAPE OF HYPODIPLOID ACUTE LYMPHOBLASTIC LEUKEMIA 
Nature genetics  2013;45(3):242-252.
The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole genome and exome sequencing of 40 cases, identified two subtypes that differ in severity of aneuploidy, transcriptional profile and submicroscopic genetic alterations. Near haploid cases with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase- and Ras signaling (71%) and the lymphoid transcription factor IKZF3 (AIOLOS; 13%). In contrast, low hypodiploid ALL with 32–39 chromosomes are characterized by TP53 alterations (91.2%) which are commonly present in non-tumor cells, and alterations of IKZF2 (HELIOS; 53%) and RB1 (41%). Both near haploid and low hypodiploid tumors exhibit activation of Ras- and PI3K signaling pathways, and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia.
doi:10.1038/ng.2532
PMCID: PMC3919793  PMID: 23334668
20.  Integration of Sequence Data from a Consanguineous Family with Genetic Data from an Outbred Population Identifies PLB1 as a Candidate Rheumatoid Arthritis Risk Gene 
PLoS ONE  2014;9(2):e87645.
Integrating genetic data from families with highly penetrant forms of disease together with genetic data from outbred populations represents a promising strategy to uncover the complete frequency spectrum of risk alleles for complex traits such as rheumatoid arthritis (RA). Here, we demonstrate that rare, low-frequency and common alleles at one gene locus, phospholipase B1 (PLB1), might contribute to risk of RA in a 4-generation consanguineous pedigree (Middle Eastern ancestry) and also in unrelated individuals from the general population (European ancestry). Through identity-by-descent (IBD) mapping and whole-exome sequencing, we identified a non-synonymous c.2263G>C (p.G755R) mutation at the PLB1 gene on 2q23, which significantly co-segregated with RA in family members with a dominant mode of inheritance (P = 0.009). We further evaluated PLB1 variants and risk of RA using a GWAS meta-analysis of 8,875 RA cases and 29,367 controls of European ancestry. We identified significant contributions of two independent non-coding variants near PLB1 with risk of RA (rs116018341 [MAF = 0.042] and rs116541814 [MAF = 0.021], combined P = 3.2×10−6). Finally, we performed deep exon sequencing of PLB1 in 1,088 RA cases and 1,088 controls (European ancestry), and identified suggestive dispersion of rare protein-coding variant frequencies between cases and controls (P = 0.049 for C-alpha test and P = 0.055 for SKAT). Together, these data suggest that PLB1 is a candidate risk gene for RA. Future studies to characterize the full spectrum of genetic risk in the PLB1 genetic locus are warranted.
doi:10.1371/journal.pone.0087645
PMCID: PMC3919745  PMID: 24520335
21.  RB1 gene inactivation by chromothripsis in human retinoblastoma 
Oncotarget  2014;5(2):438-450.
Retinoblastoma is a rare childhood cancer of the developing retina. Most retinoblastomas initiate with biallelic inactivation of the RB1 gene through diverse mechanisms including point mutations, nucleotide insertions, deletions, loss of heterozygosity and promoter hypermethylation. Recently, a novel mechanism of retinoblastoma initiation was proposed. Gallie and colleagues discovered that a small proportion of retinoblastomas lack RB1 mutations and had MYCN amplification [1]. In this study, we identifed recurrent chromosomal, regional and focal genomic lesions in 94 primary retinoblastomas with their matched normal DNA using SNP 6.0 chips. We also analyzed the RB1 gene mutations and compared the mechanism of RB1 inactivation to the recurrent copy number variations in the retinoblastoma genome. In addition to the previously described focal amplification of MYCN and deletions in RB1 and BCOR, we also identifed recurrent focal amplification of OTX2, a transcription factor required for retinal photoreceptor development. We identifed 10 retinoblastomas in our cohort that lacked RB1 point mutations or indels. We performed whole genome sequencing on those 10 tumors and their corresponding germline DNA. In one of the tumors, the RB1 gene was unaltered, the MYCN gene was amplified and RB1 protein was expressed in the nuclei of the tumor cells. In addition, several tumors had complex patterns of structural variations and we identified 3 tumors with chromothripsis at the RB1 locus. This is the first report of chromothripsis as a mechanism for RB1 gene inactivation in cancer.
PMCID: PMC3964219  PMID: 24509483
chromothripsis; retinoblastoma; RB1; MYCN
22.  Re-sequencing Expands Our Understanding of the Phenotypic Impact of Variants at GWAS Loci 
PLoS Genetics  2014;10(1):e1004147.
Genome-wide association studies (GWAS) have identified >500 common variants associated with quantitative metabolic traits, but in aggregate such variants explain at most 20–30% of the heritable component of population variation in these traits. To further investigate the impact of genotypic variation on metabolic traits, we conducted re-sequencing studies in >6,000 members of a Finnish population cohort (The Northern Finland Birth Cohort of 1966 [NFBC]) and a type 2 diabetes case-control sample (The Finland-United States Investigation of NIDDM Genetics [FUSION] study). By sequencing the coding sequence and 5′ and 3′ untranslated regions of 78 genes at 17 GWAS loci associated with one or more of six metabolic traits (serum levels of fasting HDL-C, LDL-C, total cholesterol, triglycerides, plasma glucose, and insulin), and conducting both single-variant and gene-level association tests, we obtained a more complete understanding of phenotype-genotype associations at eight of these loci. At all eight of these loci, the identification of new associations provides significant evidence for multiple genetic signals to one or more phenotypes, and at two loci, in the genes ABCA1 and CETP, we found significant gene-level evidence of association to non-synonymous variants with MAF<1%. Additionally, two potentially deleterious variants that demonstrated significant associations (rs138726309, a missense variant in G6PC2, and rs28933094, a missense variant in LIPC) were considerably more common in these Finnish samples than in European reference populations, supporting our prior hypothesis that deleterious variants could attain high frequencies in this isolated population, likely due to the effects of population bottlenecks. Our results highlight the value of large, well-phenotyped samples for rare-variant association analysis, and the challenge of evaluating the phenotypic impact of such variants.
Author Summary
Abnormal serum levels of various metabolites, including measures relevant to cholesterol, other fats, and sugars, are known to be risk factors for cardiovascular disease and type 2 diabetes. Identification of the genes that play a role in generating such abnormalities could advance the development of new treatment and prevention strategies for these disorders. Investigations of common genetic variants carried out in large sets of research subjects have successfully pinpointed such genes within many regions of the human genome. However, these studies often have not led to the identification of the specific genetic variations affecting metabolic traits. To attempt to detect such causal variations, we sequenced genes in 17 genomic regions implicated in metabolic traits in >6,000 people from Finland. By conducting statistical analyses relating specific variations (individually and grouped by gene) to the measures for these metabolic traits observed in the study subjects, we added to our understanding of how genotypes affect these traits. Our findings support a long-held hypothesis that the unique history of the Finnish population provides important advantages for analyzing the relationship between genetic variations and biomedically important traits.
doi:10.1371/journal.pgen.1004147
PMCID: PMC3907339  PMID: 24497850
23.  Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts 
Cell reports  2013;4(6):10.1016/j.celrep.2013.08.022.
SUMMARY
To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation.
doi:10.1016/j.celrep.2013.08.022
PMCID: PMC3881975  PMID: 24055055
24.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas 
Nature genetics  2013;45(6):602-612.
The commonest pediatric brain tumors are low-grade gliomas (LGGs). We utilized whole genome sequencing to discover multiple novel genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24/39 (62%) tumors. Intragenic duplications of the FGFR1 tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes containing TKD-duplicated FGFR1 into brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. TKD-duplicated FGFR1 induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs/LGGNTs.
doi:10.1038/ng.2611
PMCID: PMC3727232  PMID: 23583981
25.  The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism 
Nature genetics  2008;40(10):10.1038/ng.227.
Here we present a draft genome sequence of the nematode Pristionchus pacificus, a species that is associated with beetles and is used as a model system in evolutionary biology. With 169 Mb and 23,500 predicted protein-coding genes, the P. pacificus genome is larger than those of Caenorhabditis elegans and the human parasite Brugia malayi. Compared to C. elegans, the P. pacificus genome has more genes encoding cytochrome P450 enzymes, glucosyltransferases, sulfotransferases and ABC transporters, many of which were experimentally validated. The P. pacificus genome contains genes encoding cellulase and diapausin, and cellulase activity is found in P. pacificus secretions, indicating that cellulases can be found in nematodes beyond plant parasites. The relatively higher number of detoxification and degradation enzymes in P. pacificus is consistent with its necromenic lifestyle and might represent a preadaptation for parasitism. Thus, comparative genomics analysis of three ecologically distinct nematodes offers a unique opportunity to investigate the association between genome structure and lifestyle.
doi:10.1038/ng.227
PMCID: PMC3816844  PMID: 18806794

Results 1-25 (75)