PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (41)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
Document Types
1.  Efficacy Trial of a DNA/rAd5 HIV-1 Preventive Vaccine 
The New England journal of medicine  2013;369(22):2083-2092.
Background
A safe and effective vaccine for the prevention of human immunodeficiency virus type 1 (HIV-1) infection is a global priority. We tested the efficacy of a DNA prime–recombinant adenovirus type 5 boost (DNA/rAd5) vaccine regimen in persons at increased risk for HIV-1 infection in the United States.
Methods
At 21 sites, we randomly assigned 2504 men or transgender women who have sex with men to receive the DNA/rAd5 vaccine (1253 participants) or placebo (1251 participants). We assessed HIV-1 acquisition from week 28 through month 24 (termed week 28+ infection), viral-load set point (mean plasma HIV-1 RNA level 10 to 20 weeks after diagnosis), and safety. The 6-plasmid DNA vaccine (expressing clade B Gag, Pol, and Nef and Env proteins from clades A, B, and C) was administered at weeks 0, 4, and 8. The rAd5 vector boost (expressing clade B Gag-Pol fusion protein and Env glycoproteins from clades A, B, and C) was administered at week 24.
Results
In April 2013, the data and safety monitoring board recommended halting vaccinations for lack of efficacy. The primary analysis showed that week 28+ infection had been diagnosed in 27 participants in the vaccine group and 21 in the placebo group (vaccine efficacy, −25.0%; 95% confidence interval, −121.2 to 29.3; P = 0.44), with mean viral-load set points of 4.46 and 4.47 HIV-1 RNA log10 copies per milliliter, respectively. Analysis of all infections during the study period (41 in the vaccine group and 31 in the placebo group) also showed lack of vaccine efficacy (P = 0.28). The vaccine regimen had an acceptable side-effect profile.
Conclusions
The DNA/rAd5 vaccine regimen did not reduce either the rate of HIV-1 acquisition or the viral-load set point in the population studied. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT00865566.)
doi:10.1056/NEJMoa1310566
PMCID: PMC4030634  PMID: 24099601
2.  Characterization of Humoral and Cellular Immune Responses Elicited by a Recombinant Adenovirus Serotype 26 HIV-1 Env Vaccine in Healthy Adults (IPCAVD 001) 
The Journal of Infectious Diseases  2012;207(2):248-256.
Background. Adenovirus serotype 26 (Ad26) has been developed as a novel candidate vaccine vector for human immunodeficiency virus type 1 (HIV-1) and other pathogens. The primary safety and immunogenicity data from the Integrated Preclinical/Clinical AIDS Vaccine Development Program (IPCAVD) 001 trial, the first-in-human evaluation of a prototype Ad26 vector-based vaccine expressing clade A HIV-1 Env (Ad26.ENVA.01), are reported concurrently with this article. Here, we characterize in greater detail the humoral and cellular immune responses elicited by Ad26.ENVA.01 in humans.
Methods. Samples from the IPCAVD 001 trial were used for humoral and cellular immunogenicity assays.
Results. We observed a dose-dependent expansion of the magnitude, breadth, and epitopic diversity of Env-specific binding antibody responses elicited by this vaccine. Antibody-dependent cell-mediated phagocytosis, virus inhibition, and degranulation functional activity were also observed. Env-specific cellular immune responses induced by the vaccine included multiple CD8+ and CD4+ T-lymphocyte memory subpopulations and cytokine secretion phenotypes, although cellular immune breadth was limited. Baseline vector-specific T-lymphocyte responses were common but did not impair Env-specific immune responses in this study.
Conclusion. Ad26.ENVA.01 elicited a broad diversity of humoral and cellular immune responses in humans. These data support the further clinical development of Ad26 as a candidate vaccine vector.
Clinical Trials Registration. NCT00618605.
doi:10.1093/infdis/jis671
PMCID: PMC3532832  PMID: 23125443
HIV-1; Vaccine; Adenovirus 26; Immunogenicity
3.  Optimization and Qualification of a Multiplex Bead Array to Assess Cytokine and Chemokine Production by Vaccine-specific Cells 
Journal of Immunological Methods  2012;382(1-2):117-128.
The magnitude and functional phenotype (e.g. proliferation, immune stimulation) of the vaccine-induced T-cell responses are likely to be critical in defining responses that can control pathogenic challenge. Current multi-parameter flow cytometric techniques may not be sufficient to measure all of these different functions, since characterizing T-cell responses by flow cytometry is presently limited to concurrent measurement of at most 10 cytokines/chemokines. Here, we describe extensive studies conducted using standardized GCLP procedures to optimize and qualitatively/quantitatively qualify a multiplex bead array (MBA) performed on supernatant collected from stimulated peripheral blood mononuclear cells (PBMC) to assess 12 cytokines and chemokines of interest. Our optimized MBA shows good precision (intra-assay, inter-day, inter-technician; coefficients of variation <30%) and linearity for most of the analytes studied. We also developed positivity criteria that allow us to define a response as positive or negative with a high degree of confidence. In conclusion, we provide a detailed description of the qualification of an MBA, which permits quantitative and qualitative evaluation of vaccine-induced immunogenicity and analysis of immune correlates of protection. This assay provides an excellent complement to the existing repertoire of assays for assessing immunogenicity in HIV vaccine clinical trials.
doi:10.1016/j.jim.2012.05.011
PMCID: PMC3406745  PMID: 22626638
Multiplex bead array; Vaccine; HIV; Cytokine; Chemokine
4.  HIV-1 Vaccine-Induced T-Cell Reponses Cluster in Epitope Hotspots that Differ from Those Induced in Natural Infection with HIV-1 
PLoS Pathogens  2013;9(6):e1003404.
Several recent large clinical trials evaluated HIV vaccine candidates that were based on recombinant adenovirus serotype 5 (rAd-5) vectors expressing HIV-derived antigens. These vaccines primarily elicited T-cell responses, which are known to be critical for controlling HIV infection. In the current study, we present a meta-analysis of epitope mapping data from 177 participants in three clinical trials that tested two different HIV vaccines: MRKAd-5 HIV and VRC-HIVAD014-00VP. We characterized the population-level epitope responses in these trials by generating population-based epitope maps, and also designed such maps using a large cohort of 372 naturally infected individuals. We used these maps to address several questions: (1) Are vaccine-induced responses randomly distributed across vaccine inserts, or do they cluster into immunodominant epitope hotspots? (2) Are the immunodominance patterns observed for these two vaccines in three vaccine trials different from one another? (3) Do vaccine-induced hotspots overlap with epitope hotspots induced by chronic natural infection with HIV-1? (4) Do immunodominant hotspots target evolutionarily conserved regions of the HIV genome? (5) Can epitope prediction methods be used to identify these hotspots? We found that vaccine responses clustered into epitope hotspots in all three vaccine trials and some of these hotspots were not observed in chronic natural infection. We also found significant differences between the immunodominance patterns generated in each trial, even comparing two trials that tested the same vaccine in different populations. Some of the vaccine-induced immunodominant hotspots were located in highly variable regions of the HIV genome, and this was more evident for the MRKAd-5 HIV vaccine. Finally, we found that epitope prediction methods can partially predict the location of vaccine-induced epitope hotspots. Our findings have implications for vaccine design and suggest a framework by which different vaccine candidates can be compared in early phases of evaluation.
Author Summary
The HIV epidemic is a major global health challenge leading to more than 1.8 million deaths annually, and despite significant efforts, the search for an efficacious and safe vaccine continues. Several candidate vaccines were designed to elicit CD8+ T-cell responses and were based on using recombinant Adenovirus serotype 5 (rAd-5) vector that expresses HIV-derived antigens. While none of these vaccines had protective effects, they provide an opportunity to study vaccine-induced T-cell responses on a population level. Here, we analyze data from the three largest epitope mapping studies performed in three clinical trials testing two rAd-5 vaccines. We find that vaccine-induced responses tend to cluster in “epitope hotspots” and that these hotspots are different for each vaccine and more surprisingly in two different vaccine trials testing the same vaccine. We also compared vaccine-induced hotspots to those elicited by natural infection and found that some of the vaccine-induced hotspots are not observed in natural infection. Finally, we show that epitope prediction methods can be useful for predicting vaccine induced hotspots based on participants HLA alleles.
doi:10.1371/journal.ppat.1003404
PMCID: PMC3688560  PMID: 23818843
5.  Uncommon Pathways of Immune Escape Attenuate HIV-1 Integrase Replication Capacity 
Journal of Virology  2012;86(12):6913-6923.
An attenuation of the HIV-1 replication capacity (RC) has been observed for immune-mediated escape mutations in Gag restricted by protective HLA alleles. However, the extent to which escape mutations affect other viral proteins during natural infection is not well understood. We generated recombinant viruses encoding plasma HIV-1 RNA integrase sequences from antiretroviral-naïve individuals with early (n = 88) and chronic (n = 304) infections and measured the in vitro RC of each. In contrast to data from previous studies of Gag, we observed little evidence that host HLA allele expression was associated with integrase RC. A modest negative correlation was observed between the number of HLA-B-associated integrase polymorphisms and RC in chronic infection (R = −0.2; P = 0.003); however, this effect was not driven by mutations restricted by protective HLA alleles. Notably, the integrase variants S119R, G163E, and I220L, which represent uncommon polymorphisms associated with HLA-C*05, -A*33, and -B*52, respectively, correlated with lower RC (all q < 0.2). We identified a novel C*05-restricted epitope (HTDNGSNF114–121) that likely contributes to the selection of the S119R variant, the polymorphism most significantly associated with lower RC in patient sequences. An NL4-3 mutant encoding the S119R polymorphism displayed a ∼35%-reduced function that was rescued by a single compensatory mutation of A91E. Together, these data indicate that substantial HLA-driven attenuation of integrase is not a general phenomenon during HIV-1 adaptation to host immunity. However, uncommon polymorphisms selected by HLA alleles that are not conventionally regarded to be protective may be associated with impaired protein function. Vulnerable epitopes in integrase might therefore be considered for future vaccine strategies.
doi:10.1128/JVI.07133-11
PMCID: PMC3393549  PMID: 22496233
6.  Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial 
The New England Journal of Medicine  2012;366(14):1275-1286.
BACKGROUND
In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case–control analysis to identify antibody and cellular immune correlates of infection risk.
METHODS
In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up.
RESULTS
Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P = 0.02; q = 0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P = 0.03; q = 0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies.
CONCLUSIONS
This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
doi:10.1056/NEJMoa1113425
PMCID: PMC3371689  PMID: 22475592
7.  MRKAd5 HIV-1 Gag/Pol/Nef Vaccine-Induced T-Cell Responses Inadequately Predict Distance of Breakthrough HIV-1 Sequences to the Vaccine or Viral Load 
PLoS ONE  2012;7(8):e43396.
Background
The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect.
Methods
Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits.
Findings
Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0·04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0·06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0·04; Pol p = 0·13; Gag p = 0·89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p>0·50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4·7 vs 5·1) but the difference was not significant (p = 0·27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0·30).
Interpretation
Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.
doi:10.1371/journal.pone.0043396
PMCID: PMC3428369  PMID: 22952672
8.  Host Genetic Determinants of T Cell Responses to the MRKAd5 HIV-1 gag/pol/nef Vaccine in the Step Trial 
The Journal of Infectious Diseases  2011;203(6):773-779.
Understanding how human genetic variation impacts individual response to immunogens is fundamental for rational vaccine development. To explore host mechanisms involved in cellular immune responses to the MRKAd5 human immunodeficiency virus type 1 (HIV-1) gag/pol/nef vaccine tested in the Step trial, we performed a genome-wide association study of determinants of HIV-specific T cell responses, measured by interferon γ enzyme-linked immunospot assays. No human genetic variant reached genome-wide significance, but polymorphisms located in the major histocompatibility complex (MHC) region showed the strongest association with response to the HIV-1 Gag protein: HLA-B alleles known to be associated with differences in HIV-1 control were responsible for these associations. The implication of the same HLA alleles in vaccine-induced cellular immunity and in natural immune control is of relevance for vaccine design. Furthermore, our results demonstrate the importance of considering the host immunogenetic background in the analysis of immune responses to T cell vaccines.
doi:10.1093/infdis/jiq125
PMCID: PMC3071133  PMID: 21278214
9.  High-Functional-Avidity Cytotoxic T Lymphocyte Responses to HLA-B-Restricted Gag-Derived Epitopes Associated with Relative HIV Control ▿ 
Journal of Virology  2011;85(18):9334-9345.
Virus-specific cytotoxic T lymphocytes (CTL) with high levels of functional avidity have been associated with viral clearance in hepatitis C virus infection and with enhanced antiviral protective immunity in animal models. However, the role of functional avidity as a determinant of HIV-specific CTL efficacy remains to be assessed. Here we measured the functional avidities of HIV-specific CTL responses targeting 20 different, optimally defined CTL epitopes restricted by 13 different HLA class I alleles in a cohort comprising 44 HIV controllers and 68 HIV noncontrollers. Responses restricted by HLA-B alleles and responses targeting epitopes located in HIV Gag exhibited significantly higher functional avidities than responses restricted by HLA-A or HLA-C molecules (P = 0.0003) or responses targeting epitopes outside Gag (P < 0.0001). The functional avidities of Gag-specific and HLA-B-restricted responses were higher in HIV controllers than in noncontrollers (P = 0.014 and P = 0.018) and were not restored in HIV noncontrollers initiating antiretroviral therapy. T-cell receptor (TCR) analyses revealed narrower TCR repertoires in higher-avidity CTL populations, which were dominated by public TCR sequences in HIV controllers. Together, these data link the presence of high-avidity Gag-specific and HLA-B-restricted CTL responses with viral suppression in vivo and provide new insights into the immune parameters that mediate spontaneous control of HIV infection.
doi:10.1128/JVI.00460-11
PMCID: PMC3165743  PMID: 21752903
10.  Ets-1 maintains IL-7 receptor expression in peripheral T cells 
The expression of CD127, the IL-7 binding subunit of the IL-7 receptor, is tightly regulated during the development and activation of T cells and is reduced during chronic viral infection. However, the molecular mechanism regulating the dynamic expression of CD127 is still poorly understood. Here we report that the transcription factor Ets-1 is required for maintaining the expression of CD127 in murine peripheral T cells. Ets-1 binds to and activates the CD127 promoter, and its absence leads to reduced CD127 expression, attenuated IL-7 signaling, and impaired IL-7-dependent homeostatic proliferation of T cells. The expression of CD127 and Ets-1 is strongly correlated in human T cells. Both CD127 and Ets-1 expression are decreased in CD8+ T cells during HIV infection. In addition, HIV-associated loss of CD127 is only observed in Ets-1low effector memory and central memory but not in Ets-1high naïve CD8+ T cells. Taken together, our data identify Ets-1 as a critical regulator of CD127 expression in T cells.
doi:10.4049/jimmunol.1002099
PMCID: PMC3074256  PMID: 21148801
11.  Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine 
Recombinant viruses hold promise as vectors for vaccines to prevent infectious diseases with significant global health impacts. One of their major limitations is that preexisting anti-vector neutralizing antibodies can reduce T cell responses to the insert antigens; however, the impact of vector-specific cellular immunity on subsequent insert-specific T cell responses has not been assessed in humans. Here, we have identified and compared adenovirus-specific and HIV-specific T cell responses in subjects participating in two HIV-1 vaccine trials using a vaccine vectored by adenovirus serotype 5 (Ad5). Higher frequencies of pre-immunization adenovirus-specific CD4+ T cells were associated with substantially decreased magnitude of HIV-specific CD4+ T cell responses and decreased breadth of HIV-specific CD8+ T cell responses in vaccine recipients, independent of type-specific preexisting Ad5-specific neutralizing antibody titers. Further, epitopes recognized by adenovirus-specific T cells were commonly conserved across many adenovirus serotypes, suggesting that cross-reactivity of preexisting adenovirus-specific T cells can extend to adenovirus vectors derived from rare serotypes. These findings provide what we believe to be a new understanding of how preexisting viral immunity may impact the efficacy of vaccines under current evaluation for prevention of HIV, tuberculosis, and malaria.
doi:10.1172/JCI60202
PMCID: PMC3248307  PMID: 22201684
12.  Genetic impact of vaccination on breakthrough HIV-1 sequences from the Step trial 
Nature medicine  2011;17(3):366-371.
We analyzed HIV-1 genome sequences from 68 newly-infected volunteers in the Step HIV-1 vaccine trial. To determine whether the vaccine exerted selective T-cell pressure on breakthrough viruses, we identified potential T-cell epitopes in the founder sequences and compared them to epitopes in the vaccine. We found greater distances for sequences from vaccine recipients than from placebo recipients (p-values ranging from < 0.0001 to 0.09). The most significant signature site distinguishing vaccine from placebo recipients was Gag-84, a site encompassed by several epitopes contained in the vaccine and restricted by HLA alleles common in the cohort. Moreover, the extended divergence was confined to the vaccine components of the virus (Gag, Pol, Nef) and not found in other HIV-1 proteins. These results represent the first evidence of selective pressure from vaccine-induced T-cell responses on HIV-1 infection.
doi:10.1038/nm.2316
PMCID: PMC3053571  PMID: 21358627
13.  Increased Breadth and Depth of Cytotoxic T Lymphocytes Responses against HIV-1-B Nef by Inclusion of Epitope Variant Sequences 
PLoS ONE  2011;6(3):e17969.
Different vaccine approaches cope with HIV-1 diversity, ranging from centralized1–4 to variability-encompassing5–7 antigens. For all these strategies, a concern remains: how does HIV-1 diversity impact epitope recognition by the immune system? We studied the relationship between HIV-1 diversity and CD8+ T Lymphocytes (CTL) targeting of HIV-1 subtype B Nef using 944 peptides (10-mers overlapping by nine amino acids (AA)) that corresponded to consensus peptides and their most common variants in the HIV-1-B virus population. IFN-γ ELISpot assays were performed using freshly isolated PBMC from 26 HIV-1-infected persons. Three hundred and fifty peptides elicited a response in at least one individual. Individuals targeted a median of 7 discrete regions. Overall, 33% of responses were directed against viral variants but not elicited against consensus-based test peptides. However, there was no significant relationship between the frequency of a 10-mer in the viral population and either its frequency of recognition (Spearman's correlation coefficient ρ = 0.24) or the magnitude of the responses (ρ = 0.16). We found that peptides with a single mutation compared to the consensus were likely to be recognized (especially if the change was conservative) and to elicit responses of similar magnitude as the consensus peptide. Our results indicate that cross-reactivity between rare and frequent variants is likely to play a role in the expansion of CTL responses, and that maximizing antigenic diversity in a vaccine may increase the breadth and depth of CTL responses. However, since there are few obvious preferred pathways to virologic escape, the diversity that may be required to block all potential escape pathways may be too large for a realistic vaccine to accommodate. Furthermore, since peptides were not recognized based on their frequency in the population, it remains unclear by which mechanisms variability-inclusive antigens (i.e., constructs enriched with frequent variants) expand CTL recognition.
doi:10.1371/journal.pone.0017969
PMCID: PMC3065451  PMID: 21464919
14.  Trivalent Adenovirus Type 5 HIV Recombinant Vaccine Primes for Modest Cytotoxic Capacity That Is Greatest in Humans with Protective HLA Class I Alleles 
PLoS Pathogens  2011;7(2):e1002002.
If future HIV vaccine design strategies are to succeed, improved understanding of the mechanisms underlying protection from infection or immune control over HIV replication remains essential. Increased cytotoxic capacity of HIV-specific CD8+ T-cells associated with efficient elimination of HIV-infected CD4+ T-cell targets has been shown to distinguish long-term nonprogressors (LTNP), patients with durable control over HIV replication, from those experiencing progressive disease. Here, measurements of granzyme B target cell activity and HIV-1-infected CD4+ T-cell elimination were applied for the first time to identify antiviral activities in recipients of a replication incompetent adenovirus serotype 5 (Ad5) HIV-1 recombinant vaccine and were compared with HIV-negative individuals and chronically infected patients, including a group of LTNP. We observed readily detectable HIV-specific CD8+ T-cell recall cytotoxic responses in vaccinees at a median of 331 days following the last immunization. The magnitude of these responses was not related to the number of vaccinations, nor did it correlate with the percentages of cytokine-secreting T-cells determined by ICS assays. Although the recall cytotoxic capacity of the CD8+ T-cells of the vaccinee group was significantly less than that of LTNP and overlapped with that of progressors, we observed significantly higher cytotoxic responses in vaccine recipients carrying the HLA class I alleles B*27, B*57 or B*58, which have been associated with immune control over HIV replication in chronic infection. These findings suggest protective HLA class I alleles might lead to better outcomes in both chronic infection and following immunization due to more efficient priming of HIV-specific CD8+ T-cell cytotoxic responses.
Author Summary
Unique HIV-infected individuals have remained healthy with stable CD4 counts and HIV RNA levels below the detection threshold in sensitive assays without antiretroviral therapy for 20 years. These nonprogressors have been intensively studied in order to identify mechanisms that could inform the design of an efficacious HIV/AIDS vaccine. In addition to strong associations with certain host genes like HLA B*57, nonprogressors are distinguished from progressors by the superior ability of their HIV-specific CD8+ T-cells to proliferate and to efficiently kill HIV-infected CD4+ T-cell targets via perforin and granzyme B, the major proteins contained within killing granules. Here, for the first time, we apply sensitive measurements of CD8+ T-cell proliferation and perforin expression, granzyme B target cell activity and infected CD4+ T-cell elimination to samples derived from recipients of the Merck adenovirus serotype 5-HIV vaccine. We demonstrate readily detectable CD8+ T-cell-mediated killing in these vaccinees. Although the killing responses were less than those of nonprogressors, vaccinees expressing the protective HLA alleles B*27, B*57 or B*58 exhibited greater killing than those not possessing these alleles. These findings suggest protective HLA alleles lead to better outcomes in both chronic infection and following immunization through early interactions that induce superior antiviral CD8+ T-cell killing responses.
doi:10.1371/journal.ppat.1002002
PMCID: PMC3044701  PMID: 21383976
15.  Impact of select immunologic and virologic biomarkers on CD4 decline in chronic HIV-1 subtype C infection: Results from Sinikithemba longitudinal population-based cohort, Durban, South Africa 
Background
The extent to which immunologic and clinical biomarkers influence HIV outcomes remains incompletely characterized, particularly for non-B subtypes. Based on data supporting in vitro HIV protein-specific CD8 T-lymphocyte responses as correlates of immune control in cross-sectional studies, we assessed the relationship of these responses, along with established HIV biomarkers, with rates of CD4 decline in subtype-C infection.
Methods
Bi-variate and multivariate mixed effects models were used to assess the relationship of baseline CD4, plasma viral load (pVL), HLA class I alleles, and HIV protein-specific CD8 responses with rate of CD4 decline in a longitudinal population-based cohort of 300 therapy-naïve, chronically infected adults with baseline CD4>200 cells/mm3 and pVL>500 copies/ml, over a median 25 months follow-up.
Results
In bi-variate analyses, baseline CD4, pVL and possession of a protective HLA allele correlated significantly with rate of CD4 decline. No relationship was observed between HIV protein-specific CD8 responses and CD4 decline. Results from multivariate models, incorporating baseline CD4 (201–350 and >350), pVL (≤100,000 and >100,000), HLA (protective vs. not), yielded the ability to discriminate CD4 declines over a 10-fold range: the highest rate of decline was observed among individuals with CD4>350, pVL>100,000 with no protective HLA alleles (−59 cells/mm3/year), while the slowest decline was observed in individuals with CD4 201–350, pVL≤100,000 and a protective allele (−6 cells/mm3/year).
Conclusions
The combination of plasma viral load and HLA class I type, but not in vitro HIV protein-specific CD8 responses, differentiates rates of CD4 decline in chronic subtype-C infection better than either marker alone.
doi:10.1086/605503
PMCID: PMC2777678  PMID: 19663693
HIV subtype C; disease progression; CD4 decline; HLA class I; HIV-specific CTL responses
16.  Contribution of immunological and virological factors to extremely severe primary HIV-1 infection 
Background
During acute HIV infection, high viral loads and the induction of host immune responses typically coincide with the onset of clinical symptoms. However, clinically severe presentations during acute HIV-1 infection, including AIDS-defining symptoms, are unusual.
Methods
Virus isolates were tested for clade, drug susceptibility, coreceptor usage, and growth rate for two cases of clinically severe sexual transmission. HLA genotype was determined, and HIV-1-specific CTL responses to an overlapping peptide set spanning the entire HIV clade A and clade B proteome were assayed.
Results
The virus isolated from the two unrelated cases of severe primary HIV-1 infection showed R5/X4 dual/mixed tropism, belonged to clade B and CRF02-AG, and were highly replicative in peripheral blood mononuclear cell culture. Impaired humoral responses were paralleled by a profound absence of HIV-1-specific CTL responses to the entire viral proteome in the two study cases. One case for which the virus source was available, showed a remarkable HLA similarity between the transmission pair as all 4 HLA-A and -B alleles were HLA supertype-matched between the subjects involved in the transmission case.
Conclusions
The data suggest that concurrence of viral and host factors contribute to the clinical severity of primary HIV-1 infection and that subjects infected with highly replicative dual tropic viruses are more prone to develop AIDS-defining symptoms during acute infection if they are unable to mount humoral and cellular HIV-1-specific immune responses. Concordant HLA supertypes might facilitate the preferential transmission of HLA-adapted viral variants, further accelerating disease progression.
doi:10.1086/595704
PMCID: PMC2806184  PMID: 19093810
primary HIV-1 infection; HLA supertypes; CTL responses; R5/X4 dual tropism; rapid disease progression
17.  Induction of Robust Cellular and Humoral Virus-Specific Adaptive Immune Responses in Human Immunodeficiency Virus-Infected Humanized BLT Mice▿  
Journal of Virology  2009;83(14):7305-7321.
The generation of humanized BLT mice by the cotransplantation of human fetal thymus and liver tissues and CD34+ fetal liver cells into nonobese diabetic/severe combined immunodeficiency mice allows for the long-term reconstitution of a functional human immune system, with human T cells, B cells, dendritic cells, and monocytes/macrophages repopulating mouse tissues. Here, we show that humanized BLT mice sustained high-level disseminated human immunodeficiency virus (HIV) infection, resulting in CD4+ T-cell depletion and generalized immune activation. Following infection, HIV-specific humoral responses were present in all mice by 3 months, and HIV-specific CD4+ and CD8+ T-cell responses were detected in the majority of mice tested after 9 weeks of infection. Despite robust HIV-specific responses, however, viral loads remained elevated in infected BLT mice, raising the possibility that these responses are dysfunctional. The increased T-cell expression of the negative costimulator PD-1 recently has been postulated to contribute to T-cell dysfunction in chronic HIV infection. As seen in human infection, both CD4+ and CD8+ T cells demonstrated increased PD-1 expression in HIV-infected BLT mice, and PD-1 levels in these cells correlated positively with viral load and inversely with CD4+ cell levels. The ability of humanized BLT mice to generate both cellular and humoral immune responses to HIV will allow the further investigation of human HIV-specific immune responses in vivo and suggests that these mice are able to provide a platform to assess candidate HIV vaccines and other immunotherapeutic strategies.
doi:10.1128/JVI.02207-08
PMCID: PMC2704767  PMID: 19420076
19.  HLA-B57/B*5801 Human Immunodeficiency Virus Type 1 Elite Controllers Select for Rare Gag Variants Associated with Reduced Viral Replication Capacity and Strong Cytotoxic T-Lymphotye Recognition▿  
Journal of Virology  2008;83(6):2743-2755.
Human immunodeficiency virus type 1 (HIV-1) elite controllers (EC) maintain viremia below the limit of commercial assay detection (<50 RNA copies/ml) in the absence of antiviral therapy, but the mechanisms of control remain unclear. HLA-B57 and the closely related allele B*5801 are particularly associated with enhanced control and recognize the same Gag240-249 TW10 epitope. The typical escape mutation (T242N) within this epitope diminishes viral replication capacity in chronically infected persons; however, little is known about TW10 epitope sequences in residual replicating viruses in B57/B*5801 EC and the extent to which mutations within this epitope may influence steady-state viremia. Here we analyzed TW10 in a total of 50 B57/B*5801-positive subjects (23 EC and 27 viremic subjects). Autologous plasma viral sequences from both EC and viremic subjects frequently harbored the typical cytotoxic T-lymphocyte (CTL)-selected mutation T242N (15/23 sequences [65.2%] versus 23/27 sequences [85.1%], respectively; P = 0.18). However, other unique mutants were identified in HIV controllers, both within and flanking TW10, that were associated with an even greater reduction in viral replication capacity in vitro. In addition, strong CTL responses to many of these unique TW10 variants were detected by gamma interferon-specific enzyme-linked immunospot assay. These data suggest a dual mechanism for durable control of HIV replication, consisting of viral fitness loss resulting from CTL escape mutations together with strong CD8 T-cell immune responses to the arising variant epitopes.
doi:10.1128/JVI.02265-08
PMCID: PMC2648254  PMID: 19116253
20.  HLA-Associated Immune Escape Pathways in HIV-1 Subtype B Gag, Pol and Nef Proteins 
PLoS ONE  2009;4(8):e6687.
Background
Despite the extensive genetic diversity of HIV-1, viral evolution in response to immune selective pressures follows broadly predictable mutational patterns. Sites and pathways of Human Leukocyte-Antigen (HLA)-associated polymorphisms in HIV-1 have been identified through the analysis of population-level data, but the full extent of immune escape pathways remains incompletely characterized. Here, in the largest analysis of HIV-1 subtype B sequences undertaken to date, we identify HLA-associated polymorphisms in the three HIV-1 proteins most commonly considered in cellular-based vaccine strategies. Results are organized into protein-wide escape maps illustrating the sites and pathways of HLA-driven viral evolution.
Methodology/Principal Findings
HLA-associated polymorphisms were identified in HIV-1 Gag, Pol and Nef in a multicenter cohort of >1500 chronically subtype-B infected, treatment-naïve individuals from established cohorts in Canada, the USA and Western Australia. At q≤0.05, 282 codons commonly mutating under HLA-associated immune pressures were identified in these three proteins. The greatest density of associations was observed in Nef (where close to 40% of codons exhibited a significant HLA association), followed by Gag then Pol (where ∼15–20% of codons exhibited HLA associations), confirming the extensive impact of immune selection on HIV evolution and diversity. Analysis of HIV codon covariation patterns identified over 2000 codon-codon interactions at q≤0.05, illustrating the dense and complex networks of linked escape and secondary/compensatory mutations.
Conclusions/Significance
The immune escape maps and associated data are intended to serve as a user-friendly guide to the locations of common escape mutations and covarying codons in HIV-1 subtype B, and as a resource facilitating the systematic identification and classification of immune escape mutations. These resources should facilitate research in HIV epitope discovery and host-pathogen co-evolution, and are relevant to the continued search for an effective CTL-based AIDS vaccine.
doi:10.1371/journal.pone.0006687
PMCID: PMC2723923  PMID: 19690614
21.  Protective HLA Class I Alleles That Restrict Acute-Phase CD8+ T-Cell Responses Are Associated with Viral Escape Mutations Located in Highly Conserved Regions of Human Immunodeficiency Virus Type 1▿ ‡ 
Journal of Virology  2008;83(4):1845-1855.
The control of human immunodeficiency virus type 1 (HIV-1) associated with particular HLA class I alleles suggests that some CD8+ T-cell responses may be more effective than others at containing HIV-1. Unfortunately, substantial diversities in the breadth, magnitude, and function of these responses have impaired our ability to identify responses most critical to this control. It has been proposed that CD8 responses targeting conserved regions of the virus may be particularly effective, since the development of cytotoxic T-lymphocyte (CTL) escape mutations in these regions may significantly impair viral replication. To address this hypothesis at the population level, we derived near-full-length viral genomes from 98 chronically infected individuals and identified a total of 76 HLA class I-associated mutations across the genome, reflective of CD8 responses capable of selecting for sequence evolution. The majority of HLA-associated mutations were found in p24 Gag, Pol, and Nef. Reversion of HLA-associated mutations in the absence of the selecting HLA allele was also commonly observed, suggesting an impact of most CTL escape mutations on viral replication. Although no correlations were observed between the number or location of HLA-associated mutations and protective HLA alleles, limiting the analysis to mutations selected by acute-phase immunodominant responses revealed a strong positive correlation between mutations at conserved residues and protective HLA alleles. These data suggest that control of HIV-1 may be associated with acute-phase CD8 responses capable of selecting for viral escape mutations in highly conserved regions of the virus, supporting the inclusion of these regions in the design of an effective vaccine.
doi:10.1128/JVI.01061-08
PMCID: PMC2643763  PMID: 19036810
22.  Extensive HLA class I allele promiscuity among viral CTL epitopes 
European journal of immunology  2007;37(9):2419-2433.
Summary
Promiscuous binding of T helper epitopes to MHC class II molecules has been well established, but few examples of promiscuous class I restricted epitopes exist. To address the extent of promiscuity of HLA class I peptides, responses to 242 well-defined viral epitopes were tested in 100 subjects regardless of the individuals’ HLA type. Surprisingly, half of all detected responses were seen in the absence of the originally reported restricting HLA class I allele, and only 3% of epitopes were recognized exclusively in the presence of their original allele. Functional assays confirmed the frequent recognition of HLA class I-restricted T cell epitopes on several alternative alleles across HLA class I supertypes and encoded on different class I loci. These data have significant implications for the understanding of MHC class I restricted antigen presentation and vaccine development.
doi:10.1002/eji.200737365
PMCID: PMC2628559  PMID: 17705138
CD8 T cells; HIV; Immune Responses; Antigen Presentation/Processing; Bioinformatics
23.  HLA Class I-Driven Evolution of Human Immunodeficiency Virus Type 1 Subtype C Proteome: Immune Escape and Viral Load ▿  
Journal of Virology  2008;82(13):6434-6446.
Human immunodeficiency virus type 1 (HIV-1) mutations that confer escape from cytotoxic T-lymphocyte (CTL) recognition can sometimes result in lower viral fitness. These mutations can then revert upon transmission to a new host in the absence of CTL-mediated immune selection pressure restricted by the HLA alleles of the prior host. To identify these potentially critical recognition points on the virus, we assessed HLA-driven viral evolution using three phylogenetic correction methods across full HIV-1 subtype C proteomes from a cohort of 261 South Africans and identified amino acids conferring either susceptibility or resistance to CTLs. A total of 558 CTL-susceptible and -resistant HLA-amino acid associations were identified and organized into 310 immunological sets (groups of individual associations related to a single HLA/epitope combination). Mutations away from seven susceptible residues, including four in Gag, were associated with lower plasma viral-RNA loads (q < 0.2 [where q is the expected false-discovery rate]) in individuals with the corresponding HLA alleles. The ratio of susceptible to resistant residues among those without the corresponding HLA alleles varied in the order Vpr > Gag > Rev > Pol > Nef > Vif > Tat > Env > Vpu (Fisher's exact test; P ≤ 0.0009 for each comparison), suggesting the same ranking of fitness costs by genes associated with CTL escape. Significantly more HLA-B (χ2; P = 3.59 × 10−5) and HLA-C (χ2; P = 4.71 × 10−6) alleles were associated with amino acid changes than HLA-A, highlighting their importance in driving viral evolution. In conclusion, specific HIV-1 residues (enriched in Vpr, Gag, and Rev) and HLA alleles (particularly B and C) confer susceptibility to the CTL response and are likely to be important in the development of vaccines targeted to decrease the viral load.
doi:10.1128/JVI.02455-07
PMCID: PMC2447109  PMID: 18434400
24.  Increased Cytotoxic T-Lymphocyte Epitope Variant Cross-Recognition and Functional Avidity Are Associated with Hepatitis C Virus Clearance▿  
Journal of Virology  2008;82(6):3147-3153.
Hepatitis C virus (HCV) clearance has been associated with reduced viral evolution in targeted cytotoxic T-lymphocyte (CTL) epitopes, suggesting that HCV clearers may mount CTL responses with a superior ability to recognize epitope variants and prevent viral immune escape. Here, 40 HCV-infected subjects were tested with 406 10-mer peptides covering the vast majority of the sequence diversity spanning a 197-residue region of the NS3 protein. HCV clearers mounted significantly broader CTL responses of higher functional avidity and with wider variant cross-recognition capacity than nonclearers. These observations have important implications for vaccine approaches that may need to induce high-avidity responses in vivo.
doi:10.1128/JVI.02252-07
PMCID: PMC2258967  PMID: 18184704
25.  Availability of a Diversely Avid CD8+ T Cell Repertoire Specific for the Subdominant HLA-A2-Restricted HIV-1 Gag p2419−27 Epitope1 
HLA-A2-restricted CTL responses to immunodominant HIV-1 epitopes do not appear to be very effective in the control of viral replication in vivo. In this study, we studied human CD8+ T cell responses to the subdominant HLA-A2-restricted epitope TV9 (Gag p2419−27, TLNAWVKVV) to explore the possibility of increasing its immune recognition. We confirmed in a cohort of 313 patients, infected by clade B or clade C viruses, that TV9 is rarely recognized. Of interest, the functional sensitivity of the TV9 response can be relatively high. The potential T cell repertoires for TV9 and the characteristics of constituent clonotypes were assessed by ex vivo priming of circulating CD8+ T cells from healthy seronegative donors. TV9-specific CTLs capable of suppressing viral replication in vitro were readily generated, suggesting that the cognate T cell repertoire is not limiting. However, these cultures contained multiple discrete populations with a range of binding avidities for the TV9 tetramer and correspondingly distinct functional dependencies on the CD8 coreceptor. The lack of dominant clonotypes was not affected by the stage of maturation of the priming dendritic cells. Cultures primed by dendritic cells transduced to present endogenous TV9 were also incapable of clonal maturation. Thus, a diffuse TCR repertoire appeared to be an intrinsic characteristic of TV9-specific responses. These data indicate that subdominance is not a function of poor immunogenicity, cognate TCR repertoire availability, or the potential avidity properties thereof, but rather suggest that useful responses to this epitope are suppressed by competing CD8+ T cell populations during HIV-1 infection.
PMCID: PMC2365726  PMID: 17548613

Results 1-25 (41)