Search tips
Search criteria

Results 1-25 (25)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Finite-Sample Corrected GEE of Population Average Treatment Effects in Stepped Wedge Cluster Randomized Trials 
Stepped wedge designs are increasingly commonplace and advantageous for cluster randomized trials (CRTs) when it is both unethical to assign placebo and it is logistically difficult to allocate an intervention simultaneously to many clusters. We study marginal mean models fit with generalized estimating equations (GEE) for assessing treatment effectiveness in stepped wedge CRTs. This approach has advantages over the more commonly used mixed models that (1) the population-average parameters have an important interpretation for public health applications and (2) they avoid untestable assumptions on latent variable distributions and avoid parametric assumptions about error distributions, therefore providing more robust evidence on treatment effects. However, CRTs typically have a small number of clusters, rendering the standard GEE sandwich variance estimator biased and highly variable and hence yielding incorrect inferences. We study the usual asymptotic GEE inferences (i.e., using sandwich variance estimators and asymptotic normality) and four small-sample corrections to GEE for stepped wedge CRTs and for parallel CRTs as a comparison. We show by simulation that the small-sample corrections provide improvement, with one correction appearing to provide at least nominal coverage even with only 10 clusters per group. These results demonstrate the viability of the marginal mean approach for both stepped wedge and parallel CRTs. We also study the comparative performance of the corrected methods for stepped wedge and parallel designs, and describe how the methods can accommodate interval censoring of individual failure times and incorporate semiparametric efficient estimators.
PMCID: PMC4411204  PMID: 25267551
Vaccine efficacy trial; Cluster randomization; Generalized Estimating Equations; Marginal mean model; Phase 3; Phase 4; Small-sample variance correction
2.  Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses 
EBioMedicine  2014;1(1):37-45.
To evaluate the role of V3-specific IgG antibodies (Abs) in the RV144 clinical HIV vaccine trial, which reduced HIV-1 infection by 31.2%, the anti-V3 Ab response was assessed. Vaccinees’ V3 Abs were highly cross-reactive with cyclic V3 peptides (cV3s) from diverse virus subtypes. Sieve analysis of CRF01_AE breakthrough viruses from 43 vaccine- and 66 placebo-recipients demonstrated an estimated vaccine efficacy of 85% against viruses with amino acids mismatching the vaccine at V3 site 317 (p=0.004) and 52% against viruses matching the vaccine at V3 site 307 (p=0.004). This analysis was supported by data showing vaccinees’ plasma Abs were less reactive with I307 replaced with residues found more often in vaccinees’ breakthrough viruses. Simultaneously, viruses with mutations at F317 were less infectious, possibly due to the contribution of F317 to optimal formation of the V3 hydrophobic core. These data suggest that RV144-induced V3-specific Abs imposed immune pressure on infecting viruses and inform efforts to design an HIV vaccine.
PMCID: PMC4293639  PMID: 25599085
HIV; antibody; vaccine; clinical trial
3.  Improving Neutralization Potency and Breadth by Combining Broadly Reactive HIV-1 Antibodies Targeting Major Neutralization Epitopes 
Journal of Virology  2014;89(5):2659-2671.
The isolation of broadly neutralizing HIV-1 monoclonal antibodies (MAbs) to distinct epitopes on the viral envelope glycoprotein (Env) provides the potential to use combinations of MAbs for prevention and treatment of HIV-1 infection. Since many of these MAbs have been isolated in the last few years, the potency and breadth of MAb combinations have not been well characterized. In two parallel experiments, we examined the in vitro neutralizing activities of double-, triple-, and quadruple-MAb combinations targeting four distinct epitopes, including the CD4-binding site, the V1V2-glycan region, the V3-glycan supersite, and the gp41 membrane-proximal external region (MPER), using a panel of 125 Env-pseudotyped viruses. All MAb combinations showed substantially improved neutralization breadth compared to the corresponding single MAbs, while the neutralization potency of individual MAbs was maintained. At a 50% inhibitory concentration (IC50) cutoff of 1 μg/ml per antibody, double-MAb combinations neutralized 89 to 98% of viruses, and triple combinations neutralized 98 to 100%. Overall, the improvement of neutralization breadth was closely predicted by an additive-effect model and explained by complementary neutralization profiles of antibodies recognizing distinct epitopes. Subtle but consistent favorable interactions were observed in some MAb combinations, whereas less favorable interactions were observed on a small subset of viruses that are highly sensitive to V3-glycan MAbs. These data demonstrate favorable in vitro combinations of broadly neutralizing HIV-1 MAbs and suggest that such combinations could have utility for HIV-1 prevention and treatment.
IMPORTANCE Over the last 5 years, numerous broadly reactive HIV-1-neutralizing MAbs have been isolated from B cells of HIV-1-infected donors. Each of these MAbs binds to one of the major vulnerable sites (epitopes) on the surface of the viral envelope glycoprotein. Since antibodies to distinct viral epitopes could theoretically act together to provide greater potency and breadth of virus neutralization, we tested physical mixtures of double, triple, and quadruple combinations of neutralizing MAbs targeting four major epitopes on HIV-1 Env. When tested together, antibody combinations showed substantially improved neutralization breadth compared to single MAbs. This improvement could be explained by the complementary neutralization profiles of individual MAbs. We further demonstrated that each antibody maintained its full neutralization potency when used in combination with other MAbs. These data provide a rationale for clinical use of antibody-based combinations for HIV-1 prevention and therapy.
PMCID: PMC4325730  PMID: 25520506
4.  Phase I/II Randomized Trial of Safety and Immunogenicity of LIPO-5 Alone, ALVAC-HIV (vCP1452) Alone, and ALVAC-HIV (vCP1452) Prime/LIPO-5 Boost in Healthy, HIV-1-Uninfected Adult Participants 
Clinical and Vaccine Immunology : CVI  2014;21(11):1589-1599.
Finding an effective human immunodeficiency virus type 1 (HIV-1) vaccine remains a major global health priority. In a phase I/II, placebo-controlled trial, healthy, HIV-1-negative adults were randomized to receive one of 5 vaccine regimens: LIPO-5 (combination of 5 lipopeptides) alone (250 μg), ALVAC-HIV (vCP1452) alone, or 3 groups of ALVAC-HIV (vCP1452) followed by ALVAC-HIV (vCP1452) plus LIPO-5 (250, 750, and 2,500 μg). Only 73/174 participants (42%) received all four vaccinations due to a study halt related to myelitis. There were no significant differences in systemic reactions between groups or in local reactogenicity between groups receiving ALVAC-HIV (vCP1452). Significant differences in local reactogenicity occurred between groups receiving LIPO-5 (P ≤ 0.05). Gag and Env antibodies were undetectable by ELISA 2 weeks after the fourth vaccination for all but one recipient. Antibodies to Gag and Env were present in 32% and 24% of recipients of ALVAC-HIV (vCP1452) alone and in 47% and 35% of ALVAC-HIV (vCP1452)+LIPO recipients, respectively. Coadministration of LIPO-5 did not significantly increase the response rate compared to ALVAC-HIV (vCP1452) alone, nor was there a significant relationship between dose and antibody responses among ALVAC-HIV (vCP1452)+LIPO groups. Over 90% of study participants had no positive gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses to any peptide pool at any time point. The study was halted due to a case of myelitis possibly related to the LIPO-5 vaccine; this case of myelitis remains an isolated event. In general, there was no appreciable cell-mediated immunity detected in response to the vaccines used in this study, and antibody responses were limited. The clinical trial is registered on with registry number NCT00076063.
PMCID: PMC4248765  PMID: 25253665
5.  Comprehensive Sieve Analysis of Breakthrough HIV-1 Sequences in the RV144 Vaccine Efficacy Trial 
PLoS Computational Biology  2015;11(2):e1003973.
The RV144 clinical trial showed the partial efficacy of a vaccine regimen with an estimated vaccine efficacy (VE) of 31% for protecting low-risk Thai volunteers against acquisition of HIV-1. The impact of vaccine-induced immune responses can be investigated through sieve analysis of HIV-1 breakthrough infections (infected vaccine and placebo recipients). A V1/V2-targeted comparison of the genomes of HIV-1 breakthrough viruses identified two V2 amino acid sites that differed between the vaccine and placebo groups. Here we extended the V1/V2 analysis to the entire HIV-1 genome using an array of methods based on individual sites, k-mers and genes/proteins. We identified 56 amino acid sites or “signatures” and 119 k-mers that differed between the vaccine and placebo groups. Of those, 19 sites and 38 k-mers were located in the regions comprising the RV144 vaccine (Env-gp120, Gag, and Pro). The nine signature sites in Env-gp120 were significantly enriched for known antibody-associated sites (p = 0.0021). In particular, site 317 in the third variable loop (V3) overlapped with a hotspot of antibody recognition, and sites 369 and 424 were linked to CD4 binding site neutralization. The identified signature sites significantly covaried with other sites across the genome (mean = 32.1) more than did non-signature sites (mean = 0.9) (p < 0.0001), suggesting functional and/or structural relevance of the signature sites. Since signature sites were not preferentially restricted to the vaccine immunogens and because most of the associations were insignificant following correction for multiple testing, we predict that few of the genetic differences are strongly linked to the RV144 vaccine-induced immune pressure. In addition to presenting results of the first complete-genome analysis of the breakthrough infections in the RV144 trial, this work describes a set of statistical methods and tools applicable to analysis of breakthrough infection genomes in general vaccine efficacy trials for diverse pathogens.
Author Summary
We present an analysis of the genomes of the HIV viruses that infected some participants of the RV144 Thai trial, which was the first study to show efficacy of a vaccine to prevent HIV infection. We analyzed the HIV genomes of infected vaccine recipients and infected placebo recipients, and found differences between them. These differences coincide with previously-studied genetic features that are relevant to the biology of HIV infection, including features involved in immune recognition of the virus. The findings presented here generate testable hypotheses about the mechanism of the partial protection seen in the Thai trial, and may ultimately lead to improved vaccines. The article also presents a toolkit of methods for computational analyses that can be applied to other vaccine efficacy trials.
PMCID: PMC4315437  PMID: 25646817
6.  Vaccine-induced Human Antibodies Specific for the Third Variable Region of HIV-1 gp120 Impose Immune Pressure on Infecting Viruses 
EBioMedicine  2014;1(1):37-45.
To evaluate the role of V3-specific IgG antibodies (Abs) in the RV144 clinical HIV vaccine trial, which reduced HIV-1 infection by 31.2%, the anti-V3 Ab response was assessed. Vaccinees' V3 Abs were highly cross-reactive with cyclic V3 peptides (cV3s) from diverse virus subtypes. Sieve analysis of CRF01_AE breakthrough viruses from 43 vaccine- and 66 placebo-recipients demonstrated an estimated vaccine efficacy of 85% against viruses with amino acids mismatching the vaccine at V3 site 317 (p = 0.004) and 52% against viruses matching the vaccine at V3 site 307 (p = 0.004). This analysis was supported by data showing that vaccinees' plasma Abs were less reactive with I307 when replaced with residues found more often in vaccinees' breakthrough viruses. Simultaneously, viruses with mutations at F317 were less infectious, possibly due to the contribution of F317 to optimal formation of the V3 hydrophobic core. These data suggest that RV144-induced V3-specific Abs imposed immune pressure on infecting viruses and inform efforts to design an HIV vaccine.
•The RV144 vaccine reduced infection by viruses with isoleucine in V3 position 307.•Many vaccine-induced antibodies are cross-reactive and target an epitope including I307.•There was selection for breakthrough viruses carrying F317 in V3 (p = 0.004).•F317 is needed to maintain optimal infectivity.•F317 is a poor or non-contact residue for vaccine induced V3 antibodies.
PMCID: PMC4293639  PMID: 25599085
HIV; Antibody; Vaccine; Clinical trial
7.  Vaccine-Induced Env V1–V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination 
Science translational medicine  2014;6(228):228ra39.
HIV-1–specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1–specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1–specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.
PMCID: PMC4116665  PMID: 24648342
8.  Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies 
Journal of Virology  2014;88(5):2489-2507.
Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world.
IMPORTANCE An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.
PMCID: PMC3958090  PMID: 24352443
9.  Analysis of HLA A*02 Association with Vaccine Efficacy in the RV144 HIV-1 Vaccine Trial 
Journal of Virology  2014;88(15):8242-8255.
The RV144 HIV-1 vaccine trial demonstrated partial efficacy of 31% against HIV-1 infection. Studies into possible correlates of protection found that antibodies specific to the V1 and V2 (V1/V2) region of envelope correlated inversely with infection risk and that viruses isolated from trial participants contained genetic signatures of vaccine-induced pressure in the V1/V2 region. We explored the hypothesis that the genetic signatures in V1 and V2 could be partly attributed to selection by vaccine-primed T cells. We performed a T-cell-based sieve analysis of breakthrough viruses in the RV144 trial and found evidence of predicted HLA binding escape that was greater in vaccine versus placebo recipients. The predicted escape depended on class I HLA A*02- and A*11-restricted epitopes in the MN strain rgp120 vaccine immunogen. Though we hypothesized that this was indicative of postacquisition selection pressure, we also found that vaccine efficacy (VE) was greater in A*02-positive (A*02+) participants than in A*02− participants (VE = 54% versus 3%, P = 0.05). Vaccine efficacy against viruses with a lysine residue at site 169, important to antibody binding and implicated in vaccine-induced immune pressure, was also greater in A*02+ participants (VE = 74% versus 15%, P = 0.02). Additionally, a reanalysis of vaccine-induced immune responses that focused on those that were shown to correlate with infection risk suggested that the humoral responses may have differed in A*02+ participants. These exploratory and hypothesis-generating analyses indicate there may be an association between a class I HLA allele and vaccine efficacy, highlighting the importance of considering HLA alleles and host immune genetics in HIV vaccine trials.
IMPORTANCE The RV144 trial was the first to show efficacy against HIV-1 infection. Subsequently, much effort has been directed toward understanding the mechanisms of protection. Here, we conducted a T-cell-based sieve analysis, which compared the genetic sequences of viruses isolated from infected vaccine and placebo recipients. Though we hypothesized that the observed sieve effect indicated postacquisition T-cell selection, we also found that vaccine efficacy was greater for participants who expressed HLA A*02, an allele implicated in the sieve analysis. Though HLA alleles have been associated with disease progression and viral load in HIV-1 infection, these data are the first to suggest the association of a class I HLA allele and vaccine efficacy. While these statistical analyses do not provide mechanistic evidence of protection in RV144, they generate testable hypotheses for the HIV vaccine community and they highlight the importance of assessing the impact of host immune genetics in vaccine-induced immunity and protection. (This study has been registered at under registration no. NCT00223080.)
PMCID: PMC4135964  PMID: 24829343
10.  Vaccine-Induced IgG Antibodies to V1V2 Regions of Multiple HIV-1 Subtypes Correlate with Decreased Risk of HIV-1 Infection 
PLoS ONE  2014;9(2):e87572.
In the RV144 HIV-1 vaccine efficacy trial, IgG antibody (Ab) binding levels to variable regions 1 and 2 (V1V2) of the HIV-1 envelope glycoprotein gp120 were an inverse correlate of risk of HIV-1 infection. To determine if V1V2-specific Abs cross-react with V1V2 from different HIV-1 subtypes, if the nature of the V1V2 antigen used to asses cross-reactivity influenced infection risk, and to identify immune assays for upcoming HIV-1 vaccine efficacy trials, new V1V2-scaffold antigens were designed and tested. Protein scaffold antigens carrying the V1V2 regions from HIV-1 subtypes A, B, C, D or CRF01_AE were assayed in pilot studies, and six were selected to assess cross-reactive Abs in the plasma from the original RV144 case-control cohort (41 infected vaccinees, 205 frequency-matched uninfected vaccinees, and 40 placebo recipients) using ELISA and a binding Ab multiplex assay. IgG levels to these antigens were assessed as correlates of risk in vaccine recipients using weighted logistic regression models. Levels of Abs reactive with subtype A, B, C and CRF01_AE V1V2-scaffold antigens were all significant inverse correlates of risk (p-values of 0.0008–0.05; estimated odds ratios of 0.53–0.68 per 1 standard deviation increase). Thus, levels of vaccine-induced IgG Abs recognizing V1V2 regions from multiple HIV-1 subtypes, and presented on different scaffolds, constitute inverse correlates of risk for HIV-1 infection in the RV144 vaccine trial. The V1V2 antigens provide a link between RV144 and upcoming HIV-1 vaccine trials, and identify reagents and methods for evaluating V1V2 Abs as possible correlates of protection against HIV-1 infection.
Trial Registration NCT00223080
PMCID: PMC3913641  PMID: 24504509
11.  Increased HIV-1 vaccine efficacy against viruses with genetic signatures in Env-V2 
Nature  2012;490(7420):417-420.
The RV144 trial demonstrated 31% vaccine efficacy (VE) at preventing HIV-1 infection1. Antibodies against the HIV-1 envelope variable loops 1 and 2 (V1/V2) domain correlated inversely with infection risk2. We hypothesized that vaccine-induced immune responses against V1/V2 would selectively impact, or sieve, HIV-1 breakthrough viruses. 936 HIV-1 genome sequences from 44 vaccine and 66 placebo recipients were examined. We show that vaccine-induced immune responses were associated with two signatures in V1/V2 at amino-acid positions 169 and 181. VE against viruses matching the vaccine at position 169 was 48% (CI: 18 to 66%; p=0.0036), whereas VE against viruses mismatching the vaccine at position 181 was 78% (CI: 35% to 93%; p=0.0028). Residue 169 is in a cationic glycosylated region recognized by broadly neutralizing and RV144-derived antibodies. The predicted distance between the two signatures sites (21±7 Å), and their match/mismatch dichotomy, suggest that multiple factors may be involved in the protection observed in RV144. Genetic signatures of RV144 vaccination in V2 complement the finding of an association between high V1/V2 binding antibodies and reduced risk of HIV-1 acquisition and provide evidence that vaccine-induced V2 responses plausibly played a role in the partial protection conferred by the RV144 regimen.
PMCID: PMC3551291  PMID: 22960785
12.  Analysis of V2 Antibody Responses Induced in Vaccinees in the ALVAC/AIDSVAX HIV-1 Vaccine Efficacy Trial 
PLoS ONE  2013;8(1):e53629.
The RV144 clinical trial of a prime/boost immunizing regimen using recombinant canary pox (ALVAC-HIV) and two gp120 proteins (AIDSVAX B and E) was previously shown to have a 31.2% efficacy rate. Plasma specimens from vaccine and placebo recipients were used in an extensive set of assays to identify correlates of HIV-1 infection risk. Of six primary variables that were studied, only one displayed a significant inverse correlation with risk of infection: the antibody (Ab) response to a fusion protein containing the V1 and V2 regions of gp120 (gp70-V1V2). This finding prompted a thorough examination of the results generated with the complete panel of 13 assays measuring various V2 Abs in the stored plasma used in the initial pilot studies and those used in the subsequent case-control study. The studies revealed that the ALVAC-HIV/AIDSVAX vaccine induced V2-specific Abs that cross-react with multiple HIV-1 subgroups and recognize both conformational and linear epitopes. The conformational epitope was present on gp70-V1V2, while the predominant linear V2 epitope mapped to residues 165–178, immediately N-terminal to the putative α4β7 binding motif in the mid-loop region of V2. Odds ratios (ORs) were calculated to compare the risk of infection with data from 12 V2 assays, and in 11 of these, the ORs were ≤1, reaching statistical significance for two of the variables: Ab responses to gp70-V1V2 and to overlapping V2 linear peptides. It remains to be determined whether anti-V2 Ab responses were directly responsible for the reduced infection rate in RV144 and whether anti-V2 Abs will prove to be important with other candidate HIV vaccines that show efficacy, however, the results support continued dissection of Ab responses to the V2 region which may illuminate mechanisms of protection from HIV-1 infection and may facilitate the development of an effective HIV-1 vaccine.
PMCID: PMC3547933  PMID: 23349725
13.  DNA and Modified Vaccinia Virus Ankara Vaccines Encoding Multiple Cytotoxic and Helper T-Lymphocyte Epitopes of Human Immunodeficiency Virus Type 1 (HIV-1) Are Safe but Weakly Immunogenic in HIV-1-Uninfected, Vaccinia Virus-Naive Adults 
We evaluated a DNA plasmid-vectored vaccine and a recombinant modified vaccinia virus Ankara vaccine (MVA-mBN32), each encoding cytotoxic and helper T-lymphocyte epitopes of human immunodeficiency virus type 1 (HIV-1) in a randomized, double-blinded, placebo-controlled trial in 36 HIV-1-uninfected adults using a heterologous prime-boost schedule. HIV-1-specific cellular immune responses, measured as interleukin-2 and/or gamma interferon production, were induced in 1 (4%) of 28 subjects after the first MVA-mBN32 immunization and in 3 (12%) of 25 subjects after the second MVA-mBN32 immunization. Among these responders, polyfunctional T-cell responses, including the production of tumor necrosis factor alpha and perforin, were detected. Vaccinia virus-specific antibodies were induced to the MVA vector in 27 (93%) of 29 and 26 (93%) of 28 subjects after the first and second immunizations with MVA-mBN32. These peptide-based vaccines were safe but were ineffective at inducing HIV-1-specific immune responses and induced much weaker responses than MVA vaccines expressing the entire open reading frames of HIV-1 proteins.
PMCID: PMC3346329  PMID: 22398243
14.  Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial 
The New England Journal of Medicine  2012;366(14):1275-1286.
In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case–control analysis to identify antibody and cellular immune correlates of infection risk.
In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up.
Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P = 0.02; q = 0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P = 0.03; q = 0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies.
This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
PMCID: PMC3371689  PMID: 22475592
15.  HIV-DNA priming alters T-cell responses to HIV-adenovirus vaccine even when responses to DNA are undetectable1 
Many candidate HIV vaccines are designed to primarily elicit T-cell responses. Although repeated immunization with the same vaccine boosts antibody responses, the benefit for T-cell responses is ill-defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T-cell responses, but increases gp140 antibody responses ten-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8+ T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4+ and CD8+ T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts, and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination.
PMCID: PMC3180898  PMID: 21844392
16.  MRKAd5 HIV-1 Gag/Pol/Nef Vaccine-Induced T-Cell Responses Inadequately Predict Distance of Breakthrough HIV-1 Sequences to the Vaccine or Viral Load 
PLoS ONE  2012;7(8):e43396.
The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect.
Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits.
Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0·04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0·06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0·04; Pol p = 0·13; Gag p = 0·89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p>0·50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4·7 vs 5·1) but the difference was not significant (p = 0·27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0·30).
Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.
PMCID: PMC3428369  PMID: 22952672
17.  Human adenovirus-specific T cells modulate HIV-specific T cell responses to an Ad5-vectored HIV-1 vaccine 
Recombinant viruses hold promise as vectors for vaccines to prevent infectious diseases with significant global health impacts. One of their major limitations is that preexisting anti-vector neutralizing antibodies can reduce T cell responses to the insert antigens; however, the impact of vector-specific cellular immunity on subsequent insert-specific T cell responses has not been assessed in humans. Here, we have identified and compared adenovirus-specific and HIV-specific T cell responses in subjects participating in two HIV-1 vaccine trials using a vaccine vectored by adenovirus serotype 5 (Ad5). Higher frequencies of pre-immunization adenovirus-specific CD4+ T cells were associated with substantially decreased magnitude of HIV-specific CD4+ T cell responses and decreased breadth of HIV-specific CD8+ T cell responses in vaccine recipients, independent of type-specific preexisting Ad5-specific neutralizing antibody titers. Further, epitopes recognized by adenovirus-specific T cells were commonly conserved across many adenovirus serotypes, suggesting that cross-reactivity of preexisting adenovirus-specific T cells can extend to adenovirus vectors derived from rare serotypes. These findings provide what we believe to be a new understanding of how preexisting viral immunity may impact the efficacy of vaccines under current evaluation for prevention of HIV, tuberculosis, and malaria.
PMCID: PMC3248307  PMID: 22201684
18.  Recurrent Signature Patterns in HIV-1 B Clade Envelope Glycoproteins Associated with either Early or Chronic Infections 
PLoS Pathogens  2011;7(9):e1002209.
Here we have identified HIV-1 B clade Envelope (Env) amino acid signatures from early in infection that may be favored at transmission, as well as patterns of recurrent mutation in chronic infection that may reflect common pathways of immune evasion. To accomplish this, we compared thousands of sequences derived by single genome amplification from several hundred individuals that were sampled either early in infection or were chronically infected. Samples were divided at the outset into hypothesis-forming and validation sets, and we used phylogenetically corrected statistical strategies to identify signatures, systematically scanning all of Env. Signatures included single amino acids, glycosylation motifs, and multi-site patterns based on functional or structural groupings of amino acids. We identified signatures near the CCR5 co-receptor-binding region, near the CD4 binding site, and in the signal peptide and cytoplasmic domain, which may influence Env expression and processing. Two signatures patterns associated with transmission were particularly interesting. The first was the most statistically robust signature, located in position 12 in the signal peptide. The second was the loss of an N-linked glycosylation site at positions 413–415; the presence of this site has been recently found to be associated with escape from potent and broad neutralizing antibodies, consistent with enabling a common pathway for immune escape during chronic infection. Its recurrent loss in early infection suggests it may impact fitness at the time of transmission or during early viral expansion. The signature patterns we identified implicate Env expression levels in selection at viral transmission or in early expansion, and suggest that immune evasion patterns that recur in many individuals during chronic infection when antibodies are present can be selected against when the infection is being established prior to the adaptive immune response.
Author Summary
A single virus most often establishes HIV-1 infection. As a consequence, virus sampled early in infection is usually very homogeneous. A few months into the infection, the virus begins to accumulate mutations as it evolves to evade HIV-specific immune responses mounted by the infected host. During chronic infection, the viral population diversifies, reflecting the history of mutations that arose within that infected individual. We hypothesized that particular amino acids might confer a selective advantage during transmission or early infection, and others might recur during chronic infection because they provide common and effective strategies of immune escape. We compared a large number of viral sequences from several hundred infected people sampled soon after transmission or during chronic infection to identify such infection-status “signature” patterns. A particularly robust signature was identified in the signal peptide of Envelope, a region that regulates its expression. Other signatures were found in regions of Envelope that interact with its cellular receptors, or are implicated in immune escape.
PMCID: PMC3182927  PMID: 21980282
19.  Genetic impact of vaccination on breakthrough HIV-1 sequences from the Step trial 
Nature medicine  2011;17(3):366-371.
We analyzed HIV-1 genome sequences from 68 newly-infected volunteers in the Step HIV-1 vaccine trial. To determine whether the vaccine exerted selective T-cell pressure on breakthrough viruses, we identified potential T-cell epitopes in the founder sequences and compared them to epitopes in the vaccine. We found greater distances for sequences from vaccine recipients than from placebo recipients (p-values ranging from < 0.0001 to 0.09). The most significant signature site distinguishing vaccine from placebo recipients was Gag-84, a site encompassed by several epitopes contained in the vaccine and restricted by HLA alleles common in the cohort. Moreover, the extended divergence was confined to the vaccine components of the virus (Gag, Pol, Nef) and not found in other HIV-1 proteins. These results represent the first evidence of selective pressure from vaccine-induced T-cell responses on HIV-1 infection.
PMCID: PMC3053571  PMID: 21358627
20.  Magnitude and breadth of a non-protective neutralizing antibody response in an efficacy trial of a candidate HIV-1 gp120 vaccine (AIDSVAX™ B/B) 
The Journal of infectious diseases  2010;202(4):595-605.
A candidate vaccine consisting of human immunodeficiency virus type 1 (HIV-1) subunit gp120 protein (AIDSVAX™ B/B) was found previously to be non-protective despite strong antibody responses against the vaccine antigens. We assessed the magnitude and breadth of neutralizing antibody responses in this trial.
Neutralizing antibodies were measured against highly sensitive (tier 1) and moderately sensitive (tier 2) strains of HIV-1 subtype B in two independent assays. Vaccine recipients were stratified by gender, race and high versus low behavioral risk of HIV-1 acquisition.
Most vaccine recipients mounted potent neutralizing antibody responses against HIV-1MN and a subset of other tier 1 viruses. Occasional weak neutralizing activity was detected against tier 2 viruses. The response against tier 1 and tier 2 viruses was significantly stronger in women than in men. Race and behavioral risk of HIV-1 acquisition had no significant effect on the response. Prior vaccination had little effect on the neutralizing antibody response that arose post infection.
Weak overall neutralizing antibody responses against tier 2 viruses is consistent with a lack of protection in this trial. The magnitude and breadth of neutralization reported here should be useful for identifying improved vaccines.
PMCID: PMC2946208  PMID: 20608874
HIV; vaccines; antibodies
21.  A novel HIV T helper epitope-based vaccine elicits cytokine-secreting HIV-specific CD4+ T cells in a phase I clinical trial in HIV-uninfected adults 
Vaccine  2009;27(50):7080-7086.
A Phase I human vaccine trial of a novel polypeptide vaccine of HIV T helper epitopes (EP-1043) and a DNA vaccine of HIV CTL epitopes was conducted in 84 healthy adult volunteers. The vaccine immunogenicity was assessed by an intracellular cytokine staining assay for IL-2, IL-4, TNFα and IFNγ. Sixty eight percent (32/47) of subjects had a positive CD4+ T response after receiving two vaccinations of the polypeptide vaccine. The responding CD4+ T cells made various combinations of IL-2, IL-4, IFN-γ, and TNF-α. The study demonstrated that the EP-1043 vaccine is safe, well-tolerated, and immunogenic.
PMCID: PMC2784203  PMID: 19786145
HIV vaccine; T helper epitopes; phase I clinical trial
22.  Antibody Specificities Associated with Neutralization Breadth in Plasma from Human Immunodeficiency Virus Type 1 Subtype C-Infected Blood Donors▿ †  
Journal of Virology  2009;83(17):8925-8937.
Defining the specificities of the anti-human immunodeficiency virus type 1 (HIV-1) envelope antibodies able to mediate broad heterologous neutralization will assist in identifying targets for an HIV-1 vaccine. We screened 70 plasmas from chronically HIV-1-infected individuals for neutralization breadth. Of these, 16 (23%) were found to neutralize 80% or more of the viruses tested. Anti-CD4 binding site (CD4bs) antibodies were found in almost all plasmas independent of their neutralization breadth, but they mainly mediated neutralization of the laboratory strain HxB2 with little effect on the primary virus, Du151. Adsorption with Du151 monomeric gp120 reduced neutralizing activity to some extent in most plasma samples when tested against the matched virus, although these antibodies did not always confer cross-neutralization. For one plasma, this activity was mapped to a site overlapping the CD4-induced (CD4i) epitope and CD4bs. Anti-membrane-proximal external region (MPER) (r = 0.69; P < 0.001) and anti-CD4i (r = 0.49; P < 0.001) antibody titers were found to be correlated with the neutralization breadth. These anti-MPER antibodies were not 4E10- or 2F5-like but spanned the 4E10 epitope. Furthermore, we found that anti-cardiolipin antibodies were correlated with the neutralization breadth (r = 0.67; P < 0.001) and anti-MPER antibodies (r = 0.6; P < 0.001). Our study suggests that more than one epitope on the envelope glycoprotein is involved in the cross-reactive neutralization elicited during natural HIV-1 infection, many of which are yet to be determined, and that polyreactive antibodies are possibly involved in this phenomenon.
PMCID: PMC2738176  PMID: 19553335
23.  AIDSVAX Immunization Induces HIV-specific CD8+ T-cell Responses in High-risk, HIV-negative Volunteers Who Subsequently Acquire HIV Infection12 
Vaccine  2008;27(7):1136-1140.
Correlates of immune protection from HIV vaccines remain undefined. The first HIV vaccine efficacy trial in the US and Europe VAX004, was designed to assess whether rgp120 envelope subunits (AIDSVAX B/B, VaxGen) can induce partial or complete protection from HIV-1 infection. No effectiveness in the reduction of either the acquisition of infection or levels of plasma viremia after HIV infection was noted. We found evidence of vaccine-specific CD8+ T cells in volunteers who received the vaccine, regardless of behavioral risk. Surprisingly, the CD8-response is significantly higher in participants who would go on to contract HIV infection. These results suggest that AIDSVAX immunization may boost preexisting immune responses—due to pre-infection exposure, and a vaccine-induced immune profile may serve as a biological marker for HIV susceptibility.
PMCID: PMC2676722  PMID: 19071176
24.  Induction of a Striking Systemic Cytokine Cascade prior to Peak Viremia in Acute Human Immunodeficiency Virus Type 1 Infection, in Contrast to More Modest and Delayed Responses in Acute Hepatitis B and C Virus Infections ▿  
Journal of Virology  2009;83(8):3719-3733.
Characterization of the immune responses induced in the initial stages of human immunodeficiency virus type 1 (HIV-1) infection is of critical importance for an understanding of early viral pathogenesis and prophylactic vaccine design. Here, we used sequential plasma samples collected during the eclipse and exponential viral expansion phases from subjects acquiring HIV-1 (or, for comparison, hepatitis B virus [HBV]or hepatitis C virus [HCV]) to determine the nature and kinetics of the earliest systemic elevations in cytokine and chemokine levels in each infection. Plasma viremia was quantitated over time, and levels of 30 cytokines and chemokines were measured using Luminex-based multiplex assays and enzyme-linked immunosorbent assays. The increase in plasma viremia in acute HIV-1 infection was found to be associated with elevations in plasma levels of multiple cytokines and chemokines, including rapid and transient elevations in alpha interferon (IFN-α) and interleukin-15 (IL-15) levels; a large increase in inducible protein 10 (IP-10) levels; rapid and more-sustained increases in tumor necrosis factor alpha and monocyte chemotactic protein 1 levels; more slowly initiated elevations in levels of additional proinflammatory factors including IL-6, IL-8, IL-18, and IFN-γ; and a late-peaking increase in levels of the immunoregulatory cytokine IL-10. Notably, there was comparatively little perturbation in plasma cytokine levels during the same phase of HBV infection and a delayed response of more intermediate magnitude in acute HCV infection, indicating that the rapid activation of a striking systemic cytokine cascade is not a prerequisite for viral clearance (which occurs in a majority of HBV-infected individuals). The intense early cytokine storm in acute HIV-1 infection may have immunopathological consequences, promoting immune activation, viral replication, and CD4+ T-cell loss.
PMCID: PMC2663284  PMID: 19176632
25.  Initial B-Cell Responses to Transmitted Human Immunodeficiency Virus Type 1: Virion-Binding Immunoglobulin M (IgM) and IgG Antibodies Followed by Plasma Anti-gp41 Antibodies with Ineffective Control of Initial Viremia▿ †  
Journal of Virology  2008;82(24):12449-12463.
A window of opportunity for immune responses to extinguish human immunodeficiency virus type 1 (HIV-1) exists from the moment of transmission through establishment of the latent pool of HIV-1-infected cells. A critical time to study the initial immune responses to the transmitted/founder virus is the eclipse phase of HIV-1 infection (time from transmission to the first appearance of plasma virus), but, to date, this period has been logistically difficult to analyze. To probe B-cell responses immediately following HIV-1 transmission, we have determined envelope-specific antibody responses to autologous and consensus Envs in plasma donors from the United States for whom frequent plasma samples were available at time points immediately before, during, and after HIV-1 plasma viral load (VL) ramp-up in acute infection, and we have modeled the antibody effect on the kinetics of plasma viremia. The first detectable B-cell response was in the form of immune complexes 8 days after plasma virus detection, whereas the first free plasma anti-HIV-1 antibody was to gp41 and appeared 13 days after the appearance of plasma virus. In contrast, envelope gp120-specific antibodies were delayed an additional 14 days. Mathematical modeling of the earliest viral dynamics was performed to determine the impact of antibody on HIV replication in vivo as assessed by plasma VL. Including the initial anti-gp41 immunoglobulin G (IgG), IgM, or both responses in the model did not significantly impact the early dynamics of plasma VL. These results demonstrate that the first IgM and IgG antibodies induced by transmitted HIV-1 are capable of binding virions but have little impact on acute-phase viremia at the timing and magnitude that they occur in natural infection.
PMCID: PMC2593361  PMID: 18842730

Results 1-25 (25)