PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (43)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Hormonal regulators of muscle and metabolism in aging (HORMA): design and conduct of a complex, double masked multicenter trial 
Background
Older persons often lose muscle mass, strength, and physical function. This report describes the challenges of conducting a complex clinical investigation assessing the effects of anabolic hormones on body composition, physical function, and metabolism during aging.
Methods
HORMA is a multicenter, randomized double masked study of 65–90-year-old community dwelling men with testosterone levels of 150–550 ng/dL and IGF-1 < 167 ng/dL. Subjects were randomized to transdermal testosterone (5 or 10 g/day) and rhGH (0, 3, or 5 μg/kg/day) for 16 weeks. Outcome measures included body composition by DEXA, MRI, and 2H2O dilution; muscle performance (strength, power, and fatigability), VO2peak, measures of physical function, synthesis/breakdown of myofibrillar proteins, other measures of metabolism, and quality of life.
Results
Major challenges included delay in startup caused by need for 7 institutional contracts, creating a 142-page manual of operations, orientation and training, creating a 121-page CRF; enrollment inefficiencies; scheduling 16 evaluations/subject; overnight admissions for invasive procedures and isotope infusions; large data and image management and transfer; quality control at multiples sites; staff turnover; and replacement of a clinical testing site. Impediments were largely solved by implementation of a web-based data entry and eligibility verification; electronic scheduling for multiple study visits; availability of research team members to educate and reassure subjects; more frequent site visits to validate all source documents and reliability of data entry; and intensifying quality control in testing and imaging. The study exceeded the target goal of 108 (n =112) completely evaluable cases. Two interim DSMB meetings confirmed the lack of excessive adverse events, lack of center effects, comparability of subjects, and that distribution of subjects and enrollment will not jeopardize outcomes or generalizability of results.
Conclusions
Flexibility and rapidly solving evolving problems is critical when conducting highly complex multicenter metabolic studies.
doi:10.1177/1740774507083569
PMCID: PMC4301418  PMID: 17942471
2.  Association of sex steroids, gonadotropins, and their trajectories with clinical cardiovascular disease and all-cause mortality in elderly men from the Framingham Heart Study 
Clinical endocrinology  2013;78(4):629-634.
Background
Emerging data from longitudinal studies suggests that low sex steroid concentrations in men are associated with increased cardiovascular risk and mortality. The impact of longitudinal trajectory patterns from serial sex steroid and gonadotropin measurements on the observed associations is unknown to date.
Methods
We prospectively evaluated 254 elderly men (mean age: 75.5 years) of the Framingham Heart Study with up to four serial measurements of serum total testosterone (TT), dehydroepiandrosterone sulfate (DHEAS), follicle stimulating hormone (FSH), luteinizing hormone (LH), and total estradiol (EST); and constructed age- and multivariable-adjusted Cox proportional hazard regression models relating baseline hormone concentrations and their mean, slope, and variation over time (modelled as continuous and categorized into quartiles) to the incidence of clinical cardiovascular disease (CVD) and all-cause mortality at 5-years and 10-years of follow-up.
Results
We observed no association between baseline concentrations of sex steroids, gonadotropins, and their trajectories with incident clinical CVD over 5-years and 10-years follow-up, respectively. Although higher baseline TT concentrations were associated with lower mortality risk at 5-years (hazard ratio per quartile increment, 0.74; 95% confidence interval, 0.56 – 0.98), correction for multiple statistical testing (p <0.005) rendered this association statistically non-significant. Repeat analyses at the 10-year follow-up time point also demonstrated no significant association between sex steroids, gonadotropins, or their trajectories and mortality.
Conclusion
Investigating longitudinal trajectory patterns of serial sex steroid and gonadotropin measurements, the present study found no consistent associations with incident clinical CVD and all-cause mortality risk in elderly men in the community.
doi:10.1111/cen.12013
PMCID: PMC4161203  PMID: 22901104
sex steroids; gonadotropins; testosterone; men; cardiovascular disease; trajectories; longitudinal; Framingham Heart Study
3.  Circulating Estrone Levels Are Associated Prospectively With Diabetes Risk in Men of the Framingham Heart Study 
Diabetes Care  2013;36(9):2591-2596.
OBJECTIVE
In postmenopausal women and preclinical murine models, estrogen administration reduces diabetes risk; however, the relationship of estradiol and estrone to diabetes in men is poorly understood. We determined the relationship between circulating estradiol and estrone levels and diabetes risk in community-dwelling men of the Framingham Heart Study (FHS).
RESEARCH DESIGN AND METHODS
Cross-sectional relationships of estradiol and estrone levels with diabetes were assessed at examination 7 (1998–2001) in FHS generation 2 men (n = 1,458); prospective associations between hormone levels at examination 7 and incident diabetes were assessed 6.8 years later at examination 8. Type 2 diabetes mellitus was defined as fasting glucose >125 mg/dL, medication use, or both. Estradiol, estrone, and testosterone levels were measured with liquid chromatography–tandem mass spectrometry, and free estradiol and estrone were calculated.
RESULTS
In cross-sectional models, men with elevated estrone and estradiol had 40% and 62% increased likelihoods of existing diabetes per cross-sectional doubling of estrone and estradiol levels, respectively. Free estrone (cross-sectional odds ratio 1.28 [95% CI 1.02–1.62], P = 0.04) was associated with impaired fasting glucose at examination 7. There was an increase in risk of existing diabetes with increasing quartiles of total and free estrone and estradiol and an increase in risk of incident diabetes with increasing quartiles of estrone levels. In multivariate longitudinal analyses, a twofold increase in total or free estrone levels at examination 7 was associated with 77 and 93% increases, respectively, in odds of incident diabetes at examination 8.
CONCLUSIONS
Although both estradiol and estrone exhibit cross-sectional associations with diabetes in men, in longitudinal analyses estrone is a more sensitive marker of diabetes risk than is estradiol.
doi:10.2337/dc12-2477
PMCID: PMC3747918  PMID: 23690532
4.  Effect of Testosterone Administration on Liver Fat in Older Men With Mobility Limitation: Results From a Randomized Controlled Trial 
Background.
Androgen receptor (AR) knockout male mice display hepatic steatosis, suggesting that AR signaling may regulate hepatic fat. However, the effects of testosterone replacement on hepatic fat in men are unknown. The aim of this study was to determine the effects of testosterone administration on hepatic fat in older men with mobility limitation and low testosterone levels who were participating in a randomized trial (the Testosterone in Older Men trial).
Methods.
Two hundred and nine men with mobility limitation and low total or free testosterone were randomized in the parent trial to either placebo or 10-g testosterone gel daily for 6 months. Hepatic fat was determined by magnetic resonance imaging in 73 men (36 in placebo and 37 in testosterone group) using the volumetric method. Insulin sensitivity (homeostatic model assessment–insulin resistance) was derived from fasting glucose and insulin.
Results.
Baseline characteristics were similar between the two groups, including liver volumes (1583±363 in the testosterone group vs 1522±271mL in the placebo group, p = .42). Testosterone concentrations increased from 250±72 to 632±363ng/dL in testosterone group but did not change in placebo group. Changes in liver volume during intervention did not differ significantly between groups (p = .5) and were not related to on-treatment testosterone concentrations. The change in homeostatic model assessment–insulin resistance also did not differ significantly between groups and was not related to either baseline or change in liver fat.
Conclusion.
Testosterone administration in older men with mobility limitation and low testosterone levels was not associated with a reduction in hepatic fat. Larger trials are needed to determine whether testosterone replacement improves liver fat in men with nonalcoholic hepatic steatosis.
doi:10.1093/gerona/gls259
PMCID: PMC3826861  PMID: 23292288
Testosterone; Older men; Liver fat; Insulin resistance.
5.  Age Trends in Estradiol and Estrone Levels Measured Using Liquid Chromatography Tandem Mass Spectrometry in Community-Dwelling Men of the Framingham Heart Study 
Background.
Age trends in estradiol and estrone levels in men and how lifestyle factors, comorbid conditions, testosterone, and sex hormone–binding globulin affect these age trends remain poorly understood, and were examined in men of the Framingham Heart Study.
Methods.
Estrone and estradiol concentrations were measured in morning fasting samples using liquid chromatography tandem mass spectrometry in men of Framingham Offspring Generation. Free estradiol was calculated using a law of mass action equation.
Results.
There were 1,461 eligible men (mean age [±SD] 61.1±9.5 years and body mass index [BMI] 28.8±4.5kg/m2). Total estradiol and estrone were positively associated with age, but free estradiol was negatively associated with age. Age-related increase in total estrone was greater than that in total estradiol. Estrone was positively associated with smoking, BMI, and testosterone, and total and free estradiol with diabetes, BMI, testosterone, and comorbid conditions; additionally, free estradiol was associated negatively with smoking. Collectively, age, BMI, testosterone, and other health and behavioral factors explained only 18% of variance in estradiol, and 9% of variance in estrone levels. Men in the highest quintile of estrone levels had significantly higher age and BMI, and a higher prevalence of smoking, diabetes, and cardiovascular disease than others, whereas those in the highest quintile of estradiol had higher BMI than others.
Conclusions.
Total estrone and estradiol levels in men, measured using liquid chromatography tandem mass spectrometry, revealed significant age-related increases that were only partially accounted for by cross-sectional differences in BMI, diabetes status, and other comorbidities and health behaviors. Longitudinal studies are needed to confirm these findings.
doi:10.1093/gerona/gls216
PMCID: PMC3660115  PMID: 23105044
Age trends; Estrogen levels in men; LC-MS/MS; Age-related changes in estrone and estradiol; Determinants of estrogen levels in men.
6.  The Effect of Testosterone on Mood and Well-being in Men with Erectile Dysfunction in a Randomized, Placebo-Controlled Trial 
Andrology  2013;1(3):475-482.
The relationship between testosterone, well-being and mood is poorly understood. We investigated the effect of testosterone supplementation on mood, well-being, and self-reported health in men with erectile dysfunction (ED) and low serum testosterone levels. This was a randomized, double-blind, placebo-controlled trial (ClinicalTrials.gov registration number NCT00512707) in which 140 men, 40 to 70-years, with ED and low serum testosterone levels were first optimized on sildenafil alone for 3 to 7-weeks and then randomized to receive either sildenafil plus testosterone gel (n = 70) or sildenafil plus placebo (n = 70) gel for 14-weeks. Using multiple imputations and generalized linear regression, we compared psychological changes in well-being, evaluated by the Psychological General Well-Being Index, and mood, evaluated by Derogatis Affects Balance Scale. Mood and well-being scores were similar between the two groups at baseline and did not substantially change during the administration of sildenafil or after randomization to testosterone. Our findings show that the addition of testosterone to sildenafil in men with ED and low serum testosterone levels was not associated with improvement in either well-being or mood.
doi:10.1111/j.2047-2927.2013.00075.x
PMCID: PMC3630276  PMID: 23494931
Erectile dysfunction; testosterone replacement; mood; affectivity balance; well-being; androgen deficiency
7.  Testosterone Administration Inhibits Hepcidin Transcription and is Associated with Increased Iron Incorporation into Red Blood Cells 
Aging cell  2013;12(2):280-291.
Testosterone administration increases hemoglobin levels and has been used to treat anemia of chronic disease. Erythrocytosis is the most frequent adverse event associated with testosterone therapy of hypogonadal men, especially older men. However, the mechanisms by which testosterone increases hemoglobin remain unknown.
Testosterone administration in male and female mice was associated with a greater increase in hemoglobin and hematocrit, reticulocyte count, reticulocyte hemoglobin concentration, and serum iron and transferring saturation than placebo. Testosterone downregulated hepatic hepcidin mRNA expression, upregulated renal erythropoietin mRNA expression, and increased erythropoietin levels. Testosterone-induced suppression of hepcidin expression was independent of its effects on erythropoietin or hypoxia-sensing mechanisms. Transgenic mice with liver-specific constitutive hepcidin over-expression failed to exhibit the expected increase in hemoglobin in response to testosterone administration. Testosterone upregulated splenic ferroportin expression and reduced iron retention in spleen. After intravenous administration of transferrin-bound 58Fe, the amount of 58Fe incorporated into red blood cells was significantly greater in testosterone-treated mice than in placebo-treated mice. Serum from testosterone-treated mice stimulated hemoglobin synthesis in K562 erythroleukemia cells more than that from vehicle-treated mice. Testosterone administration promoted the association of androgen receptor (AR) with Smad1 and Smad4 to reduce their binding to BMP-response elements in hepcidin promoter in the liver. Ectopic expression of AR in hepatocytes suppressed hepcidin transcription; this effect was blocked dose-dependently by AR antagonist flutamide. Testosterone did not affect hepcidin mRNA stability. Conclusion: Testosterone inhibits hepcidin transcription through its interaction with BMP-Smad signaling. Testosterone administration is associated with increased iron incorporation into red blood cells.
doi:10.1111/acel.12052
PMCID: PMC3602280  PMID: 23399021
8.  Combined administration of testosterone plus an ornithine decarboxylase inhibitor as a selective prostate-sparing anabolic therapy 
Aging Cell  2013;13(2):303-310.
Because of its anabolic effects on muscle, testosterone is being explored as a function-promoting anabolic therapy for functional limitations associated with aging; however, concerns about testosterone’s adverse effects on prostate have inspired efforts to develop strategies that selectively increase muscle mass while sparing the prostate. Testosterone’s promyogenic effects are mediated through upregulation of follistatin. We show here that the administration of recombinant follistatin (rFst) increased muscle mass in mice, but had no effect on prostate mass. Consistent with the results of rFst administration, follistatin transgenic mice with constitutively elevated follistatin levels displayed greater muscle mass than controls, but had similar prostate weights. To elucidate signaling pathways regulated differentially by testosterone and rFst in prostate and muscle, we performed microarray analysis of mRNAs from prostate and levator ani of castrated male mice treated with vehicle, testosterone, or rFst. Testosterone and rFst shared the regulation of many transcripts in levator ani; however, in prostate, 593 transcripts in several growth-promoting pathways were differentially expressed after testosterone treatment, while rFst showed a negligible effect with only 9 transcripts differentially expressed. Among pathways that were differentially responsive to testosterone in prostate, we identified ornithine decarboxylase (Odc1), an enzyme in polyamine biosynthesis, as a testosterone-responsive gene that is unresponsive to rFst. Accordingly, we administered testosterone with and without α-difluoromethylornithine (DFMO), an Odc1 inhibitor, to castrated mice. DFMO selectively blocked testosterone’s effects on prostate, but did not affect testosterone’s anabolic effects on muscle. Co-administration of testosterone and Odc1 inhibitor presents a novel therapeutic strategy for prostate-sparing anabolic therapy.
doi:10.1111/acel.12174
PMCID: PMC4331775  PMID: 24305501
aging; anti-aging; sarcopenia; sex hormones; skeletal muscle; steroids
9.  Risk Factors Associated With Cardiovascular Events During Testosterone Administration in Older Men With Mobility Limitation 
Background.
Testosterone in Older Men with Mobility Limitations Trial found an increased incidence of cardiovascular events in men randomized to testosterone, resulting in enrollment cessation by trial's Data and Safety Monitoring Board. We evaluated changes in gonadal hormones and markers of inflammation and coagulation to elucidate risk factors associated with cardiovascular events.
Methods.
Men aged 65 years or more, with mobility limitation, total testosterone 100–350 ng/dL, or free testosterone less than 50 pg/mL, were randomized to placebo or 10 g testosterone gel daily for 6 months. Changes in total and free testosterone, estradiol and estrone, C-reactive protein, interleukin 6, fibrinogen, plasminogen activator inhibitor-1, and pro-brain naturetic peptide were compared between groups and within the testosterone group between subjects who experienced cardiovascular events and those who did not.
Results.
Of 209 men randomized (mean age 74 years), gonadal hormones and biomarkers were available in 179 men. Baseline body mass index, gonadal hormones, lipids, Framingham risk scores, and other biomarkers were similar in the two treatment groups. Within the testosterone group, the 6-month increase in free testosterone was significantly greater in men who experienced cardiovascular events than in those who did not [mean (95% confidence interval), 10.6 (4.6–16.7) vs 5.2 (3.0–7.5) ng/dL, p = .05]. In multivariable logistic regression analysis, the change in the serum levels of free testosterone was associated with cardiovascular events.
Conclusion.
Mobility-limited older men who experienced cardiovascular events had greater increases in serum free testosterone levels than those who did not.
doi:10.1093/gerona/gls138
PMCID: PMC3598355  PMID: 22562960
Testosterone; Older men; Mobility limitation; Cardiovascular disease
10.  Inhibition of in vitro and in vivo brown fat differentiation program by myostatin 
Obesity (Silver Spring, Md.)  2013;21(6):1180-1188.
Obesity arises mainly due to the imbalance between energy storage and its expenditure. Metabolically active brown adipose tissue (BAT) has recently been detected in humans and has been proposed as a new target for anti-obesity therapy because of its unique capacity to regulate energy expenditure. Myostatin (Mst), a negative regulator of muscle mass, has been identified as a potential target to regulate overall body composition. While the beneficial effects of Mst inhibition on muscle mass are well known, its role in the regulation of lipid metabolism, and energy expenditure is not very clear. We tested the effects of Mst inhibition on the gene regulatory networks that control BAT differentiation using both in vivo and in vitro model systems. PRDM16 and UCP1, two key regulators of brown fat differentiation were significantly up regulated in levator-ani (LA) and gastrocnemius (Gastroc) muscles as well as in epididymal (Epi) and subcutaneous (SC) fat pads isolated from Mst knock out (Mst KO) male mice compared to wild type (WT) mice. Using mouse embryonic fibroblast (MEFs) primary cultures obtained from Mst KO group compared to the WT group undergoing adipogenic differentiation, we also demonstrate a significant increase in select genes and proteins that improve lipid metabolism and energy expenditure. Furthermore, treatment of Mst KO MEFs with recombinant Mst protein significantly inhibited the gene expression levels of UCP1, PRDM16, PGC1-α/β as well as BMP7. Future studies to extend these findings and explore the therapeutic potential of Mst inhibition on metabolic disorders are warranted.
doi:10.1002/oby.20117
PMCID: PMC3735638  PMID: 23868854
11.  Testosterone Improves the Regeneration of Old and Young Mouse Skeletal Muscle 
Aging is associated with loss of muscle mass and strength, reduced satellite cell number, and lower regenerative potential. Testosterone increases muscle mass, strength, and satellite cell number in humans; however, the effects of testosterone on the regenerative potential of skeletal muscle are unclear. Here, we investigated the effect of testosterone on the skeletal muscle regeneration of young (2-month-old) and aged (24-month-old) male mice. We show that testosterone increases the number of proliferating satellite cells in regenerating “tibialis anterior” muscle of young and aged castrated mice 2 and 4 days postinjury. Testosterone supplementation increases the number and the cross-sectional area of regenerating fibers in both classes of age 4 days postinjury. Testosterone increases satellite cell activation and proliferation and the regeneration of both young and aged mouse muscle. These data suggest prospective application of androgens to improve the regenerating potential of the aged human skeletal muscle.
doi:10.1093/gerona/gls083
PMCID: PMC3598367  PMID: 22499765
Muscle regeneration; Testosterone
12.  The Safety, Pharmacokinetics, and Effects of LGD-4033, a Novel Nonsteroidal Oral, Selective Androgen Receptor Modulator, in Healthy Young Men 
Background.
Concerns about potential adverse effects of testosterone on prostate have motivated the development of selective androgen receptor modulators that display tissue-selective activation of androgenic signaling. LGD-4033, a novel nonsteroidal, oral selective androgen receptor modulator, binds androgen receptor with high affinity and selectivity.
Objectives.
To evaluate the safety, tolerability, pharmacokinetics, and effects of ascending doses of LGD-4033 administered daily for 21 days on lean body mass, muscle strength, stair-climbing power, and sex hormones.
Methods.
In this placebo-controlled study, 76 healthy men (21–50 years) were randomized to placebo or 0.1, 0.3, or 1.0 mg LGD-4033 daily for 21 days. Blood counts, chemistries, lipids, prostate-specific antigen, electrocardiogram, hormones, lean and fat mass, and muscle strength were measured during and for 5 weeks after intervention.
Results.
LGD-4033 was well tolerated. There were no drug-related serious adverse events. Frequency of adverse events was similar between active and placebo groups. Hemoglobin, prostate-specific antigen, aspartate aminotransferase, alanine aminotransferase, or QT intervals did not change significantly at any dose. LGD-4033 had a long elimination half-life and dose-proportional accumulation upon multiple dosing. LGD-4033 administration was associated with dose-dependent suppression of total testosterone, sex hormone–binding globulin, high density lipoprotein cholesterol, and triglyceride levels. follicle-stimulating hormone and free testosterone showed significant suppression at 1.0-mg dose only. Lean body mass increased dose dependently, but fat mass did not change significantly. Hormone levels and lipids returned to baseline after treatment discontinuation.
Conclusions.
LGD-4033 was safe, had favorable pharmacokinetic profile, and increased lean body mass even during this short period without change in prostate-specific antigen. Longer randomized trials should evaluate its efficacy in improving physical function and health outcomes in select populations.
doi:10.1093/gerona/gls078
PMCID: PMC4111291  PMID: 22459616
Selective androgen receptor modulators; SARMs; Sarcopenia; Function promoting anabolic therapies; Cachexia
13.  Clinical correlates of sex steroids and gonadotropins in men over the late adulthood : the Framingham Heart Study 
Background
Low serum concentrations of sex steroids and gonadotropins in men have been associated with increased cardiometabolic risk and mortality, but the clinical correlates of these hormones in men over the late adulthood are less clearly understood.
Methods
We analyzed up to five serial measurements of total testosterone (TT), dehydroepiandrosterone sulfate (DHEAS), follicle stimulating hormone (FSH), luteinizing hormone (LH), and total estradiol (EST) in older men in the original cohort of the Framingham Heart Study to determine the short- (2-years; 1,165 person-observations in 528 individuals) and long-term (up to 10-years follow-up; 2,520 person-observations in 835 individuals with mean baseline age: 71.2 years) clinical correlates of these sex steroids and gonadotropins using multilevel modelling and Generalized Estimating Equations.
Results
Age, body mass index, and pre-existing type 2 diabetes were inversely related to long-term TT concentrations, whereas higher systolic blood pressure showed a positive association. Furthermore, age and pre-existing cardiovascular disease (CVD) were inversely and HDL cholesterol concentrations positively associated with long-term DHEAS concentrations. Analyses of short-term changes revealed age was inversely related to DHEAS, but positively related to FSH and LH concentrations.
Conclusion
Our community-based study identified modifiable correlates of decreasing TT and DHEAS concentrations in elderly men, suggesting that maintenance of a low CVD risk factor burden may mitigate the age-related decline of these hormones over the late adulthood.
doi:10.1111/j.1365-2605.2012.01285.x
PMCID: PMC3434249  PMID: 22640232
sex steroids; gonadotropins; testosterone; aging male; Framingham Heart Study
14.  AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis 
PLoS ONE  2013;8(8):e71017.
Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes.
doi:10.1371/journal.pone.0071017
PMCID: PMC3731267  PMID: 23936482
15.  Testosterone inhibits transforming growth factor-β signaling during myogenic differentiation and proliferation of mouse satellite cells: Potential role of follistatin in mediating testosterone action 
Testosterone (T) administration is associated with increased satellite cell number and skeletal muscle hypertrophy, although there is considerable heterogeneity in the response of different skeletal muscle groups to T in vivo. We investigated the effects of T on the growth and differentiation of satellite cells isolated from levator ani (LA) and gastrocnemius (gastroc) muscles. T up regulated follistatin (Fst) expression, but down regulated the mRNA and protein expression of a number of genes in the transforming growth factor-beta (TGF-β)-signaling pathway. Inhibition of Fst expression by small interfering RNA (siRNA) inhibited myogenic differentiation and blocked the pro-myogenic effects of T. Treatment of satellite cells with T or Fst up regulated the expression of Pax7 and PCNA, and increased their proliferation. T and Fst blocked TGF-β induced inhibition of growth and myogenic differentiation and down regulated TGF-β-dependent transcriptome in both LA and gastroc cells. We conclude that T stimulation of satellite cell proliferation and myogenic differentiation are associated with up regulation of Fst and inhibition of TGF-β-signaling.
doi:10.1016/j.mce.2011.11.019
PMCID: PMC3264813  PMID: 22138414
Transforming growth factor-β; follistatin; myostatin; myosin heavy chain II
16.  Durability of the Effects of Testosterone and Growth Hormone Supplementation in Older Community Dwelling Men: The HORMA Trial 
Clinical endocrinology  2011;75(1):103-111.
Objectives
Determine the durability of anabolic effects and adverse events (AEs) after stopping testosterone and growth hormone supplementation in older men.
Design
Secondary analysis of a double-masked, randomized controlled trial of testosterone gel (5g or 10g/daily) plus rhGH (0, 3, or 5ug/kg/day) with follow-up of outcomes 3-months later.
Participants
108 community-dwelling 65-90 year-old-men.
Measurements
Testosterone and IGF-1 levels, body composition (DEXA), 1-repetition maximum (1-RM) strength, stair-climbing power, quality-of-life (QOL) and activity questionnaires, AEs.
Results
Despite improvements in body composition during treatment, residual benefits 3-months later (week-28) were variable. For participants with improvements exceeding their week-17 median changes, benefits were sustained at week 28 for lean body mass (LBM, 1.45±1.63kg, 45% of week-17 values, p<0.0001-vs-baseline), appendicular skeletal muscle mass (ASMM, 0.71±1.01kg, 42%, p<0.0001), total fat (-1.06±2.18kg, 40%, p<0.0001,), and trunk fat (-0.89±1.42kg, 50%, p<0.0001,); retention of ASMM was associated with greater week-16 protein intake (p=0.01). For 1-RM strength, 39%-43% of week-17 improvements (p≤0.05) were retained and associated with better week-17 strength (p<0.0001), change in testosterone from week-17-to-28 (p=0.004) and baseline PASE (p=0.04). Framingham 10-year cardiovascular risks were low (~14%), didn’t worsen, and improved by week-28 (p=0.0002). The hypothalamic-pituitary-gonadal axis recovered completely.
Conclusions
Durable improvements in muscle mass, strength, and fat mass were retained 3-months after discontinuing hormone supplementation in participants with greater than median body composition changes during treatment, but not in others with smaller gains. AEs largely resolved after intervention discontinuation. Additional strategies may be needed to sustain or augment muscle mass and strength gains achieved during short-term hormone therapy.
doi:10.1111/j.1365-2265.2011.04014.x
PMCID: PMC3529980  PMID: 21521283
Lean body mass; fat mass; muscle performance; quality of life; cardiovascular risks
17.  Testosterone Plus Low-Intensity Physical Training in Late Life Improves Functional Performance, Skeletal Muscle Mitochondrial Biogenesis, and Mitochondrial Quality Control in Male Mice 
PLoS ONE  2012;7(12):e51180.
Testosterone supplementation increases muscle mass in older men but has not been shown to consistently improve physical function and activity. It has been hypothesized that physical exercise is required to induce the adaptations necessary for translation of testosterone-induced muscle mass gain into functional improvements. However, the effects of testosterone plus low intensity physical exercise training (T/PT) on functional performance and bioenergetics are unknown. In this pilot study, we tested the hypothesis that combined administration of T/PT would improve functional performance and bioenergetics in male mice late in life more than low-intensity physical training alone. 28-month old male mice were randomized to receive T/PT or vehicle plus physical training (V/PT) for 2 months. Compare to V/PT control, administration of T/PT was associated with improvements in muscle mass, grip strength, spontaneous physical movements, and respiratory activity. These changes were correlated with increased mitochondrial DNA copy number and expression of markers for mitochondrial biogenesis. Mice receiving T/PT also displayed increased expression of key elements for mitochondrial quality control, including markers for mitochondrial fission-and-fusion and mitophagy. Concurrently, mice receiving T/PT also displayed increased expression of markers for reduced tissue oxidative damage and improved muscle quality. Conclusion: Testosterone administered with low-intensity physical training improves grip strength, spontaneous movements, and respiratory activity. These functional improvements were associated with increased muscle mitochondrial biogenesis and improved mitochondrial quality control.
doi:10.1371/journal.pone.0051180
PMCID: PMC3519841  PMID: 23240002
18.  Sex Hormone–Binding Globulin, but Not Testosterone, Is Associated Prospectively and Independently With Incident Metabolic Syndrome in Men 
Diabetes Care  2011;34(11):2464-2470.
OBJECTIVE
The association between total testosterone and metabolic syndrome has prompted speculation that low testosterone contributes to the pathophysiology of metabolic syndrome in men. We determined whether testosterone or sex hormone–binding globulin (SHBG) is independently associated with the risk of metabolic syndrome.
RESEARCH DESIGN AND METHODS
Cross-sectional relationships of hormone levels with metabolic syndrome were assessed in a sample of men in generation 2 of the Framingham Heart Study (FHS) who did not receive testosterone or androgen-deprivation therapy (n = 1,625) and confirmed in a validation sample of men in FHS generation 3 (n = 1,912). Hormone levels in generation 2 examination 7 were related prospectively to incident metabolic syndrome 6.6 years later at examination 8. Testosterone was measured using liquid chromatography–tandem mass spectrometry, SHBG was measured by immunofluorometric assay, and free testosterone was calculated. Metabolic syndrome was defined using the National Cholesterol Education Program Adult Treatment Panel III criteria.
RESULTS
Cross-sectionally, testosterone and SHBG were more strongly associated with metabolic syndrome than free testosterone in the training sample. SHBG, but not testosterone or free testosterone, was significantly associated with metabolic syndrome after adjusting for age, smoking, BMI, and insulin sensitivity (homeostasis model assessment of insulin resistance [HOMA-IR]). These findings were confirmed in a validation sample. Longitudinally, SHBG at examination 7, but not testosterone or free testosterone, was associated with incident metabolic syndrome at examination 8 after adjusting for age, smoking, BMI, and HOMA-IR. Multivariable analyses suggested that age, BMI, and insulin sensitivity independently affect SHBG and testosterone levels and the risk of metabolic syndrome and its components.
CONCLUSIONS
SHBG, but not testosterone, is independently associated with the risk of metabolic syndrome. These data do not reveal an independent prospective relationship between testosterone and metabolic syndrome in men.
doi:10.2337/dc11-0888
PMCID: PMC3198304  PMID: 21926281
19.  Relation of Visceral Adiposity to Circulating Natriuretic Peptides in Ambulatory Individuals 
The American journal of cardiology  2011;108(7):979-984.
Natriuretic peptides have important roles in the regulation of vasomotor tone, salt homeostasis, and ventricular remodeling. Lower natriuretic peptide levels observed in obese individuals may underlie the greater cardiovascular risk associated with obesity. Thus, the aim of this study was to determine whether lower natriuretic peptide levels in obesity are attributable to differences in regional fat distribution. We investigated the relationship of plasma N-terminal pro-B-type natriuretic peptide (N-BNP) with regional adiposity in 1,873 community-based individuals (46% women; mean age 45 years). Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) volumes were measured by multi-detector computed tomography. In sex-specific, multivariable analyses adjusting for age and blood pressure, log N-BNP was inversely associated with VAT in both men (β −0.11, P<0.001) and women (β −0.19, P<0.001). Log N-BNP was inversely associated with SAT in women only (β −0.14, P<0.001). In models containing both VAT and SAT, only VAT was significantly associated with log N-BNP (men, β −0.137, P<0.001; women, β −0.184, P<0.001). VAT remained associated with log N-BNP even after adjustment for body mass index and waist circumference (β −0.119, P<0.001), and in analyses restricted to non-obese individuals (β −0.114; P<0.001). Adjustment for insulin resistance attenuated the associations of N-BNP with both VAT and SAT. In conclusion, this study demonstrates that circulating N-BNP is related to variation in regional and particularly visceral adiposity. These findings suggest that excess visceral adiposity and concomitant hyperinsulinemia may contribute to the natriuretic peptide “deficiency” observed in obesity.
doi:10.1016/j.amjcard.2011.05.033
PMCID: PMC3175269  PMID: 21813106
adiposity; natriuretic peptides; cardiovascular risk
20.  Clinical Meaningfulness of the Changes in Muscle Performance and Physical Function Associated With Testosterone Administration in Older Men With Mobility Limitation 
Context.
Testosterone in Older Men with Mobility Limitations Trial determined the effects of testosterone on muscle performance and physical function in older men with mobility limitation. Trial’s Data and Safety Monitoring Board recommended enrollment cessation due to increased frequency of adverse events in testosterone arm. The changes in muscle performance and physical function were evaluated in relation to participant’s perception of change.
Methods.
Men aged 65 years and older, with mobility limitation, total testosterone 100–350 ng/dL, or free testosterone less than 50 pg/mL, were randomized to placebo or 10 g testosterone gel daily for 6 months. Primary outcome was leg-press strength. Secondary outcomes included chest-press strength, stair-climb, 40-m walk, muscle mass, physical activity, self-reported function, and fatigue. Proportions of participants exceeding minimally important difference in study arms were compared.
Results.
Of 209 randomized participants, 165 had follow-up efficacy measures. Mean (SD) age was 74 (5.4) years and short physical performance battery score 7.7 (1.4). Testosterone arm exhibited greater improvements in leg-press strength, chest-press strength and power, and loaded stair-climb than placebo. Compared with placebo, significantly greater proportion of men receiving testosterone improved their leg-press and chest-press strengths (43% vs 18%, p = .01) and stair-climbing power (28% vs 10%, p = .03) more than minimally important difference. Increases in leg-press strength and stair-climbing power were associated with changes in testosterone levels and muscle mass. Physical activity, walking speed, self-reported function, and fatigue did not change.
Conclusions.
Testosterone administration in older men with mobility limitation was associated with patient-important improvements in muscle strength and stair-climbing power. Improvements in muscle strength and only some physical function measures should be weighed against the risk of adverse events in this population.
doi:10.1093/gerona/glr100
PMCID: PMC3202898  PMID: 21697501
Testosterone; Minimally important difference; Mobility limitation; Older men; Function promoting therapies
21.  Value of measuring muscle performance to assess changes in lean mass with testosterone and growth hormone supplementation 
European journal of applied physiology  2011;112(3):1123-1131.
We hypothesized that treatment with testosterone (T) and recombinant human growth hormone (rhGH) would increase lean mass (LM) and muscle strength proportionally and an in a linear manner over 16 weeks. This was a multicenter, randomized, controlled, double-masked investigation of T and rhGH supplementation in older (71 ± 4 years) community-dwelling men. Participants received transdermal T at either 5 or 10 g/day as well as rhGH at 0, 3.0 or 5.0 µg/kg/day for 16 weeks. Body composition was determined by dual-energy X-ray absorptiometry (DEXA) and muscle performance by composite one-repetition maximum (1-RM) strength and strength per unit of lean mass (muscle quality, MQ) for five major muscle groups (upper and lower body) at baseline, week 8 and 17. The average change in total LM at study week 8 compared with baseline was 1.50 ± 1.54 kg (P < 0.0001) in the T only group and 2.64 ± 1.7 (P < 0.0001) in the T + rhGH group and at week 17 was 1.46 ± 1.48 kg (P < 0.0001) in the T only group and 2.14 ± 1.96 kg (P < 0.0001) in the T + rhGH group. 1-RM strength improved modestly in both groups combined (12.0 ± 23.9%, P < 0.0001) at week 8 but at week 17 these changes were twofold greater (24.7 ± 31.0%, P < 0.0001). MQ did not significantly change from baseline to week 8 but increased for the entire cohort, T only, and T + rhGH groups by week 17 (P < 0.001). Despite sizeable increases in LM measurements at week 8, tests of muscle performance did not show substantive improvements at this time point.
doi:10.1007/s00421-011-2077-y
PMCID: PMC3448487  PMID: 21748366
Anabolic hormones; Androgen supplementation; Muscle quality; HORMA study
22.  Adverse Events Associated with Testosterone Administration 
The New England journal of medicine  2010;363(2):109-122.
Background
Testosterone supplementation has been shown to increase muscle mass and strength in healthy older men. The safety and efficacy of testosterone treatment in older men who have limitations in mobility have not been studied.
Methods
Community-dwelling men, 65 years of age or older, with limitations in mobility and a total serum testosterone level of 100 to 350 ng per deciliter (3.5 to 12.1 nmol per liter) or a free serum testosterone level of less than 50 pg per milliliter (173 pmol per liter) were randomly assigned to receive placebo gel or testosterone gel, to be applied daily for 6 months. Adverse events were categorized with the use of the Medical Dictionary for Regulatory Activities classification. The data and safety monitoring board recommended that the trial be discontinued early because there was a significantly higher rate of adverse cardiovascular events in the testosterone group than in the placebo group.
Results
A total of 209 men (mean age, 74 years) were enrolled at the time the trial was terminated. At baseline, there was a high prevalence of hypertension, diabetes, hyperlipidemia, and obesity among the participants. During the course of the study, the testosterone group had higher rates of cardiac, respiratory, and dermatologic events than did the placebo group. A total of 23 subjects in the testosterone group, as compared with 5 in the placebo group, had cardiovascular-related adverse events. The relative risk of a cardiovascular-related adverse event remained constant throughout the 6-month treatment period. As compared with the placebo group, the testosterone group had significantly greater improvements in leg-press and chest-press strength and in stair climbing while carrying a load.
Conclusions
In this population of older men with limitations in mobility and a high prevalence of chronic disease, the application of a testosterone gel was associated with an increased risk of cardiovascular adverse events. The small size of the trial and the unique population prevent broader inferences from being made about the safety of testosterone therapy.
doi:10.1056/NEJMoa1000485
PMCID: PMC3440621  PMID: 20592293
23.  Influence of Sex and Hormone Status on Circulating Natriuretic Peptides 
Objectives
To assess the relationship between sex hormones and natriuretic peptide levels in community-based adults
Background
Women have higher circulating natriuretic peptide concentrations than men, but the mechanisms for these sex-related differences and the impact of hormone therapy are unclear. Experimental studies suggest that androgens may suppress natriuretic peptide secretion.
Methods
We measured plasma N-terminal pro-B-type natriuretic peptide (NT-proBNP), total testosterone, and sex hormone binding globulin (SHBG) in 4,056 men and women (mean age 40±9 years) from the Framingham Heart Study Third Generation cohort. Sex/hormone status was grouped as: 1) men, 2) postmenopausal women not receiving hormone replacement therapy, 3) premenopausal women not receiving hormonal contraceptives, 4) postmenopausal women receiving hormone replacement therapy and 5) premenopausal women receiving hormonal contraceptives.
Results
Circulating NT-proBNP was associated with sex/hormone status (overall P<0.0001). Men had lower NT-proBNP than women of all menopause or hormone groups, and women receiving hormonal contraceptives had higher NT-proBNP than women who were not receiving hormone therapy (all P<0.0001). These relationships remained significant after adjusting for age, body mass index, and cardiovascular risk factors. Across sex/hormone status groups, FT decreased and SHBG increased in tandem with increasing NT-proBNP. In sex-specific analyses, NT-proBNP decreased across increasing quartiles of free testosterone in men (P for trend<0.01) and in women (P for trend<0.0001). Adjustment for FT markedly attenuated the association between sex/hormone status and NT-proBNP concentrations.
Conclusions
These findings suggest that lower circulating androgens and the potentiating effect of exogenous female hormone therapy contribute to the higher circulating NT-proBNP concentrations in women.
doi:10.1016/j.jacc.2011.03.042
PMCID: PMC3170816  PMID: 21798425
natriuretic peptides; sex; hormones
24.  A Genome-Wide Association Meta-Analysis of Circulating Sex Hormone–Binding Globulin Reveals Multiple Loci Implicated in Sex Steroid Hormone Regulation 
Coviello, Andrea D. | Haring, Robin | Wellons, Melissa | Vaidya, Dhananjay | Lehtimäki, Terho | Keildson, Sarah | Lunetta, Kathryn L. | He, Chunyan | Fornage, Myriam | Lagou, Vasiliki | Mangino, Massimo | Onland-Moret, N. Charlotte | Chen, Brian | Eriksson, Joel | Garcia, Melissa | Liu, Yong Mei | Koster, Annemarie | Lohman, Kurt | Lyytikäinen, Leo-Pekka | Petersen, Ann-Kristin | Prescott, Jennifer | Stolk, Lisette | Vandenput, Liesbeth | Wood, Andrew R. | Zhuang, Wei Vivian | Ruokonen, Aimo | Hartikainen, Anna-Liisa | Pouta, Anneli | Bandinelli, Stefania | Biffar, Reiner | Brabant, Georg | Cox, David G. | Chen, Yuhui | Cummings, Steven | Ferrucci, Luigi | Gunter, Marc J. | Hankinson, Susan E. | Martikainen, Hannu | Hofman, Albert | Homuth, Georg | Illig, Thomas | Jansson, John-Olov | Johnson, Andrew D. | Karasik, David | Karlsson, Magnus | Kettunen, Johannes | Kiel, Douglas P. | Kraft, Peter | Liu, Jingmin | Ljunggren, Östen | Lorentzon, Mattias | Maggio, Marcello | Markus, Marcello R. P. | Mellström, Dan | Miljkovic, Iva | Mirel, Daniel | Nelson, Sarah | Morin Papunen, Laure | Peeters, Petra H. M. | Prokopenko, Inga | Raffel, Leslie | Reincke, Martin | Reiner, Alex P. | Rexrode, Kathryn | Rivadeneira, Fernando | Schwartz, Stephen M. | Siscovick, David | Soranzo, Nicole | Stöckl, Doris | Tworoger, Shelley | Uitterlinden, André G. | van Gils, Carla H. | Vasan, Ramachandran S. | Wichmann, H.-Erich | Zhai, Guangju | Bhasin, Shalender | Bidlingmaier, Martin | Chanock, Stephen J. | De Vivo, Immaculata | Harris, Tamara B. | Hunter, David J. | Kähönen, Mika | Liu, Simin | Ouyang, Pamela | Spector, Tim D. | van der Schouw, Yvonne T. | Viikari, Jorma | Wallaschofski, Henri | McCarthy, Mark I. | Frayling, Timothy M. | Murray, Anna | Franks, Steve | Järvelin, Marjo-Riitta | de Jong, Frank H. | Raitakari, Olli | Teumer, Alexander | Ohlsson, Claes | Murabito, Joanne M. | Perry, John R. B.
PLoS Genetics  2012;8(7):e1002805.
Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10−106), PRMT6 (rs17496332, 1p13.3, p = 1.4×10−11), GCKR (rs780093, 2p23.3, p = 2.2×10−16), ZBTB10 (rs440837, 8q21.13, p = 3.4×10−09), JMJD1C (rs7910927, 10q21.3, p = 6.1×10−35), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10−08), NR2F2 (rs8023580, 15q26.2, p = 8.3×10−12), ZNF652 (rs2411984, 17q21.32, p = 3.5×10−14), TDGF3 (rs1573036, Xq22.3, p = 4.1×10−14), LHCGR (rs10454142, 2p16.3, p = 1.3×10−07), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10−08), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10−06). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10−08, women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
Author Summary
Sex hormone-binding globulin (SHBG) is the key protein responsible for binding and transporting the sex steroid hormones, testosterone and estradiol, in the circulatory system. SHBG regulates their bioavailability and therefore their effects in the body. SHBG has been linked to chronic diseases including type 2 diabetes and to hormone-sensitive cancers such as breast and prostate cancer. SHBG concentrations are approximately 50% heritable in family studies, suggesting SHBG concentrations are under significant genetic control; yet, little is known about the specific genes that influence SHBG. We conducted a large study of the association of SHBG concentrations with markers in the human genome in ∼22,000 white men and women to determine which loci influence SHBG concentrations. Genes near the identified genomic markers in addition to the SHBG protein coding gene included PRMT6, GCKR, ZBTB10, JMJD1C, SLCO1B1, NR2F2, ZNF652, TDGF3, LHCGR, BAIAP2L1, and UGT2B15. These genes represent a wide range of biologic pathways that may relate to SHBG function and sex steroid hormone biology, including liver function, lipid metabolism, carbohydrate metabolism and type 2 diabetes, and the development and progression of sex steroid hormone-responsive cancers.
doi:10.1371/journal.pgen.1002805
PMCID: PMC3400553  PMID: 22829776
25.  Premature expression of a muscle fibrosis axis in chronic HIV infection 
Skeletal Muscle  2012;2:10.
Background
Despite the success of highly active antiretroviral therapy (HAART), HIV infected individuals remain at increased risk for frailty and declines in physical function that are more often observed in older uninfected individuals. This may reflect premature or accelerated muscle aging.
Methods
Skeletal muscle gene expression profiles were evaluated in three uninfected independent microarray datasets including young (19 to 29 years old), middle aged (40 to 45 years old) and older (65 to 85 years old) subjects, and a muscle dataset from HIV infected subjects (36 to 51 years old). Using Bayesian analysis, a ten gene muscle aging signature was identified that distinguished young from old uninfected muscle and included the senescence and cell cycle arrest gene p21/Cip1 (CDKN1A). This ten gene signature was then evaluated in muscle specimens from a cohort of middle aged (30 to 55 years old) HIV infected individuals. Expression of p21/Cip1 and related pathways were validated and further analyzed in a rodent model for HIV infection.
Results
We identify and replicate the expression of a set of muscle aging genes that were prematurely expressed in HIV infected, but not uninfected, middle aged subjects. We validated select genes in a rodent model of chronic HIV infection. Because the signature included p21/Cip1, a cell cycle arrest gene previously associated with muscle aging and fibrosis, we explored pathways related to senescence and fibrosis. In addition to p21/Cip1, we observed HIV associated upregulation of the senescence factor p16INK4a (CDKN2A) and fibrosis associated TGFβ1, CTGF, COL1A1 and COL1A2. Fibrosis in muscle tissue was quantified based on collagen deposition and confirmed to be elevated in association with infection status. Fiber type composition was also measured and displayed a significant increase in slow twitch fibers associated with infection.
Conclusions
The expression of genes associated with a muscle aging signature is prematurely upregulated in HIV infection, with a prominent role for fibrotic pathways. Based on these data, therapeutic interventions that promote muscle function and attenuate pro-fibrotic gene expression should be considered in future studies.
doi:10.1186/2044-5040-2-10
PMCID: PMC3407733  PMID: 22676806
Skeletal muscle; Aging; Gene expression; HIV infection; Senescence

Results 1-25 (43)