Search tips
Search criteria

Results 1-19 (19)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Characterization of a Monoclonal Antibody to a Novel Glycan-Dependent Epitope in the V1/V2 Domain of the HIV-1 Envelope Protein, gp120 
Molecular immunology  2014;62(1):219-226.
Recent studies have described several broadly neutralizing monoclonal antibodies (bN-mAbs) that recognize glycan-dependent epitopes (GDEs) in the HIV-1 envelope protein, gp120. These were recovered from HIV-1 infected subjects, and several (e.g., PG9, PG16, CH01, CH03) target glycans in the first and second variable (V1/V2) domain of gp120. The V1/V2 domain is thought to play an important role in conformational masking, and antibodies to the V1/V2 domain were recently identified as the only immune response that correlated with protection in the RV144 HIV-1 vaccine trial. While the importance of antibodies to polymeric glycans is well established for vaccines targeting bacterial diseases, the importance of antibodies to glycans in vaccines targeting HIV has only recently been recognized. Antibodies to GDEs may be particularly significant in HIV vaccines based on gp120, where 50% of the molecular mass of the envelope protein is contributed by N-linked carbohydrate. However, few studies have reported antibodies to GDEs in humans or animals immunized with candidate HIV-1 vaccines. In this report, we describe the isolation of a mouse mAb, 4B6, after immunization with the extracellular domain of the HIV-1 envelope protein, gp140. Epitope mapping using glycopeptide fragments and in vitro mutagenesis showed that binding of this antibody depends on N-linked glycosylation at asparagine N130 (HXB2 numbering) in the gp120 V1/V2 domain. Our results demonstrate that, in addition to natural HIV-1 infection, immunization with recombinant proteins can elicit antibodies to the GDEs in the V1/V2 domain of gp120. Although little is known regarding conditions that favor antibody responses to GDEs, our studies demonstrate that these antibodies can arise from a short-term immunization regimen. Our results suggest that antibodies to GDEs are more common than previously suspected, and that further analysis of antibody responses to the HIV-1 envelope protein will lead to the discovery of additional antibodies to GDEs.
PMCID: PMC4157072  PMID: 25016576
gp120; glycosylation; epitope; V1/V2 domain; HIV; monoclonal antibody
2.  Sequences in Glycoprotein gp41, the CD4 Binding Site, and the V2 Domain Regulate Sensitivity and Resistance of HIV-1 to Broadly Neutralizing Antibodies 
Journal of Virology  2012;86(22):12105-12114.
The swarm of quasispecies that evolves in each HIV-1-infected individual represents a source of closely related Env protein variants that can be used to explore various aspects of HIV-1 biology. In this study, we made use of these variants to identify mutations that confer sensitivity and resistance to the broadly neutralizing antibodies found in the sera of selected HIV-1-infected individuals. For these studies, libraries of Env proteins were cloned from infected subjects and screened for infectivity and neutralization sensitivity. The nucleotide sequences of the Env proteins were then compared for pairs of neutralization-sensitive and -resistant viruses. In vitro mutagenesis was used to identify the specific amino acids responsible for the neutralization phenotype. All of the mutations altering neutralization sensitivity/resistance appeared to induce conformational changes that simultaneously enhanced the exposure of two or more epitopes located in different regions of gp160. These mutations appeared to occur at unique positions required to maintain the quaternary structure of the gp160 trimer, as well as conformational masking of epitopes targeted by neutralizing antibodies. Our results show that sequences in gp41, the CD4 binding site, and the V2 domain all have the ability to act as global regulators of neutralization sensitivity. Our results also suggest that neutralization assays designed to support the development of vaccines and therapeutics targeting the HIV-1 Env protein should consider virus variation within individuals as well as virus variation between individuals.
PMCID: PMC3486483  PMID: 22933284
3.  Glycans Flanking the Hypervariable Connecting Peptide between the A and B Strands of the V1/V2 Domain of HIV-1 gp120 Confer Resistance to Antibodies That Neutralize CRF01_AE Viruses 
PLoS ONE  2015;10(3):e0119608.
Understanding the molecular determinants of sensitivity and resistance to neutralizing antibodies is critical for the development of vaccines designed to prevent HIV infection. In this study, we used a genetic approach to characterize naturally occurring polymorphisms in the HIV envelope protein that conferred neutralization sensitivity or resistance. Libraries of closely related envelope genes, derived from virus quasi-species, were constructed from individuals infected with CRF01_AE viruses. The libraries were screened with plasma containing broadly neutralizing antibodies, and neutralization sensitive and resistant variants were selected for sequence analysis. In vitro mutagenesis allowed us to identify single amino acid changes in three individuals that conferred resistance to neutralization by these antibodies. All three mutations created N-linked glycosylation sites (two at N136 and one at N149) proximal to the hypervariable connecting peptide between the C-terminus of the A strand and the N-terminus of the B strand in the four-stranded V1/V2 domain β-sheet structure. Although N136 has previously been implicated in the binding of broadly neutralizing monoclonal antibodies, this glycosylation site appears to inhibit the binding of neutralizing antibodies in plasma from HIV-1 infected subjects. Previous studies have reported that the length of the V1/V2 domain in transmitted founder viruses is shorter and possesses fewer glycosylation sites compared to viruses isolated from chronic infections. Our results suggest that vaccine immunogens based on recombinant envelope proteins from clade CRF01_AE viruses might be improved by inclusion of envelope proteins that lack these glycosylation sites. This strategy might improve the efficacy of the vaccines used in the partially successful RV144 HIV vaccine trial, where the two CRF01_AE immunogens (derived from the A244 and TH023 isolates) both possessed glycosylation sites at N136 and N149.
PMCID: PMC4368187  PMID: 25793890
4.  Vaccine-Induced Env V1–V2 IgG3 Correlates with Lower HIV-1 Infection Risk and Declines Soon After Vaccination 
Science translational medicine  2014;6(228):228ra39.
HIV-1–specific immunoglobulin G (IgG) subclass antibodies bind to distinct cellular Fc receptors. Antibodies of the same epitope specificity but of a different subclass therefore can have different antibody effector functions. The study of IgG subclass profiles between different vaccine regimens used in clinical trials with divergent efficacy outcomes can provide information on the quality of the vaccine-induced B cell response. We show that HIV-1–specific IgG3 distinguished two HIV-1 vaccine efficacy studies (RV144 and VAX003 clinical trials) and correlated with decreased risk of HIV-1 infection in a blinded follow-up case-control study with the RV144 vaccine. HIV-1–specific IgG3 responses were not long-lived, which was consistent with the waning efficacy of the RV144 vaccine. These data suggest that specific vaccine-induced HIV-1 IgG3 should be tested in future studies of immune correlates in HIV-1 vaccine efficacy trials.
PMCID: PMC4116665  PMID: 24648342
5.  Plasma IgG to Linear Epitopes in the V2 and V3 Regions of HIV-1 gp120 Correlate with a Reduced Risk of Infection in the RV144 Vaccine Efficacy Trial 
PLoS ONE  2013;8(9):e75665.
Neutralizing and non-neutralizing antibodies to linear epitopes on HIV-1 envelope glycoproteins have potential to mediate antiviral effector functions that could be beneficial to vaccine-induced protection. Here, plasma IgG responses were assessed in three HIV-1 gp120 vaccine efficacy trials (RV144, Vax003, Vax004) and in HIV-1-infected individuals by using arrays of overlapping peptides spanning the entire consensus gp160 of all major genetic subtypes and circulating recombinant forms (CRFs) of the virus. In RV144, where 31.2% efficacy against HIV-1 infection was seen, dominant responses targeted the C1, V2, V3 and C5 regions of gp120. An analysis of RV144 case-control samples showed that IgG to V2 CRF01_AE significantly inversely correlated with infection risk (OR= 0.54, p=0.0042), as did the response to other V2 subtypes (OR=0.60-0.63, p=0.016-0.025). The response to V3 CRF01_AE also inversely correlated with infection risk but only in vaccine recipients who had lower levels of other antibodies, especially Env-specific plasma IgA (OR=0.49, p=0.007) and neutralizing antibodies (OR=0.5, p=0.008). Responses to C1 and C5 showed no significant correlation with infection risk. In Vax003 and Vax004, where no significant protection was seen, serum IgG responses targeted the same epitopes as in RV144 with the exception of an additional C1 reactivity in Vax003 and infrequent V2 reactivity in Vax004. In HIV-1 infected subjects, dominant responses targeted the V3 and C5 regions of gp120, as well as the immunodominant domain, heptad repeat 1 (HR-1) and membrane proximal external region (MPER) of gp41. These results highlight the presence of several dominant linear B cell epitopes on the HIV-1 envelope glycoproteins. They also generate the hypothesis that IgG to linear epitopes in the V2 and V3 regions of gp120 are part of a complex interplay of immune responses that contributed to protection in RV144.
PMCID: PMC3784573  PMID: 24086607
6.  Antigenicity and Immunogenicity of RV144 Vaccine AIDSVAX Clade E Envelope Immunogen Is Enhanced by a gp120 N-Terminal Deletion 
Journal of Virology  2013;87(3):1554-1568.
An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity.
PMCID: PMC3554162  PMID: 23175357
7.  Immune-Correlates Analysis of an HIV-1 Vaccine Efficacy Trial 
The New England Journal of Medicine  2012;366(14):1275-1286.
In the RV144 trial, the estimated efficacy of a vaccine regimen against human immunodeficiency virus type 1 (HIV-1) was 31.2%. We performed a case–control analysis to identify antibody and cellular immune correlates of infection risk.
In pilot studies conducted with RV144 blood samples, 17 antibody or cellular assays met prespecified criteria, of which 6 were chosen for primary analysis to determine the roles of T-cell, IgG antibody, and IgA antibody responses in the modulation of infection risk. Assays were performed on samples from 41 vaccinees who became infected and 205 uninfected vaccinees, obtained 2 weeks after final immunization, to evaluate whether immune-response variables predicted HIV-1 infection through 42 months of follow-up.
Of six primary variables, two correlated significantly with infection risk: the binding of IgG antibodies to variable regions 1 and 2 (V1V2) of HIV-1 envelope proteins (Env) correlated inversely with the rate of HIV-1 infection (estimated odds ratio, 0.57 per 1-SD increase; P = 0.02; q = 0.08), and the binding of plasma IgA antibodies to Env correlated directly with the rate of infection (estimated odds ratio, 1.54 per 1-SD increase; P = 0.03; q = 0.08). Neither low levels of V1V2 antibodies nor high levels of Env-specific IgA antibodies were associated with higher rates of infection than were found in the placebo group. Secondary analyses suggested that Env-specific IgA antibodies may mitigate the effects of potentially protective antibodies.
This immune-correlates study generated the hypotheses that V1V2 antibodies may have contributed to protection against HIV-1 infection, whereas high levels of Env-specific IgA antibodies may have mitigated the effects of protective antibodies. Vaccines that are designed to induce higher levels of V1V2 antibodies and lower levels of Env-specific IgA antibodies than are induced by the RV144 vaccine may have improved efficacy against HIV-1 infection.
PMCID: PMC3371689  PMID: 22475592
8.  Glycoform and Net Charge Heterogeneity in gp120 Immunogens Used in HIV Vaccine Trials 
PLoS ONE  2012;7(8):e43903.
The RV144 clinical trial showed for the first time that vaccination could provide modest but significant protection from HIV-1 infection. To understand the protective response, and to improve upon the vaccine's efficacy, it is important to define the structure of the immunogens used in the prime/boost regimen. Here we examined the heterogeneity in net charge, attributable to glycoform variation, of the gp120 immunogens contained in the AIDSVAX B/E vaccine.
Methodology/Principal Findings
Isoelectric focusing and glycosidase digestion were used to assess variation in net charge of the gp120s contained in the AIDSVAX B/E vaccine used in the RV144 trial. We observed 16 variants of MN-rgp120 and 24 variants of A244-rgp120. Glycoform variation in gp120 produced in Chinese hamster ovary cells was compared to glycoform variation in gp120 produced in the 293F human embryonic kidney cell line, often used for neutralization assays. We found that gp120 variants produced in CHO cells were distinctly more acidic than gp120 variants produced in 293 cells. The effect of glycoform heterogeneity on antigenicity was assessed using monoclonal antibodies. The broadly neutralizing PG9 MAb bound to A244-rgp120, but not to MN-rgp120, whether produced in CHO or in 293. However, PG9 was able to bind with high affinity to MN-rgp120 and A244-rgp120 produced in 293 cells deficient in N-acetylglucosaminyltransferase I.
MN- and A244-rgp120 used in the RV144 trial exhibited extensive heterogeneity in net charge due to variation in sialic acid-containing glycoforms. These differences were cell line-dependent, affected the antigenicity of recombinant envelope proteins, and may affect assays used to measure neutralization. These studies, together with recent reports documenting broadly neutralizing antibodies directed against carbohydrate epitopes of gp120, suggest that glycoform variation is a key variable to be considered in the production and evaluation of subunit vaccines designed to prevent HIV infection.
PMCID: PMC3425498  PMID: 22928048
9.  Monoclonal Antibodies to the V2 Domain of MN-rgp120: Fine Mapping of Epitopes and Inhibition of α4β7 Binding 
PLoS ONE  2012;7(6):e39045.
Recombinant gp120 (MN-rgp120) was a major component of the AIDSVAX B/E vaccine used in the RV144 trial. This was the first clinical trial to show that vaccination could prevent HIV infection in humans. A recent RV144 correlates of protection study found that protection correlated with the presence of antibodies to the V2 domain. It has been proposed that antibodies to the α4β7 binding site in the V2 domain might prevent HIV-1 infection by blocking the ability of virions to recognize α4β7 on activated T-cells. In this study we investigated the specificity of monoclonal antibodies (MAbs) to the V2 domain of MN-rgp120 and examined the possibility that these antibodies could inhibit the binding of MN-rgp120 to the α4β7 integrin.
Methodology/Principal Findings
Nine MAbs to the V2 domain were isolated from mice immunized with recombinant envelope proteins. The ability of these MAbs to inhibit HIV infection, block the binding of gp120 to CD4, and block the binding of MN-rgp120 to the α4β7 integrin was measured. Mutational analysis showed that eight of the MAbs recognized two immunodominant clusters of amino acids (166–168 and 178–183) located at either end of the C strand within the four-strand anti-parallel sheet structure comprising the V1/V2 domain.
These studies showed that the antigenic structure of the V2 domain is exceedingly complex and that MAbs isolated from mice immunized with MN-rgp120 exhibited a high level of strain specificity compared to MAbs to the V2 domain isolated from HIV-infected humans. We found that immunization with MN-rgp120 readily elicits antibodies to the V2 domain and some of these were able to block the binding of MN-rgp120 to the α4β7 integrin.
PMCID: PMC3374778  PMID: 22720026
10.  Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials 
The Journal of Infectious Diseases  2012;206(3):431-441.
Background. A recombinant canarypox vector expressing human immunodeficiency virus type 1 (HIV-1) Gag, Pro, and membrane-linked gp120 (vCP1521), combined with a bivalent gp120 protein boost (AIDSVAX B/E), provided modest protection against HIV-1 infection in a community-based population in Thailand (RV144 trial). No protection was observed in Thai injection drug users who received AIDSVAX B/E alone (Vax003 trial). We compared the neutralizing antibody response in these 2 trials.
Methods. Neutralization was assessed with tier 1 and tier 2 strains of virus in TZM-bl and A3R5 cells.
Results. Neutralization of several tier 1 viruses was detected in both RV144 and Vax003. Peak titers were higher in Vax003 and waned rapidly in both trials. The response in RV144 was targeted in part to V3 of gp120.vCP1521 priming plus 2 boosts with gp120 protein was superior to 2 gp120 protein inoculations alone, confirming a priming effect for vCP1521. Sporadic weak neutralization of tier 2 viruses was detected only in Vax003 and A3R5 cells.
Conclusion. The results suggest either that weak neutralizing antibody responses can be partially protective against HIV-1 in low-risk heterosexual populations or that the modest efficacy seen in RV144 was mediated by other immune responses, either alone or in combination with neutralizing antibodies.
PMCID: PMC3392187  PMID: 22634875
11.  Magnitude and breadth of a non-protective neutralizing antibody response in an efficacy trial of a candidate HIV-1 gp120 vaccine (AIDSVAX™ B/B) 
The Journal of infectious diseases  2010;202(4):595-605.
A candidate vaccine consisting of human immunodeficiency virus type 1 (HIV-1) subunit gp120 protein (AIDSVAX™ B/B) was found previously to be non-protective despite strong antibody responses against the vaccine antigens. We assessed the magnitude and breadth of neutralizing antibody responses in this trial.
Neutralizing antibodies were measured against highly sensitive (tier 1) and moderately sensitive (tier 2) strains of HIV-1 subtype B in two independent assays. Vaccine recipients were stratified by gender, race and high versus low behavioral risk of HIV-1 acquisition.
Most vaccine recipients mounted potent neutralizing antibody responses against HIV-1MN and a subset of other tier 1 viruses. Occasional weak neutralizing activity was detected against tier 2 viruses. The response against tier 1 and tier 2 viruses was significantly stronger in women than in men. Race and behavioral risk of HIV-1 acquisition had no significant effect on the response. Prior vaccination had little effect on the neutralizing antibody response that arose post infection.
Weak overall neutralizing antibody responses against tier 2 viruses is consistent with a lack of protection in this trial. The magnitude and breadth of neutralization reported here should be useful for identifying improved vaccines.
PMCID: PMC2946208  PMID: 20608874
HIV; vaccines; antibodies
12.  Mutation at a Single Position in the V2 Domain of the HIV-1 Envelope Protein Confers Neutralization Sensitivity to a Highly Neutralization-Resistant Virus▿ †  
Journal of Virology  2010;84(21):11200-11209.
Understanding the determinants of neutralization sensitivity and resistance is important for the development of an effective human immunodeficiency virus type 1 (HIV-1) vaccine. In these studies, we have made use of the swarm of closely related envelope protein variants (quasispecies) from an extremely neutralization-resistant clinical isolate in order to identify mutations that conferred neutralization sensitivity to antibodies in sera from HIV-1-infected individuals. Here, we describe a virus with a rare mutation at position 179 in the V2 domain of gp120, where replacement of aspartic acid (D) by asparagine (N) converts a virus that is highly resistant to neutralization by multiple polyclonal and monoclonal antibodies, as well as antiviral entry inhibitors, to one that is sensitive to neutralization. Although the V2 domain sequence is highly variable, D at position 179 is highly conserved in HIV-1 and simian immunodeficiency virus (SIV) and is located within the LDI/V recognition motif of the recently described α4β7 receptor binding site. Our results suggest that the D179N mutation induces a conformational change that exposes epitopes in both the gp120 and the gp41 portions of the envelope protein, such as the CD4 binding site and the MPER, that are normally concealed by conformational masking. Our results suggest that D179 plays a central role in maintaining the conformation and infectivity of HIV-1 as well as mediating binding to α4β7.
PMCID: PMC2953176  PMID: 20702624
13.  Phylodynamics of HIV-1 from a Phase III AIDS Vaccine Trial in Bangkok, Thailand 
PLoS ONE  2011;6(3):e16902.
In 2003, a phase III placebo-controlled trial (VAX003) was completed in Bangkok, Thailand. Of the 2,546 individuals enrolled in the trial based on high risk for infection through injection drug use (IDU), we obtained clinical samples and HIV-1 sequence data (envelope glycoprotein gene gp120) from 215 individuals who became infected during the trial. Here, we used these data in combination with other publicly available gp120 sequences to perform a molecular surveillance and phylodynamic analysis of HIV-1 in Thailand.
Methodology and Findings
Phylogenetic and population genetic estimators were used to assess HIV-1 gp120 diversity as a function of vaccination treatment, viral load (VL) and CD4+ counts, to indentify transmission clusters and to investigate the timescale and demographics of HIV-1 in Thailand. Three HIV-1 subtypes were identified: CRF01_AE (85% of the infections), subtype B (13%) and CRF15_AE (2%). The Bangkok IDU cohort showed more gp120 diversity than other Asian IDU cohorts and similar diversity to that observed in sexually infected individuals. Moreover, significant differences (P<0.02) in genetic diversity were observed in CRF01_AE IDU with different VL and CD4+ counts. No phylogenetic structure was detected regarding any of the epidemiological and clinical factors tested, although high proportions (35% to 50%) of early infections fell into clusters, which suggests that transmission chains associated with acute infection play a key role on HIV-1 spread among IDU. CRF01_AE was estimated to have emerged in Thailand in 1984.5 (1983–1986), 3–6 years before the first recognition of symptomatic patients (1989). The relative genetic diversity of the HIV-1 population has remained high despite decreasing prevalence rates since the mid 1990s.
Our study and recent epidemiological reports indicate that HIV-1 is still a major threat in Thailand and suggest that HIV awareness and prevention needs to be strengthened to avoid AIDS resurgence.
PMCID: PMC3053363  PMID: 21423744
14.  Comparative Immunogenicity of HIV-1 Clade C Envelope Proteins for Prime/Boost Studies 
PLoS ONE  2010;5(8):e12076.
Previous clinical efficacy trials failed to support the continued development of recombinant gp120 (rgp120) as a candidate HIV vaccine. However, the recent RV144 HIV vaccine trial in Thailand showed that a prime/boost immunization strategy involving priming with canarypox vCP1521 followed by boosting with rgp120 could provide significant, although modest, protection from HIV infection. Based on these results, there is renewed interest in the development of rgp120 based antigens for follow up vaccine trials, where this immunization approach can be applied to other cohorts at high risk for HIV infection. Of particular interest are cohorts in Africa, India, and China that are infected with clade C viruses.
Methodology/Principal Findings
A panel of 10 clade C rgp120 envelope proteins was expressed in 293 cells, purified by immunoaffinity chromatography, and used to immunize guinea pigs. The resulting sera were collected and analyzed in checkerboard experiments for rgp120 binding, V3 peptide binding, and CD4 blocking activity. Virus neutralization studies were carried out with two different assays and two different panels of clade C viruses. A high degree of cross reactivity against clade C and clade B viruses and viral proteins was observed. Most, but not all of the immunogens tested elicited antibodies that neutralized tier 1 clade B viruses, and some sera neutralized multiple clade C viruses. Immunization with rgp120 from the CN97001 strain of HIV appeared to elicit higher cross neutralizing antibody titers than the other antigens tested.
While all of the clade C antigens tested were immunogenic, some were more effective than others in eliciting virus neutralizing antibodies. Neutralization titers did not correlate with rgp120 binding, V3 peptide binding, or CD4 blocking activity. CN97001 rgp120 elicited the highest level of neutralizing antibodies, and should be considered for further HIV vaccine development studies.
PMCID: PMC2920315  PMID: 20711452
15.  Protease Cleavage Sites in HIV-1 gp120 Recognized by Antigen Processing Enzymes Are Conserved and Located at Receptor Binding Sites▿ †  
Journal of Virology  2009;84(3):1513-1526.
The identification of vaccine immunogens able to elicit broadly neutralizing antibodies (bNAbs) is a major goal in HIV vaccine research. Although it has been possible to produce recombinant envelope glycoproteins able to adsorb bNAbs from HIV-positive sera, immunization with these proteins has failed to elicit antibody responses effective against clinical isolates of HIV-1. Thus, the epitopes recognized by bNAbs are present on recombinant proteins, but they are not immunogenic. These results led us to consider the possibility that changes in the pattern of antigen processing might alter the immune response to the envelope glycoprotein to better elicit protective immunity. In these studies, we have defined protease cleavage sites on HIV gp120 recognized by three major human proteases (cathepsins L, S, and D) important for antigen processing and presentation. Remarkably, six of the eight sites identified in gp120 were highly conserved and clustered in regions of the molecule associated with receptor binding and/or the binding of neutralizing antibodies. These results suggested that HIV may have evolved to take advantage of major histocompatibility complex (MHC) class II antigen processing enzymes in order to evade or direct the antiviral immune response.
PMCID: PMC2812349  PMID: 19939935
16.  Novel Ring Structure in the gp41 Trimer of Human Immunodeficiency Virus Type 1 That Modulates Sensitivity and Resistance to Broadly Neutralizing Antibodies▿ †  
Journal of Virology  2009;83(15):7728-7738.
The identification of the determinants of sensitivity and resistance to broadly neutralizing antibodies is a high priority for human immunodeficiency virus (HIV) research. An analysis of the swarm of closely related envelope protein variants in an HIV-infected individual revealed a mutation that markedly affected sensitivity to neutralization by antibodies and antiviral entry inhibitors targeting both gp41 and gp120. This mutation mapped to the C34 helix of gp41 and disrupted an unexplored structural feature consisting of a ring of hydrogen bonds in the gp41 trimer. This mutation appeared to affect the assembly of the six-helix bundle required for virus fusion and to alter the conformational equilibria so as to favor the prehairpin intermediate conformation required for the binding of the membrane proximal external region-specific neutralizing antibodies 2F5 and 4E10 and the antiviral drug enfuvirtide (Fuzeon). The “swarm analysis” method we describe furthers our understanding of the relationships among the structure, function, and antigenicity of the HIV envelope protein and represents a new approach to the identification of vaccine antigens.
PMCID: PMC2708639  PMID: 19474108
17.  Phylodynamics of HIV-1 from a Phase-III AIDS Vaccine Trial in North America 
Molecular Biology and Evolution  2009;27(2):417-425.
In 2003, a phase III placebo-controlled trial (VAX004) of a candidate HIV-1 vaccine (AIDSVAX B/B) was completed in 5,403 volunteers at high risk for HIV-1 infection from North America and the Netherlands. A total of 368 individuals became infected with HIV-1 during the trial. The envelope glycoprotein gene (gp120) from the HIV-1 subtype B viruses infecting 349 patients was sequenced from clinical samples taken as close as possible to the time of diagnosis, rendering a final data set of 1,047 sequences (1,032 from North America and 15 from the Netherlands). Here, we used these data in combination with other sequences available in public databases to assess HIV-1 variation as a function of vaccination treatment, geographic region, race, risk behavior, and viral load. Viral samples did not show any phylogenetic structure for any of these factors, but individuals with different viral loads showed significant differences (P = 0.009) in genetic diversity. The estimated time of emergence of HIV-1 subtype B was 1966–1970. Despite the fact that the number of AIDS cases has decreased in North America since the early 90s, HIV-1 genetic diversity seems to have remained almost constant over time. This study represents one of the largest molecular epidemiologic surveys of viruses responsible for new HIV-1 infections in North America and could help the selection of epidemiologically representative vaccine antigens to include in the next generation of candidate HIV-1 vaccines.
PMCID: PMC2806245  PMID: 19864468
America; demographics; gp120; HIV-1; vaccine trial
18.  Ethnic differences in the adaptation rate of HIV gp120 from a vaccine trial 
Retrovirology  2009;6:67.
Differences in HIV-1 gp120 sequence variation were examined in North American volunteers who became infected during a phase III vaccine trial using the rgp120 vaccine. Molecular adaptation of the virus in vaccine and placebo recipients from different ethnic subgroups was compared by estimating the dN/dS ratios in viruses sampled from each individual using three different methods. ANOVA analyses detected significant differences in dN/dS ratios among races (P < 0.02). gp120 sequences from the black individuals showed higher mean dN/dS ratios for all estimators (1.24–1.45) than in other races (0.66–1.35), and several pairwise comparisons involving blacks remained significant (P < 0.05) after correction for multiple tests. In addition, black-placebo individuals showed significantly (P < 0.02) higher mean dN/dS ratios (1.3–1.66) than placebo individuals from the other races (0.65–1.56). These results suggest intrinsic differences among races in immune response and highlight the need for including multiple ethnicities in the design of future HIV-1 vaccine studies and trials.
PMCID: PMC2717047  PMID: 19604405
19.  Longitudinal Population Analysis of Dual Infection with Recombination in Two Strains of HIV Type 1 Subtype B in an Individual from a Phase 3 HIV Vaccine Efficacy Trial 
This study documents a case of coinfection (simultaneous infection of an individual with two or more strains) of two HIV-1 subtype B strains in an individual from a Phase 3 HIV-1 vaccine efficacy trial, conducted in North American and the Netherlands. We examined 86 full-length gp120 (env) gene sequences from this individual collected from nine different time points over a 20-month period. We estimated evolutionary relationships using maximum likelihood and Bayesian methods and inferred recombination breakpoints and recombinant sequences using phylogenetic and substitutional methods. These analyses identified two strongly supported monophyletic clades (clades A and B) of 14 and 69 sequences each and a small paraphyletic recombinant clade of three sequences. We then studied the genetic characteristics of these lineages by comparing estimates of genetic diversity generated by mutation and recombination and adaptive selection within a coalescent and maximum likelihood framework. Our results suggest significant differences on the evolutionary dynamics of these strains. We then discuss the implications of these results for vaccine development.
PMCID: PMC1982842  PMID: 17067266

Results 1-19 (19)