PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (2858)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  Crystal structure of a human GABAA receptor 
Nature  2014;512(7514):270-275.
Summary
Type-A γ-aminobutyric acid receptors (GABAARs) are the principal mediators of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signalling triggers hyperactive neurological disorders such as insomnia, anxiety and epilepsy. Here we present the first three-dimensional structure of a GABAAR, the human β3 homopentamer, at 3 Å resolution. This structure reveals architectural elements unique to eukaryotic Cys-loop receptors, explains the mechanistic consequences of multiple human disease mutations and shows a surprising structural role for a conserved N-linked glycan. The receptor was crystallised bound to a previously unknown agonist, benzamidine, opening a new avenue for the rational design of GABAAR modulators. The channel region forms a closed gate at the base of the pore, representative of a desensitised state. These results offer new insights into the signalling mechanisms of pentameric ligand-gated ion channels and enhance current understanding of GABAergic neurotransmission.
doi:10.1038/nature13293
PMCID: PMC4167603  PMID: 24909990
2.  Jam1a – Jam2a interactions regulate haematopoietic stem cell fate through Notch signalling 
Nature  2014;512(7514):319-323.
Summary
Notch signalling plays a key role in the generation of haematopoietic stem cells (HSCs) during vertebrate development1-3 and requires intimate contact between signal emitting and receiving cells, although little is known regarding when, where, and how these intercellular events occur. We previously reported that the somitic Notch ligands, Dlc and Dld, are essential for HSC specification4. It has remained unclear, however, how these somitic requirements are connected to the later emergence of HSCs from the dorsal aorta (DA). Here we show that Notch signalling establishes HSC fate as their shared vascular precursors migrate across the ventral face of the somite and that Junctional adhesion molecules (JAMs) mediate this required Notch signal transduction. HSC precursors express jam1a and migrate axially across the ventral somite, where Jam2a and Notch ligands Dlc and Dld are expressed. Despite no alteration in the expression of Notch ligand or receptor genes, loss of function of jam1a led to loss of Notch signalling and loss of HSCs. Enforced activation of Notch in shared vascular precursors rescued HSCs in jam1a or jam2a deficient embryos. Together, these results indicate that Jam1a – Jam2a interactions facilitate the transduction of requisite Notch signals from the somite to the precursors of HSCs, and that these events occur well before formation of the DA.
doi:10.1038/nature13623
PMCID: PMC4237229  PMID: 25119047
3.  X-ray structures of GluCl in apo states reveal gating mechanism of Cys-loop receptors 
Nature  2014;512(7514):333-337.
Summary
Cys-loop receptors are neurotransmitter-gated ion channels that are essential mediators of fast chemical neurotransmission and are associated with a large number of neurological diseases and disorders, as well as parasitic infections1–4. Members of this ion channel superfamily mediate excitatory or inhibitory neurotransmission depending on their ligand and ion selectivity. Structural information for Cys-loop receptors comes from several sources including electron microscopic studies of the nicotinic acetylcholine receptor 5, high resolution x-ray structures of extracellular domains6 and x-ray structures of bacterial orthologs 7–10. In 2011 our group published structures of the Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in complex with the allosteric partial agonist, ivermectin, which provided insights into the structure of a possibly open state of a eukaryotic Cys-loop receptor, the basis for anion selectivity and channel block, and the mechanism by which ivermectin and related molecules stabilize the open state and potentiate neurotransmitter binding11. However, there remain unanswered questions about the mechanism of channel opening and closing, the location and nature of the shut ion channel gate, the transitions between the closed/resting, open/activated and closed/desensitized states, and the mechanism by which conformational changes are coupled between the extracellular, orthosteric agonist binding domain and the transmembrane, ion channel domain. Here we present two conformationally distinct structures of GluCl in the absence of ivermectin. Structural comparisons reveal a quaternary activation mechanism arising from rigid body movements between the extracellular and transmembrane domains and a mechanism for modulation of the receptor by phospholipids.
doi:10.1038/nature13669
PMCID: PMC4255919  PMID: 25143115
4.  Protein binding cannot subdue a lively RNA 
Nature  2014;506(7488):303-304.
Ribosomes, the cell’s protein-synthesis machines, are assembled from their components in a defined order. It emerges that the first assembly step must overcome dynamic structural rearrangements.
doi:10.1038/nature13055
PMCID: PMC4052560  PMID: 24522527
5.  Breaking methane 
Nature  2015;518(7539):309-310.
The most powerful oxidant found in nature is compound Q, an enzymatic intermediate that oxidizes methane. New spectroscopic data have resolved the long-running controversy about Q’s chemical structure.
doi:10.1038/nature14199
PMCID: PMC4336217  PMID: 25607367
6.  DENR•MCT-1 Promotes Translation Reinitiation Downstream of uORFs to Control Tissue Growth 
Nature  2014;512(7513):208-212.
During cap-dependent eukaryotic translation initiation, ribosomes scan mRNA from the 5′ end to the first AUG start codon with favorable sequence context1,2. For many mRNAs this AUG belongs to a short upstream open reading frame (uORF)3, and translation of the main downstream ORF requires reinitiation, an incompletely understood process1,4-6. Reinitiation is thought to involve the same factors as standard initiation1,5,7. It is unknown if any factors specifically affect translation reinitiation without affecting standard cap-dependent translation. We uncover here the non-canonical initiation factors Density Regulated Protein (DENR) and Multiple Copies in T-cell Lymphoma-1 (MCT-1) as the first selective regulators of eukaryotic reinitiation. mRNAs containing upstream Open Reading Frames with strong Kozak sequences (stuORFs) selectively require DENR•MCT-1 for their proper translation, yielding a novel class of mRNAs that can be co-regulated and that is enriched for regulatory proteins such as oncogenic kinases. Collectively, our data reveal that cells have a previously unappreciated translational control system with a key role in supporting proliferation and tissue growth.
doi:10.1038/nature13401
PMCID: PMC4134322  PMID: 25043021
translational control; uORF; reinitiation; coordinated regulation; Drosophila; development; tissue growth; cell proliferation
7.  Three-dimensional structure of human γ-secretase 
Nature  2014;512(7513):166-170.
The γ-secretase complex, comprising presenilin 1 (PS1), Pen-2, Aph-1, and Nicastrin, is a membrane-embedded protease that controls a number of important cellular functions through substrate cleavage. Aberrant cleavage of the amyloid precursor protein results in aggregation of β-amyloid peptide, which accumulates in the brain and consequently causes Alzheimer’s disease. Here we report the three-dimensional structure of an intact human γ-secretase complex at 4.5 Å resolution, determined by cryo-EM single-particle analysis. The γ-secretase complex comprises a horseshoe-shaped transmembrane domain, which contains 19 transmembrane segments (TMs), and a large extracellular domain (ECD) from Nicastrin, which sits right above the hollow space formed by the TM horseshoe. Intriguingly, Nicastrin ECD is structurally similar to a large family of peptidases exemplified by the glutamate carboxypeptidase PSMA. This structure serves as an important basis for understanding the functional mechanisms of the γ-secretase complex.
doi:10.1038/nature13567
PMCID: PMC4134323  PMID: 25043039
8.  Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA 
Nature  2014;512(7513):213-217.
ISWI-family remodelling enzymes regulate access to genomic DNA by mobilizing nucleosomes1. These ATP-dependent chromatin remodellers promote heterochromatin formation and transcriptional silencing1 by generating regularly-spaced nucleosome arrays2-5. The nucleosome-spacing activity arises from regulation of nucleosome translocation by the length of extranucleosomal linker DNA6-10, but the underlying mechanism remains unclear. Here, we studied nucleosome remodelling by human ACF, an ISWI enzyme comprised of a catalytic subunit, Snf2h, and an accessory subunit, Acf12,11-13. We found that ACF senses linker DNA length through an interplay between its accessory and catalytic subunits mediated by the histone H4 tail of the nucleosome. Mutation of AutoN, an auto-inhibitory domain within Snf2h that bears sequence homology to the H4 tail14, abolished the linker-length sensitivity in remodelling. Addition of exogenous H4-tail peptide or deletion of the nucleosomal H4 tail also diminished the linker-length sensitivity. Moreover, the accessory subunit Acf1 bound the H4-tail peptide and DNA in a manner that depended on its N-terminal domain, and lengthening the linker DNA in the nucleosome reduced the proximity between Acf1 and the H4 tail. Deletion of the N-terminal portion of Acf1 (or its homologue in yeast) abolished linker-length sensitivity in nucleosome remodeling and led to severe growth defects in vivo. Taken together, our results suggest a mechanism for nucleosome spacing where linker DNA sensing by Acf1 is allosterically transmitted to Snf2h through the H4 tail of the nucleosome. For nucleosomes with short linker DNA, Acf1 preferentially binds to the H4 tail, allowing AutoN to inhibit the ATPase activity of Snf2h. As the linker DNA lengthens, Acf1 shifts its binding preference to the linker DNA, freeing the H4 tail to compete AutoN off the ATPase and thereby activating ACF.
doi:10.1038/nature13380
PMCID: PMC4134374  PMID: 25043036
10.  Visualization of arrestin recruitment by a G Protein-Coupled Receptor 
Nature  2014;512(7513):218-222.
G Protein Coupled Receptors (GPCRs) are critically regulated by β-arrestins (βarrs), which not only desensitize G protein signaling but also initiate a G protein independent wave of signaling1-5. A recent surge of structural data on a number of GPCRs, including the β2 adrenergic receptor (β2AR)-G protein complex, has provided novel insights into the structural basis of receptor activation6-11. Lacking however has been complementary information on recruitment of βarrs to activated GPCRs primarily due to challenges in obtaining stable receptor-βarr complexes for structural studies. Here, we devised a strategy for forming and purifying a functional β2AR-βarr1 complex that allowed us to visualize its architecture by single particle negative stain electron microscopy (EM) and to characterize the interactions between β2AR and βarr1 using hydrogen-deuterium exchange mass spectrometry (HDXMS) and chemical cross-linking. EM 2D averages and 3D reconstructions reveal bimodal binding of βarr1 to the β2AR, involving two separate sets of interactions, one with the phosphorylated carboxy-terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of cross-linked residues suggest engagement of the finger loop of βarr1 with the seven-transmembrane core of the receptor. In contrast, focal areas of increased HDX indicate regions of increased dynamics in both N and C domains of βarr1 when coupled to the β2AR. A molecular model of the β2AR-βarr signaling complex was made by docking activated βarr1 and β2AR crystal structures into the EM map densities with constraints provided by HDXMS and cross-linking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented herein provides a framework for better understanding the basis of GPCR regulation by arrestins.
doi:10.1038/nature13430
PMCID: PMC4134437  PMID: 25043026
11.  Clonal Evolution in Breast Cancer Revealed by Single Nucleus Genome Sequencing 
Nature  2014;512(7513):155-160.
SUMMARY
Sequencing studies of breast tumor cohorts have identified many prevalent mutations, but provide limited insight into the genomic diversity within tumors. Here, we developed a whole-genome and exome single cell sequencing approach called Nuc-Seq that utilizes G2/M nuclei to achieve 91% mean coverage breadth. We applied this method to sequence single normal and tumor nuclei from an estrogen-receptor positive breast cancer and a triple-negative ductal carcinoma. In parallel, we performed single nuclei copy number profiling. Our data show that aneuploid rearrangements occurred early in tumor evolution and remained highly stable as the tumor masses clonally expanded. In contrast, point mutations evolved gradually, generating extensive clonal diversity. Many of the diverse mutations were shown to occur at low frequencies (<10%) in the tumor mass by targeted single-molecule sequencing. Using mathematical modeling we found that the triple-negative tumor cells had an increased mutation rate (13.3X) while the ER+ tumor cells did not. These findings have important implications for the diagnosis, therapeutic treatment and evolution of chemoresistance in breast cancer.
doi:10.1038/nature13600
PMCID: PMC4158312  PMID: 25079324
12.  One cell at a time 
Nature  2014;512(7513):143-144.
Single-cell DNA sequencing of two breast-cancer types has shown extensive mutational variation in individual tumours, confirming that generation of genetic diversity may be inherent in how tumours evolve.
doi:10.1038/nature13650
PMCID: PMC4287243  PMID: 25079325
13.  Molecular Control of δ-Opioid Receptor Signaling 
Nature  2014;506(7487):191-196.
Summary
Opioids represent widely prescribed and abused medications, although their signal transduction mechanisms are not well understood. Here we present the 1.8Å high-resolution crystal structure of the human δ-opioid receptor (δ-OR), revealing the presence and fundamental role of a sodium ion mediating allosteric control of receptor functional selectivity and constitutive activity. The distinctive δ-OR sodium ion site architecture is centrally located in a polar interaction network in the 7-transmembrane bundle core, with the sodium ion stabilizing a reduced agonist affinity state, and thereby modulating signal transduction. Site-directed mutagenesis and functional studies reveal that changing the allosteric sodium site residue Asn131 to alanine or valine augments constitutive arrestin-ergic signaling. Asp95Ala, Asn310Ala, and Asn314Ala mutations transform classical δ-opioid antagonists like naltrindole into potent β-arrestin-biased agonists. The data establish the molecular basis for allosteric sodium ion control in opioid signaling, revealing that sodium-coordinating residues act as “efficacy-switches” at a prototypic G protein-coupled receptor.
doi:10.1038/nature12944
PMCID: PMC3931418  PMID: 24413399
human opioid receptor; sodium regulation; allostery; functional selectivity; GPCR signaling; constitutive activity; arrestin
14.  PLETHORA gradient formation mechanism separates auxin responses 
Nature  2014;515(7525):125-129.
During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone1. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip2-12. In addition, auxin is also pivotal for tropic responses13,14. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation.
doi:10.1038/nature13663
PMCID: PMC4326657  PMID: 25156253
15.  Neuroscience: Transcranial devices are not playthings 
Nature  2013;501(7466):167.
doi:10.1038/501167b
PMCID: PMC4326099  PMID: 24025832
16.  Aryl hydrocarbon receptor control of a disease tolerance defense pathway 
Nature  2014;511(7508):184-190.
Summary
Disease tolerance is the ability of the host to reduce the impact of infection on host fitness. Analysis of disease tolerance pathways could provide new approaches for treating infections and other inflammatory diseases. Typically, an initial exposure to bacterial lipopolysaccharide (LPS) induces a state of refractoriness to further LPS challenge (“endotoxin tolerance”). We found that a first exposure to LPS activated the ligand-operated transcription factor aryl hydrocarbon receptor (AhR) and the hepatic enzyme tryptophan 2,3-dioxygenase 2, which provided an activating ligand to the former, to downregulate early inflammatory gene expression. However, on LPS rechallenge, AhR engaged in long-term regulation of systemic inflammation only in the presence of indoleamine 2,3-dioxygenase 1 (IDO1). AhR complex-associated Src kinase activity promoted IDO1 phosphorylation and signaling ability. The resulting endotoxin-tolerant state was found to protect mice against immunopathology in gram-negative and gram-positive infections, pointing to a role for AhR in contributing to host fitness.
doi:10.1038/nature13323
PMCID: PMC4098076  PMID: 24930766
17.  Dichloroacetate prevents restenosis in preclinical animal models of vessel injury 
Nature  2014;509(7502):641-644.
Despite the introduction of antiproliferative drug-eluting stents, coronary heart disease remains the leading cause of death in the United States1. In-stent restenosis and bypass graft failure are characterized by excessive smooth muscle cell (SMC) proliferation2,3 and concomitant myointima formation with luminal obliteration. Here we show that during the development of myointimal hyperplasia in human arteries, SMCs show hyperpolarization of their mitochondrial membrane potential (ΔΨm) and acquire a temporary state with a high proliferative rate and resistance to apoptosis. Pyruvate dehydrogenase kinase isoform 2 (PDK2) was identified as a key regulatory protein, and its activation proved necessary for relevant myointima formation. Pharmacologic PDK2 blockade with dichloroacetate or lentiviral PDK2 knockdown prevented ΔΨm hyperpolarization, facilitated apoptosis and reduced myointima formation in injured human mammary and coronary arteries, rat aortas, rabbit iliac arteries and swine (pig) coronary arteries. In contrast to several commonly used antiproliferative drugs, dichloroacetate did not prevent vessel re-endothelialization. Targeting myointimal ΔΨm and alleviating apoptosis resistance is a novel strategy for the prevention of proliferative vascular diseases.
doi:10.1038/nature13232
PMCID: PMC4323184  PMID: 24747400
18.  The selective tRNA aminoacylation mechanism based on a single G•U pair 
Nature  2014;510(7506):507-511.
Ligation of tRNAs with their cognate amino acids, by aminoacyl-tRNA synthetases, establishes the genetic code. Throughout evolution, tRNAAla selection by alanyl-tRNA synthetase (AlaRS) has depended predominantly on a single wobble base pair in the acceptor stem, G3•U70, mainly on the kcat level. Here we report the crystal structures of an archaeal AlaRS in complex with tRNAAla with G3•U70 and its A3•U70 variant. AlaRS interacts with both the minor- and major-groove sides of G3•U70, widening the major groove. The geometry difference between G3•U70 and A3•U70 is transmitted along the acceptor stem to the 3′-CCA region. Thus, the 3′-CCA region of tRNAAla with G3•U70 is oriented to the reactive route that reaches the active site, whereas that of the A3•U70 variant is folded back into the “non-reactive route”. This novel mechanism enables the single wobble pair to dominantly determine the specificity of tRNA selection, by an approximate 100-fold difference in kcat.
doi:10.1038/nature13440
PMCID: PMC4323281  PMID: 24919148
19.  Sphingolipid metabolites in inflammatory disease 
Nature  2014;510(7503):58-67.
Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes. Progress in our understanding of sphingolipid metabolism, state-of-the-art sphingolipidomic approaches and animal models have generated a large body of evidence demonstrating that sphingolipid metabolites, particularly ceramide and sphingosine-1-phosphate, are signalling molecules that regulate a diverse range of cellular processes that are important in immunity, inflammation and inflammatory disorders. Recent insights into the molecular mechanisms of action of sphingolipid metabolites and new perspectives on their roles in regulating chronic inflammation have been reported. The knowledge gained in this emerging field will aid in the development of new therapeutic options for inflammatory disorders.
doi:10.1038/nature13475
PMCID: PMC4320971  PMID: 24899305
20.  Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis 
Nature  2014;512(7512):69-73.
Rheumatoid arthritis (RA) is a chronic autoinflammatory disease that affects 1-2% of the world population and is characterized by widespread joint inflammation. IL-1 is an important mediator of cartilage destruction in rheumatic diseases1, but our understanding of the upstream mechanisms leading to IL-1β production in rheumatoid arthritis is limited by the absence of suitable RA mouse models in which inflammasomes contribute to pathology. Myeloid-cell-specific deletion of the RA-susceptibility gene A20/TNFAIP3 in mice (A20myel-KO mice) triggers a spontaneous erosive polyarthritis that resembles RA in patients2. Notably, RA in A20myel-KO mice was not rescued by tumor necrosis factor receptor 1 (TNF-R1) deletion, but we showed it to crucially rely on interleukin-1 receptor (IL-1R) signaling. Macrophages lacking A20 had increased basal and LPS-induced expression levels of the inflammasome adaptor Nlrp3 and proIL-1β. As a result, A20-deficiency in macrophages significantly enhanced Nlrp3 inflammasome-mediated caspase-1 activation, pyroptosis and IL-1β secretion by soluble and crystalline Nlrp3 stimuli. In contrast, activation of the Nlrc4 and AIM2 inflammasomes was not altered. Importantly, increased Nlrp3 inflammasome activation contributed to RA pathology in vivo, because deletion of Nlrp3 and caspase-1 markedly protected against RA-associated inflammation and cartilage destruction in A20myel-KO mice. These results reveal A20 as a novel negative regulator of Nlrp3 inflammasome activation, and describe A20myel-KO mice as the first experimental model to study the role of inflammasomes in RA pathology.
doi:10.1038/nature13322
PMCID: PMC4126806  PMID: 25043000
inflammasome; Nlrp3; A20; caspase-1; IL1R1
21.  Rapid Seeding of the Viral Reservoir Prior to SIV Viremia in Rhesus Monkeys 
Nature  2014;512(7512):74-77.
The viral reservoir represents a critical challenge facing HIV-1 eradication strategies1–5. However, it remains unclear when and where the viral reservoir is seeded during acute infection and the extent to which it is susceptible to early antiretroviral therapy (ART). Here we show that the viral reservoir is seeded very early following mucosal SIV infection of rhesus monkeys and prior to systemic viremia. We initiated suppressive ART in groups of monkeys on days 3, 7, 10, and 14 following intrarectal SIVmac251 infection. Treatment on day 3 blocked the emergence of viral RNA and proviral DNA in peripheral blood and also substantially reduced levels of proviral DNA in lymph nodes and gastrointestinal mucosa as compared with treatment at later timepoints. In addition, treatment on day 3 abrogated the induction of SIV-specific humoral and cellular immune responses. Nevertheless, following discontinuation of ART after 24 weeks of fully suppressive therapy, virus rebounded in all animals, although animals treated on day 3 exhibited a delayed viral rebound as compared with animals treated on days 7, 10 and 14. The time to viral rebound correlated with total viremia during acute infection and with proviral DNA at the time of ART discontinuation. These data demonstrate that the viral reservoir is seeded very early following intrarectal SIV infection of rhesus monkeys, during the “eclipse” phase, and prior to viremia. This strikingly early seeding of the refractory viral reservoir raises important new challenges for HIV-1 eradication strategies.
doi:10.1038/nature13594
PMCID: PMC4126858  PMID: 25042999
22.  Visualizing the kinetic power stroke that drives proton-coupled Zn(II) transport 
Nature  2014;512(7512):101-104.
The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of E. coli, and the transport-site of YiiP receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux1,2. This membrane protein is a well characterized member3-7 of the protein family of cation diffusion facilitators (CDFs) that occurs at all phylogenetic levels8-10. X-ray mediated hydroxyl radical labeling of YiiP and mass spectrometric analysis showed that Zn(II) binding triggered a highly localized, all-or-none change of water accessibility to the transport-site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics revealed a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical reorientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport-site enables a stationary proton gradient to facilitate the conversion of zinc binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active transport reaction.
doi:10.1038/nature13382
PMCID: PMC4144069  PMID: 25043033
23.  Nutrient Sensing Mechanisms and Pathways 
Nature  2015;517(7534):302-310.
PREFACE
The ability to sense and respond to fluctuations in environmental nutrient levels is a requisite for life. Nutrient scarcity is a selective pressure that has shaped the evolution of most cellular processes. Different pathways that detect intracellular and extracellular levels of sugars, amino acids and lipids, and surrogate metabolites, are then integrated and coordinated at the organismal level via hormonal signals. During food abundance, nutrient sensing pathways engage anabolism and storage, and scarcity triggers homeostatic mechanisms, like the mobilization of internal stores through mechanisms such as autophagy. Nutrient sensing pathways are commonly deregulated in human metabolic diseases.
doi:10.1038/nature14190
PMCID: PMC4313349  PMID: 25592535
24.  Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation 
Nature  2014;517(7532):89-93.
Intracellular ISG15 is an interferon (IFN)-α/β-inducible ubiquitin-like modifier which can covalently bind other proteins in a process called ISGylation; it is an effector of IFN-α/β-dependent antiviral immunity in mice1–4. We previously published a study describing humans with inherited ISG15 deficiency but without unusually severe viral diseases5. We showed that these patients were prone to mycobacterial disease and that human ISG15 was non-redundant as an extracellular IFN-γ-inducing molecule. We show here that ISG15-deficient patients also display unanticipated cellular, immunological and clinical signs of enhanced IFN-α/β immunity, reminiscent of the Mendelian autoinflammatory interferonopathies Aicardi–Goutières syndrome and spondyloenchondrodysplasia6–9.We further show that an absence of intracellular ISG15 in the patients’ cells prevents the accumulation of USP1810,11, a potent negative regulator of IFN-α/β signalling, resulting in the enhancement and amplification of IFN-α/β responses. Human ISG15, therefore, is not only redundant for antiviral immunity, but is a key negative regulator of IFN-α/β immunity. In humans, intracellular ISG15 is IFN-α/β-inducible not to serve as a substrate for ISGylation-dependent antiviral immunity, but to ensure USP18-dependent regulation of IFN-α/β and prevention of IFN-α/β-dependent autoinflammation.
doi:10.1038/nature13801
PMCID: PMC4303590  PMID: 25307056
25.  Equalizing Excitation-Inhibition Ratios across Visual Cortical Neurons 
Nature  2014;511(7511):596-600.
The relationship between synaptic excitation and inhibition (E/I ratio), two opposing forces in the mammalian cerebral cortex, affects many cortical functions like feature selectivity and gain1,2. Individual pyramidal cells show stable E/I ratios in time despite fluctuating cortical activity levels because when excitation increases, inhibition increases proportionally through the increased recruitment of inhibitory neurons, a phenomenon referred to as excitation-inhibition balance3–9. However, little is known about the distribution of E/I ratios across pyramidal cells. Through their highly divergent axons inhibitory neurons indiscriminately contact most neighboring pyramidal cells10,11. Is inhibition homogeneously distributed or is it individually matched to the different amounts of excitation received by distinct pyramidal cells? Here we discover that pyramidal cells in layer 2/3 of mouse primary visual cortex (V1) each receive inhibition in a similar proportion to their excitation. As a consequence E/I ratios are equalized across pyramidal cells. This matched inhibition is mediated by parvalbumin-expressing (PV) but not somatostatin-expressing (SOM) inhibitory neurons and results from the independent adjustment of synapses originating from the same PV cell but targeting different pyramidal cells. Furthermore, this match is activity-dependent as it is disrupted by perturbing pyramidal cell activity. Thus, the equalization of E/I ratios across pyramidal cells reveals an unexpected degree of order in the spatial distribution of synaptic strengths and indicates that the relationship between cortex’s two opposing forces is stabilized not only in time but also in space.
doi:10.1038/nature13321
PMCID: PMC4117808  PMID: 25043046

Results 1-25 (2858)