Search tips
Search criteria

Results 1-25 (61)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
author:("morley, R.")
1.  Trends in the Journal of Nematology, 1969-2009: Authors, States, Nematodes, and Subject Matter 
Journal of Nematology  2011;43(2):63-68.
Issues of the Journal of Nematology from 1969-2009 were examined to determine trends in authorship and subject matter. Data were collected on authors, affiliations, locations, funding, nematodes, and nematological subject matter, and then compared among the 4 decades involved. Some of the more prominent changes noted included: a decrease (P < 0.05) in the number of papers published in the Journal of Nematology in the 1990s and 2000s from a peak in the 1980s; an increase (P < 0.05) in number of authors per paper in each decade; an increased (P < 0.05) percentage of international authors in the 1990s and 2000s compared to 1970s; and changing roles of the United States Department of Agriculture (USDA) and different states over a period of 4 decades. Plant-parasitic nematodes were the main organisms studied in 73.4% of all papers published the Journal of Nematology from 1969-2009. The greatest changes in subject matter were increases in papers on biological control and resistance in the 1990s and 2000s compared to the 1970s and 1980s. Additional trends and subjects are discussed, and data are provided comparing differences among the 4 decades for various aspects of nematology.
PMCID: PMC3380458  PMID: 22791914
biological control; ecology; grant funding; nematode management; nematology research; plant-parasitic nematodes; resistance; taxonomy
2.  Exposure Time to Lethal Temperatures for Meloidogyne incognita Suppression and Its Implication for Soil Solarization 
Journal of nematology  2008;40(1):7-12.
Meloidogyne incognita eggs or J2 were incubated in test tubes containing sand:peat mix and immersed in a water bath heated to 38, 39, 40, 41, 42, 43, 44 and 45°C for a series of time intervals. Controls were maintained at 22°C. Nematodes surviving or hatching were collected from Baermann trays after three weeks of incubation. Regression analyses between percent survival or egg hatch and hours of heat treatment were performed for each temperature. Complete suppression of egg hatch required 389.8, 164.5, 32.9, 19.7 and 13.1 hours at 38, 39, 40, 41 and 42°C, respectively. Complete killing of J2 required 47.9, 46.2, 17.5 and 13.8 hours at 39, 40, 41 and 42°C, respectively. J2 were not completely killed at 38°C within 40 hours of treatment, but were killed within one hour at 44 and 45°C. Effect of temperature on nematode killing is not determined by heat units. Oscillating temperature between cool and warm did not interfere with the nematode suppressive effect by the heat treatment. Six-week solarization in the field during the summers of 2003 and 2004 in Florida accumulated heat exposure times in the top 15 cm of soil that surpassed levels required to kill M. incognita as determined in the water bath experiments. Although near zero M. incognita were detected right after solarization, the nematode population densities increased after a cycle of a susceptible pepper crop. Therefore, future research should address failure of solarization to kill nematodes in the deeper soil layers.
PMCID: PMC2586528  PMID: 19259512
Capsicum annuum; bell pepper; soil temperature; heat units; Meloidogyne incognita, solarization; root-knot nematodes
3.  Saline Irrigation Affects Belonolaimus longicaudatus and Hoplolaimus galeatus on Seashore Paspalum 
Journal of Nematology  2005;37(1):37-44.
Seashore paspalum (Paspalum vaginatum) has great potential for use in salt-affected turfgrass sites. Use of this grass on golf courses, athletic fields, and lawns in subtropical coastal areas may aid in conservation of freshwater resources. Belonolaimus longicaudatus and Hoplolaimus galeatus are considered among the most damaging root pathogens of turfgrasses in Florida. Glasshouse experiments were performed in 2002 and 2003 to examine the effects of increasing levels of irrigation salinity on B. longicaudatus and H. galeatus. Irrigation treatments were formulated by concentrating deionized water to six salinity levels (0, 5, 10, 15, 20, and 25 dS/m). Final population densities of H. galeatus followed a negative linear regression (r² = 0.92 and 0.83; P <= 0.01) with increasing salinity levels. Final population densities of B. longicaudatus were quadratically (r² = 0.72 and 0.78; P <= 0.01) related to increasing salinity levels from 0 to 25 dS/m. An increase in population densities of B. longicaudatus was observed at moderate salinity levels (10 and 15 dS/m) compared to 0 dS/m. Root-length comparisons revealed that B. longicaudatus caused root stunting at low salinity levels, 0 to 10 dS/m, but roots were not affected at 15 to 25 dS/m. These results indicate that the ability of B. longicaudatus to feed and stunt root growth was negatively affected at salinity levels of 15 dS/m and above.
PMCID: PMC2620935  PMID: 19262841
Belonolaimus longicaudatus; Hoplolaimus galeatus; lance nematode; Paspalum vaginatum; salinity; seashore paspalum; sting nematode
4.  Effect of Winter Cover Crops on Nematode Population Levels in North Florida 
Journal of Nematology  2004;36(4):517-523.
Two experiments were conducted in north-central Florida to examine the effects of various winter cover crops on plant-parasitic nematode populations through time. In the first experiment, six winter cover crops were rotated with summer corn (Zea mays), arranged in a randomized complete block design. The cover crops evaluated were wheat (Triticum aestivum), rye (Secale cereale), oat (Avena sativa), lupine (Lupinus angustifolius), hairy vetch (Vicia villosa), and crimson clover (Trifolium incarnatum). At the end of the corn crop in year 1, population densities of Meloidogyne incognita were lowest on corn following rye or oat (P ≤ 0.05), but no treatment differences were observed in year 2. Wheat was a good host to Paratrichodorus minor, whereas vetch was a poor host, but numbers of P. minor were not lower in vetch-planted plots after corn was grown. The second experiment used a split-plot design in which rye or lupine was planted into field plots with histories of five tropical cover crops: soybean (Glycine max), cowpea (Vigna unguiculata), sorghum-sudangrass (Sorghum bicolor × S. sudanense), sunn hemp (Crotalaria juncea), and corn. Population densities of M. incognita and Helicotylenchus dihystera were affected by previous tropical cover crops (P ≤ 0.05) but not by the winter cover crops present at the time of sampling. Plots planted to sunn hemp in the fall maintained the lowest M. incognita and H. dihystera numbers. Results suggest that winter cover crops tested did not suppress plant-parasitic nematodes effectively. Planting tropical cover crops such as sunn hemp after corn in a triple-cropping system with winter cover crops may provide more versatile nematode management strategies in northern Florida.
PMCID: PMC2620786  PMID: 19262833
crop rotation; cropping systems; Helicotylenchus dihystera; Meloidogyne incognita; Mesocriconema ornata; M. sphaerocephala; nematode management; Paratrichodorus minor; Pratylenchulus brachyurus; P. scribneri; root-knot nematode; sustainable agriculture; weeds
5.  Host Status of 'SeaIsle 1' Seashore Paspalum (Paspalum vaginatum) to Belonolaimus longicaudatus and Hoplolaimus galeatus 
Journal of Nematology  2004;36(4):493-498.
Belonolaimus longicaudatus and Hoplolaimus galeatus are considered among the most damaging pathogens of turfgrasses in Florida. However, the host status of seashore paspalum (Paspalum vaginatum) is unknown. Glasshouse experiments were performed in 2002 and 2003 to determine the tolerance of 'SeaIsle 1' seashore paspalum to a population of B. longicaudatus and a population of H. galeatus, and to compare to 'Tifdwarf' bermudagrass for differences. Both nematode species reproduced well on either grass, but only B. longicaudatus consistently reduced root growth as measured by root length. Belonolaimus longicaudatus reduced root growth (P ≤ 0.05) by 35% to 45% at 120 days after inoculation on both grasses. In 2003, higher inoculum levels of H. galeatus reduced root growth (P ≤ 0.05) by 19.4% in seashore paspalum and by 14% in bermudagrass after 60 and 120 days of exposure, respectively. Percentage reductions in root length caused by H. galeatus and B. longicaudatus indicated no differences between grass species, although Tifdwarf bermudagrass supported higher soil population densities of both nematodes than SeaIsle 1 seashore paspalum.
PMCID: PMC2620796  PMID: 19262830
Belonolaimus longicaudatus; bermudagrass; Hoplolaimus galeatus; host status; lance nematode; Paspalum vaginatum; seashore paspalum; sting nematode; tolerance
6.  Effect of Crotalaria juncea Amendment on Squash Infected with Meloidogyne incognita 
Journal of Nematology  2004;36(3):290-296.
Two greenhouse experiments were conducted to examine the effect of Crotalaria juncea amendment on Meloidogyne incognita population levels and growth of yellow squash (Cucurbita pepo). In the first experiment, four soils with a long history of receiving yard waste compost (YWC+), no-yard-waste compost (YWC-), conventional tillage, or no-tillage treatments were used; in the second experiment, only one recently cultivated soil was used. Half of the amount of each soil received air-dried residues of C. juncea as amendment before planting squash, whereas the other half did not. Crotalaria juncea amendment increased squash shoot and root weights in all soils tested, except in YWC+ soil where the organic matter content was high without the amendment. The amendment suppressed the numbers of M. incognita if the inoculum level was low, and when the soil contained relatively abundant nematode-antagonistic fungi. Microwaved soil resulted in greater numbers of M. incognita and free-living nematodes than frozen or untreated soil, indicating nematode-antagonistic microorganisms played a role in nematode suppression. The effects of C. juncea amendment on nutrient cycling were complex. Amendment with C. juncea increased the abundance of free-living nematodes and Harposporium anguillulae, a fungus antagonistic to them in the second experiment but not in the first experiment. Soil histories, especially long-term yard waste compost treatments that increased soil organic matter, can affect the performance of C. juncea amendment.
PMCID: PMC2620769  PMID: 19262819
free-living nematode; nematode-trapping fungi; organic amendments; root-knot nematode; soil ecosystem; soil nutrient; sunn hemp; tillage
7.  Effects of Perennial Peanut (Arachis glabrata) Ground Cover on Nematode Communities in Citrus 
Journal of Nematology  2003;35(4):450-457.
The effects of perennial peanut (Arachis glabrata) ground cover on the nematode community in a citrus orchard were examined. Samples were taken from two different ground cover treatments (perennial peanut or bare ground) at each of three distances from the tree trunk. Richness, measured as total numbers of nematode genera per sample, and total numbers of nematodes were greatest in the perennial peanut treatment (P < 0.05). Abundance of many genera of bacterivores, fungivores, and omnivores were increased by the perennial peanut ground cover. Total numbers of plant parasites were greater in perennial peanut treatments on three of the five sampling dates (P < 0.05), mainly due to trends in numbers of Mesocriconema. Distance from a tree trunk and the interaction of ground cover treatments and proximity to a tree trunk were most influential for Belonolaimus and Hoplolaimus. Although differences among treatments were observed for nematode genera and trophic groups, ecological indices were not consistently sensitive to treatments. Among several ecological indices evaluated, richness was most often affected by ground cover treatment.
PMCID: PMC2620683  PMID: 19262779
Arachis glabrata; Belonolaimus; citrus; ecological indices; Hoplolaimus; Mesocriconema nematode community; perennial peanut; plant-parasitic nematodes
8.  Effect of Crotalaria juncea Amendment on Nematode Communities in Soil with Different Agricultural Histories 
Journal of Nematology  2003;35(3):294-301.
Effect of sunn hemp (Crotalaria juncea) hay amendment on nematode community structure in the soil surrounding roots of yellow squash (Cucurbita pepo) infected with root-knot nematodes was examined in two greenhouse experiments. Soils were from field plots treated long-term (LT) with yard-waste compost or no yard-waste compost in LT experiment, and from a short-term (ST) agricultural site in ST experiment. Soils collected were either amended or not amended with C. juncea hay. Nematode communities were examined 2 months after squash was inoculated with Meloidogyne incognita. Amendment increased (P < 0.05) omnivorous nematodes in both experiments but increased only bacterivorous nematodes in ST experiment (P < 0.05), where the soil had relatively low organic matter (<2%). This effect of C. juncea amendment did not occur in LT experiment, in which bacterivores were already abundant. Fungivorous nematodes were not increased by C. juncea amendment in either experiment, but predatory nematodes were increased when present. Although most nematode faunal indices, including enrichment index, structure index, and channel index, were not affected by C. juncea amendment, structure index values were affected by previous soil organic matter content. Results illustrate the importance of considering soil history (organic matter, nutrient level, free-living nematode number) in anticipating changes following amendment with C. juncea hay.
PMCID: PMC2620648  PMID: 19262764
community structure indices; Cucurbita pepo; Meloidogyne incognita; organic amendments; squash; sunn hemp
9.  Effect of Sorghum-Sudangrass and Velvetbean Cover Crops on Plant-Parasitic Nematodes Associated with Potato Production in Florida 
Journal of Nematology  2001;33(4S):285-288.
In a 3-year field study, population densities of Belonolaimus longicaudatus and other plant-parasitic nematodes and crop yields were compared between potato (Solanum tuberosum) cropping systems where either sorghum-sudangrass (Sorghum bicolor × S. arundinaceum) or velvetbean (Mucuna pruriens) was grown as a summer cover crop. Population densities of B. longicaudatus, Paratrichodorus minor, Tylenchorhynchus sp., and Mesocriconema sp. increased on sorghum-sudangrass. Population densities of P. minor and Mesocriconema sp. increased on velvetbean. Sorghum-sudangrass increased population densities of B. longicaudatus and Mesocriconema sp. on a subsequent potato crop compared to velvetbean. Potato yields following velvetbean were not greater than following sorghum-sudangrass despite reductions in population densities of B. longicaudatus.
PMCID: PMC2620518  PMID: 19265888
Belonolaimus longicaudatus; cover crop; cropping sequence; Dolichodorus heterocephalus; Hemicycliophora sp.; management; Meloidogyne incognita; Mesocriconema sp.; modeling; Mucuna pruriens; nematode; Paratrichodorus minor; population dynamics; potato; root-knot nematode; Solanum tuberosum; Sorghum bicolor × S. arundinaceum; sorghum-sudangrass; sting nematode; stubby root nematode; Tlenchorhynchus sp.; velvetbean
10.  Niche Distribution of Paratrichodorus minor and Belonolaimus longicaudatus Following Fumigation on Potato and Cabbage 
Journal of Nematology  2000;32(4):343-348.
An experiment was conducted to determine population changes and niche variation in the soil at two depths (0 to 20 cm and 20 to 40 cm) of Paratrichodorus minor and Belonolaimus longicaudatus populations following fumigation. Eight plots each of potato (Solanum tuberosum) and cabbage (Brassica oleracea var. capitata), fumigated with 1, 3-dichloropropene or nonfumigated, were established. Eight plots of sorghum-sudangrass hybrid (Sorghum bicolor × S. arundinaceum var. sudanense) were also used to monitor depth distribution (0 to 20 cm and 20 to 40 cm) of B. longicaudatus and P. minor following each cabbage/potato season. Soil samples were taken 0 to 20 cm and 20 to 40 cm deep during the potato/cabbage, and sorghum-sudangrass growing seasons. During the 1993-94 and 1994-95 potato/cabbage seasons, P. minor was found at highest numbers at 20 to 40 cm, whereas numbers of B. longicaudatus were highest at 0 to 20 cm. During the 1994 and 1995 sorghum-sudangrass growing seasons, B. longicaudatus numbers were highest at 0 to 20 cm. Paratrichodorus minor numbers were highest at 0 to 20 cm and at 20 to 40 cm deep in the 1994 and 1995 sorghum-sudangrass growing seasons, respectively. Reduction by soil fumigation of B. longicaudatus at 0 to 20 cm deep did not affect depth distribution or cause P. minor populations to increase in potato or cabbage plots. Paratrichodorus minor numbers increased at 20 to 40 cm deep in the 1994-95 cabbage season after soil fumigation.
PMCID: PMC2620474  PMID: 19270987
Belonolaimus longicaudatus; Brassica oleracea; cabbage; ecology; nematode; niche depth; Paratrichodorus minor; potato; sampling depth; Solanum tuberosum; Sorghum bicolor × S. arundinaceum var. sudanense; sorghum-sudangrass; sting nematode; stubby root nematode
11.  Effects of Solarization and Ammonium Amendments on Plant-Parasitic Nematodes 
Journal of Nematology  2000;32(4S):537-541.
The effects of soil solarization and ammonium bicarbonate or ammonium sulfate against plant-parasitic nematodes on yellow squash (Cucurbita pepo) and on vinca (Catharanthus roseus) were evaluated at two sites. Solarization for 3 weeks in the spring suppressed population levels of Belonolaimus longicaudatus, Criconemella spp., and Dolichodorus heterocephalus throughout the growing season on both crops at both sites. Levels of Meloidogyne incognita were suppressed initially, but population densities increased by the end of the crop in several cases. In one site, numbers of Paratrichodorus minor resurged following solarization to levels that were greater than those present in unsolarized control plots. The effect of solarization was not enhanced by combination with ammonium amendments, but, in one site, application of ammonium bicarbonate or ammonium sulfate resulted in lower numbers of B. longicaudatus than in the unamended control. Additional research and improved efficacy of candidate amendments are required before they can be successfully integrated with solarization for nematode management. Efficacy of solarization against plant-parasitic nematodes was achieved despite a relatively short (3 weeks) solarization period.
PMCID: PMC2620486  PMID: 19271007
ammonium bicarbonate; ammonium sulfate; Belonolaimus longicaudatus; Catharanthus roseus; Cucurbita pepo; Dolichodorus heterocephalus; integrated pest management; Meloidogyne incognita; nematode; Paratrichodorus minor; squash; sustainable agriculture; vinca
12.  Damage Function and Economic Threshold for Belonolaimus longicaudatus on Potato 
Journal of Nematology  2000;32(3):318-322.
Belonolaimus longicaudatus has long been recognized as a pathogen of potato (Solanum tuberosum). However, a damage function relating expected yield of potato to population densities of B. longicaudatus at planting has not been derived, and the economic threshold for nematicide application is unknown. The objectives of this study were to derive the damage function of B. longicaudatus on potato and to calculate the economic threshold population density. The damage function data for B. longicaudatus on potato were obtained from an ongoing field study to evaluate cropping systems and nematode management practices. Soil samples were collected from experimental field plots, and nematodes were extracted from a 130-cm³ subsample with a centrifugal-flotation method. A damage function was derived by linear regression of potato yield on nematode population density at planting. Based on this derived damage function and published potato prices, the economic threshold for nematicide application was calculated at 2 to 3 B. longicaudatus/130 cm³ of soil, which was near the detection threshold based on methodology used in this study.
PMCID: PMC2620459  PMID: 19270983
Belonolaimus longicaudatus; damage function; economic threshold; nematode; plant disease loss; potato; Solanum tuberosum; sting nematode
13.  Population Dynamics of Belonolaimus longicaudatusin a Cotton Production System 
Journal of Nematology  2000;32(2):210-214.
Belonolaimus longicaudatus is a recognized pathogen of cotton (Gossypium hirsutum), but insufficient information is available on the population dynamics and economic thresholds of B. longicaudatus in cotton production. In this study, data collected from a field in Florida were used to develop models predicting population increases of B. longicaudatus on cotton and population declines under clean fallow. Population densities of B. longicaudatus increased on cotton, reaching a carrying capacity of 139 nematodes/130 cm³ of soil, but decreased exponentially during periods of bare fallow. The model indicated that population densities should decrease each year of monocropped cotton, if an alternate host is not present between sequential cotton crops. Economic thresholds derived from published damage functions and current prices for cotton and nematicides varied from 2 to 5 B. longicaudatus/130 cm³ of soil, depending on the nematicide used.
PMCID: PMC2620437  PMID: 19270968
Belonolaimus longicaudatus; cotton; economic threshold; fallow; Gossypium hirsutum; modeling; nematode; population decline; population dynamics; population increase; sting nematode
14.  Yield Reduction and Root Damage to Cotton Induced by Belonolaimus longicaudatus 
Journal of Nematology  2000;32(2):205-209.
Sting nematode (Belonolaimus longicaudatus) is recognized as a pathogen of cotton (Gossypium hirsutum), but the expected damage from a given population density of this nematode has not been determined. The objective of this study was to quantify the effects of increasing initial population densities (Pi) of B. longicaudatus on cotton yield and root mass. In a field plot study, nematicide application and cropping history were used to obtain a wide range of Pi values. Cotton yields were regressed on Pi density of B. longicaudatus to quantify yield losses in the field. In controlled environmental chambers, cotton was grown in soil infested with increasing Pi's of B. longicaudatus. After 40 days, root systems were collected, scanned on a desktop scanner, and root lengths were measured. Root lengths were regressed on inoculation density of B. longicaudatus to quantify reductions in the root systems. In the field, high Pi's (>100 nematodes/130 cm³ of soil) reduced yields to near zero. In controlled environmental chamber studies, as few as 10 B. longicaudatus/130 cm³ of soil caused a 39% reduction in fine cotton roots, and 60 B. longicaudatus/130 cm³ of soil caused a 70% reduction. These results suggest that B. longicaudatus can cause significant damage to cotton at low population densities, whereas at higher densities crop failure can result.
PMCID: PMC2620440  PMID: 19270967
Belonolaimus longicaudatus; cotton; crop loss; damage function; damage threshold; Gossypium hirsutum; nematode; plant disease loss; root scanning; sting nematode
15.  Host Suitability of Potential Cover Crops for Root-knot Nematodes 
Journal of Nematology  1999;31(4S):619-623.
Several potential cover crops were evaluated for their susceptibility to Meloidogyne arenaria race 1, M. incognita race 1, and M. javanica in a series of five greenhouse experiments. No galls or egg masses were observed on roots of castor (Ricinus communis), cowpea (Vigna unguiculata cv. Iron Clay), crotalaria (Crotalaria spectabilis), or American jointvetch (Aeschynomene americana). Occasional egg masses (rating ≤1.0 on 0-5 scale) were observed on marigold (Tagetes minuta) in one test with M. incognita, on sesame (Sesamum indicum cv. Paloma) in a test with M. arenaria, and on sunn hemp (Crotalaria juncea cv. Tropic Sun) in 1 of 2 tests with M. incognita; otherwise, these crops were free of egg masses. Numbers of second-stage juveniles (J2) hatched from eggs per root system were low (≤10/pot) for the abovementioned crops. Egg-mass levels and numbers of hatched J2 of M. incognita on pearl millet (Pennisetum typhoides, Tifleaf II hybrid) were comparable to those on a susceptible tomato (Lycopersicon esculentum cv. Rutgers). In a test with M. arenaria, egg mass levels and numbers of J2 on Japanese millet (Echinochloa frumentacea) were similar to those on tomato. Japanese millet was susceptible to each of the nematode isolates tested. However, several of the crops evaluated were very poor hosts or non-hosts of the nematode isolates, including several legumes (cowpea, crotalaria, jointvetch, sunn hemp) that have potential use in both nematode and nitrogen management.
PMCID: PMC2620418  PMID: 19270926
Aeschynomene americana; castor; cowpea; Crotalaria juncea; Crotalaria spectabilis; Echinochloa frumentacea; host-plant resistance; jointvetch; marigold; Meloidogyne arenaria; Meloidogyne incognita; Meloidogyne javanica; millet; nematode; nematode management; Pennisetum glaucum; Pennisetum typhoides; Ricinus communis; sesame; Sesamum indicum; sunn hemp; sustainable agriculture; Tagetes minuta; Vigna unguiculata
16.  Nematode Population Fluctuations during Decomposition of Specific Organic Amendments 
Journal of Nematology  1999;31(1):37-44.
Population densities of nematodes in field soil without plants were monitored for 10 months following application of organic amendments to pots in a greenhouse. The four treatments consisted of three different kinds of organic amendments: homogeneous crop residues of maize (Zea mays, C:N = 48.0:1), Texas panicum (Panicum texanum, C:N = 32.9:1), or velvetbean (Mucuna pruriens, C:N = 18.6:1), plus a control without any amendment. Plant-parasitic nematodes declined in all treatments due to absence of a food source. Bacterivore numbers increased following amendment application and remained greater than initial population levels until 4 months after application. Fungivore numbers were higher than initial levels until 6 months after amendment application and did not decline below the initial numbers during the course of the experiment. On several sampling dates, the bacterivorous genera Cervidellus and Eucephalobus were most abundant in pots with maize residues. Among the fungivores, Aphelenchoides numbers early in the experiment were greatest in pots amended with velvetbean, whereas numbers of Aphelenchus, Nothotylenchus, and Tylenchidae (mainly Filenchus) were greatest during the latter half of the experiment following the maize amendment. Omnivorous nematodes, particularly Eudorylaimus, showed two peaks in abundance during the course of the experiment. Results provided some evidence that population levels of some genera of bacterivores and fungivores may be affected by specific organic amendments.
PMCID: PMC2620342  PMID: 19270873
bacterivores; fungivores; nematode community; omnivores; plant parasitics; predators; soil ecology; trophic groups
17.  Effect of Castor and Velvetbean Organic Amendments on Meloidogyne arenaria in Greenhouse Experiments 
Journal of Nematology  1998;30(4S):624-631.
Effectiveness of castor (Ricinus communis) and velvetbean (Mucuna deeringiana) amendments was tested for suppression of the root-knot nematode (Meloidogyne arenaria) and growth of okra (Hibiscus esculentus) in three greenhouse experiments. Regression analysis was used to relate nematode population data or plant growth responses to various rates (0, 1, 2, 4, or 8 g/560 cm³ soil pot) of each amendment in separate experiments. In general, plant growth parameters responded positively to the amendment rate until a level of about 4 g to 5 g of velvetbean or castor amendment/pot. Similar trends were observed for nematode galls, egg masses, and second-stage juveniles extracted from root systems. In most circumstances, quadratic equations best expressed the relationships between plant or nematode parameters and rates of velvetbean or castor amendment, leading to the assumption that a best rate of the amendment for plant growth or nematode suppression can be predicted. In a third experiment, in which both amendments were compared directly, velvetbean amendment was more efficient than castor in suppressing nematodes as well as in improving plant growth.
PMCID: PMC2620327  PMID: 19274257
Hibiscus esculentus; Meloidogyne arenaria; Mucuna deeringiana; nematode; nematode management; okra; Ricinus communis; root-knot nematode
18.  Effect of Meloidogyne arenaria and Mulch Type on Okra in Microplot Experiments 
Journal of Nematology  1998;30(4S):616-623.
The effects of perennial peanut (Arachis glabrata) hay, an aged yard-waste compost (mainly woodchips), and a control treatment without amendment were determined on two population levels of root-knot (Melaidogyne arenaria) nematode over three consecutive years in field microplots. Okra (Hibiscus esculentus, susceptible to the root-knot nematode) and a rye (Secale cereale) cover crop (poor nematode host) were used in the summer and winter seasons, respectively. The organic amendment treatments affected plant growth parameters. In the first year, okra yields were greatest in peanut-amended plots. Yield differences with amendment treatment diminished in the second and third years. Okra plant height, total fruit weight, and fruit number were greater with the lower population level of the root-knot nematode. Residual levels of nutrients in soil were greater where root-knot nematode levels and damage were higher and plant growth was poor. Nutrient levels affected the growth of a subsequent rye cover crop.
PMCID: PMC2620323  PMID: 19274256
compost; Hibiscus esculentus; Meloidogyne arenaria; nematode; organic amendments; pest management; root-knot nematode; sustainable agriculture
19.  Nematode Community Composition under Various Irrigation Schemes in a Citrus Soil Ecosystem 
Journal of Nematology  1998;30(2):170-178.
Interest in the sustainability of farming practices has increased in response to environmental problems associated with conventional agricultural management often adopted for the production of herbaceous crops, ornamentals, and fruit crops. Availability of measures of the status of the soil ecosystem is of immediate importance, particularly for environmental assessment and monitoring programs. This study investigated the effects of various irrigation regimes (an example of an agricultural management practice) on the structure of the nematode fauna in a citrus orchard in the sandy ridge area of Central Florida. Ecological measures such as community structure indices, diversity indices, and maturity indices were assessed and related to irrigation intensity. Maturity index was an effective measure in distinguishing differences between irrigation regimes, whereas other indices of community structure were not. Of various nematode genera and trophic groups, only omnivores and the omnivore genera. Aporcelaimellus and Eudorylaimus responded to irrigation treatments.
PMCID: PMC2620287  PMID: 19274207
bioindicator; citrus; community structure; diversity; Florida; irrigation regime; maturity index; nematode; soil ecology; sustainable systems
20.  Effect of Compost and Maize Cultivars on Plant-parasitic Nematodes 
Journal of Nematology  1997;29(4S):731-736.
Effects of yard waste compost and maize (Zea mays) cultivar on population densities of plant-parasitic nematodes were examined in four experiments in north Florida. In one experiment, eight maize cultivars were evaluated; the other three experiments involved split-plot designs with compost treatments as main plots and maize cultivars as subplots. The three compost treatments used in these experiments were: 269 mt/ha of a yard-waste compost applied to the soil surface as a mulch, 269 mt/ha of compost incolporated into the soil, and an unamended control. No interactions between compost treatment and cultivar occurred in any experiment. Effects of compost treatment on Mesocriconema spp., Meloidogyne incognita, and Pratylenchus spp. were inconsistent, whereas significant effects of compost on population densities of Paratrichodorus minor were found on four of six sampling occasions. Cultivar affected final population densities (Pf) of M. incognita. In two tests, Pf of M. incognita on a Florida subtropical experimental hybrid (Howard III) were only 36% and 23% of Pf on the standard tropical hybrid (Pioneer Brand X304C). In an integrated approach to management of nematodes in maize, the effects of compost amendment and culfivar choice acted independently. Apparently, cultivar choice is more important than amendment with yard waste compost for management of M. incognita population levels in a maize rotation crop.
PMCID: PMC2619831  PMID: 19274277
compost; cultural practice; host plant resistance; integrated pest management; Meloidogyne incognita; mulch; nematode; organic amendment; Paratrichodorus minor; sustainable agriculture; Zea mays
21.  Suppression Mechanisms of Meloidogyne arenaria Race 1 by Pasteuria penetrans 
Journal of Nematology  1997;29(1):1-8.
The biological control of Meloidogyne arenaria on peanut (Arachis hypogaea) by Pasteuria penetrans was evaluated using a six x six factorial experiment in field microplots over 2 years. The main factors were six inoculum levels of second-stage juveniles (J2) of M. arenaria race 1 (0, 40, 200, 1,000, 5,000, and 25,000 J2/microplot, except that the highest level was 20,000 J2/microplot in 1995) and six infestation levels of P. penetrans as percentages of J2 with endospores attached (0, 20, 40, 60, 80, and 100%). The results were similar in 1994 and 1995. Numbers of eggs per root system, J2 per 100 cm³ soil at harvest, root galls, and pod galls increased with increasing nematode inoculum levels and decreased with increasing P. penetrans infestation levels (P ≤ 0.05), except that there was no effect of P. penetrans infestation levels on J2 per 100 cm³ soil in 1994 (P> 0.05). There were no statistical interaction effects between the inoculum levels of J2 and the infestation levels of P. penetrans (P > 0.05). When the infestation level was increased by 10%, the number of eggs per root system, root galls, and pod galls decreased 7.8% to 9.4%, 7.0% to 8.5%, and 8.0% to 8.7% in 1994 and 1995, respectively, whereas J2 per 100 cm³ soil decreased 8.8% in 1995 (P ≤ 0.05). The initial infestation level of P. penetrans contributed 81% to 95% of the total suppression of pod galls, whereas the infection of J2 of the subsequent generations contributed only 5% to 19% suppression of pod galls. The major suppressive mechanism of M. arenaria race 1 by P. penetrans on peanut is the initial endospore infestation of J2 at planting.
PMCID: PMC2619759  PMID: 19274127
Arachis hypogaea; bacterium; biological control; endospore; Meloidogyne arenaria; Pasteuria penetrans; peanut; root-knot nematode
22.  Effects of Temperature on Resistance in Phaseolus vulgaris Genotypes and on Development of Meloidogyne Species 
Journal of Nematology  1997;29(1):90-103.
Phaseolus vulgaris lines with heat-stable resistance to Meloidogyne spp. may be needed to manage root-knot nematodes in tropical regions. Resistance expression before and during the process of nematode penetration and development in resistant genotypes were studied at pre- and postinoculation temperatures of 24 °C and 24 °C, 24 °C and 28 °C, 28 °C and 24 °C, and 28 °C and 28 °C. Resistance was effective at all temperature regimes examined, with fewer nematodes in roots of a resistant line compared with a susceptible line. Preinoculation temperature did not modify resistance expression to later infections by root-knot nematodes. However, postinoculation temperatures affected development of Meloidogyne spp. in both the resistant and susceptible bean lines tested. The more rapid development of nematodes to adults at the higher postinoculation temperature of 28 °C in both bean lines suggests direct temperature effects on nematode development instead of on resistance expression of either of two gene systems. Also, resistance was stable at 30 °C and 32 °C.
PMCID: PMC2619758  PMID: 19274137
common bean; host plant resistance; Meloidogyne arenaria; Meloidogyne incognita; nematode development; Phaseolus vulgaris; resistance mechanisms; root-knot nematode; temperature
23.  Effects of Resistance in Phaseolus vulgaris on Development of Meloidogyne Species 
Journal of Nematology  1996;28(4):485-491.
Use of resistant Phaseolus vulgaris germplasm has a potential role in limiting damaging effects of Meloidogyne spp. on bean production. Effects of two genetic resistance systems in common bean germptasm on penetration and development of Meloidogyne spp. were studied under growth room conditions at 22°C to 25°C. Nemasnap (gene system 1) and G1805 (gene system 2) were inoculated with second-stage juveniles (J2) of M. incognita race 2 and M. arenaria race 1, respectively; Black Valentine was used as the susceptible control. Up to 7 days after inoculation, there were no differences in numbers of M. incognita J2 penetrating roots of Black Valentine and Nemasnap; subsequently, more nematodes were present in Black Valentine roots (P < 0.05). More nematodes reached advanced stages of development in Black Valentine than in Nemasnap roots (P < 0.05). Total numbers of M. arenaria were greater in Black Valentine than in G 1805 roots from 14 days after inoculation (P < 0.05). Advanced stages of development occurred earlier and in greater numbers in Black Valentine plants than in G1805 plants. In these studies, resistance to M. incognita race 2 and M. arenaria race 1 in bean germplasm, which contain gene system 1 and gene system 2, respectively, was expressed by delayed nematode development rather than by differential penetration compared with susceptible plants.
PMCID: PMC2619713  PMID: 19277166
common bean; development; gene system; Meloidogyne spp.; nematode; penetration; Phaseolus vulgaris; resistance; root-knot nematode
24.  Effect of Yard Waste Compost on Nematode Densities and Maize Yield 
Journal of Nematology  1996;28(4S):655-660.
The effects of a yard waste compost on densities of plant-parasitic nematodes and forage yield of maize (Zea mays) were determined over three seasons in two sites in north Florida. In each test, the experimental design was a randomized complete block with five replications and three treatments: 269 mt/ha of a yard waste compost C:N ratio = 35:1 to 46:1) applied to the soil surface as a mulch, 269 mt/ha of compost incorporated into the soil, and an unamended control. Of the nematodes found in these sites, Paratrichodorus minor was affected most by compost treatments, with densities at harvest reduced by a compost treatment on at least one sampling date in all three seasons (P ≤ 0.05). Meloidogyne incognita was not consistently affected by compost application. Densities of Criconemella spp. and Pratylenchus spp. were reduced by compost treatment much more often in the third season than in the first two seasons of the study (P ≤ 0.05). Forage yield of maize was increased (P ≤ 0.05) by both compost treatments in every test, with yield increases ranging from 10% to 212% over yield levels in unamended control plots and varying with season (P ≤ 0.05). Use of yard waste compost on agricultural sites may provide a beneficial amendment for crop production and a convenient means for disposal of a common waste product from urban areas. Effects of this compost with high C:N ratio on nematodes were long-term, often not appearing until the third season of the study.
PMCID: PMC2619736  PMID: 19277191
C:N ratio; compost; Criconemella spp.; cultural practice; maize; management; Meloidogyne incognita; mulch; nematode; organic amendment; Paratrichodorus minor; Pratylenchus spp.; sustainable agriculture; Zea mays
25.  Suppression of Meloidogyne arenaria Race 1 by Soil Application of Endospores of Pasteuria penetrans 
Journal of Nematology  1996;28(2):159-168.
The potential of Pasteuria penetrans for suppressing Meloidogyne arenaria race 1 on peanut (Arachis hypogaea) was tested over a 2-year period in a field microplot experiment. Endospores of P. penetrans were mass-produced on M. arenaria race 1 infecting tomato plants. Endospores were inoculated in the first year only at rates of 0, 1,000, 3,000, 10,000, and 100,000 endospores/g of soil, respectively, into the top 20 cm of microplots that were previously infested with M. arenaria race 1. One peanut seedling was planted in each microplot. In the first year, root gall indices and pod galls per microplot were significantly reduced by 60% and 95% for 100,000 endospores/g of soil, and 20% and 65% for 10,000 endospores/g of soil, respectively. Final densities of second-stage juveniles (J2) in soil were not significantly different among the treatments. The number of endospores attached to J2 and percentage of J2 with attached endospores significantly increased with increasing endospore inoculation levels. Pasteuria penetrans significantly reduced the densities of J2 that overwintered. In the second year, root and pod gall indices, respectively, were significantly reduced by 81% and 90% for 100,000 endospores/g of soil, and by 61% and 82% of 10,000 endospores/g of soil. Pod yields were significantly increased by 94% for 100,000 and by 57% for 10,000 endospores/g of soil, respectively. The effect of P. penetrans on final densities of J2 in soil was not significant. Regression analyses verified the role of P. penetrans in the suppression of M. arenaria. The minimum number of endospores required for significantly suppressing M. arenaria race 1 on peanut was 10,000 endospores/g of soil.
PMCID: PMC2619680  PMID: 19277131
Arachis hypogaea; bacterium; biological control; endospore; Meloidogyne arenaria; Pasteuria penetrans; peanut; root-knot nematode

Results 1-25 (61)