Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Interaction Between Belonolaimus longicaudatus and Helicotylenchus pseudorobustus on Bermudagrass and Seashore Paspalum Hosts 
Journal of Nematology  2013;45(1):17-20.
Belonolaimus longicaudatus and Helicotylenchus pseudorobustus are among the most common nematode parasites of turfgrasses in Florida. Bermudagrass (Cynodon dactylon × C. transvaalensis) and seashore paspalum (Paspalum vaginatum) are the two turf species most commonly used on Florida golf courses. This paper explores the interactions between B. longicaudatus and H. pseudorobustus on bermudagrass and seashore paspalum hosts. Data collected from thousands of nematode samples submitted to the Florida Nematode Assay Lab over a 8-yr period revealed a negative relationship between B. longicaudatus and H. pseudorobustus on bermudagrass, but not seashore paspalum. In a multi-year field plot experiment using multiple cultivars of bermudagrass, and seashore paspalum B. longicaudatus and H. pseudorobustus were negatively related on both turf species. Greenhouse trials where multiple cultivars of both turf species were inoculated with different combinations of B. longicaudatus and H. pseudorobustus found that each nematode species was inhibitory to the other on both host species. Belonolaimus longicaudatus and H. pseudorobustus clearly impact each other on turfgrass hosts, although the mechanism of the nematode-nematode interactions is unknown.
PMCID: PMC3625127  PMID: 23589655
Belonolaimus longicaudatus; bermudagrass; Cynodon dactylon; Helicotylenchus pseudorobustus; interaction; Paspalum vaginatum; seashore paspalum; spiral nematode; sting nematode; turfgrass
2.  Field Responses of Bermudagrass and Seashore paspalum Cultivars to Sting and Spiral Nematodes 
Journal of Nematology  2011;43(3-4):201-208.
Belonolaimus longicaudatus and Helicotylenchus spp. are damaging nematode species on bermudagrass (Cynodon spp.) and seashore paspalum (Paspalum vaginatum) in sandy soils of the southeastern United States. Eight bermudagrass and three seashore paspalum cultivars were tested for responses to both nematode species in field plots for two years in Florida. Soil samples were taken every three months and nematode population densities in soil were quantified. Turfgrass aboveground health was evaluated throughout the growing season. Results showed that all bermudagrass cultivars, except TifSport, were good hosts for B. longicaudatus, and all seashore paspalum cultivars were good hosts for H. pseudorobustus. Overall, bermudagrass was a better host for B. longicaudatus while seashore paspalum was a better host for H. pseudorobustus. TifSport bermudagrass and SeaDwarf seashore paspalum cultivars supported the lowest population densities of B. longicaudatus. Seashore paspalum had a higher percent green cover than bermudagrass in the nematode-infested field. Nematode intolerant cultivars were identified.
PMCID: PMC3547344  PMID: 23430148
Belonolaimus longicaudatus; bermudagrass; Cynodon spp.; field; Helicotylenchus spp.; Paspalum vaginatum; resistance; seashore paspalum; spiral nematodes; sting nematodes
3.  Evaluation of Econem™, a Formulated Pasteuria sp. Bionematicide, for Management of Belonolaimus longicaudatus on Golf Course Turf1 
Journal of Nematology  2011;43(2):101-109.
In 2010, a turfgrass bionematicide containing in vitro produced Pasteuria sp. for management of Belonolaimus longicaudatus was launched under the tradename Econem™. Greenhouse pot studies and field trials on golf course fairways and tee boxes evaluated Econem at varied rates and application frequencies. Trials on putting greens compared efficacy of three applications of Econem at 98 kg/ha to untreated controls and 1,3-dichloropropene at 53 kg a.i/ha. Further putting green trials evaluated the ability of three applications of Econem at 98 kg/ha to prevent resurgence of population densities of B. longicaudatus following treatment with 1,3-dichloropropene at 53 kg a.i./ha. None of the Econem treatments in pot studies were effective at reducing B. longicaudatus numbers (P ≤ 0.05). Econem was associated with reduction in population densities of B. longicaudatus (P ≤ 0.1) on only a single sampling date in one of the eight field trials and did not improve turf health in any of the trials (P > 0.1). These results did not indicate that Econem is an effective treatment for management of B. longicaudatus on golf course turf.
PMCID: PMC3380457  PMID: 22791919
Belonolaimus longicaudatus; bermudagrass; biological control; biopesticide; Cynodon spp.; nematode management; Pasteuria sp.; sting nematode; turfgrass
4.  Evaluation of Amino Acids as Turfgrass Nematicides1 
Journal of Nematology  2010;42(4):292-297.
Laboratory experiments revealed that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog at rates of 224 and 448 kg amino acid/ha reduced the number of Belonolaimus longicaudatus mixed life-stages and Meloidogyne incognita J2 in soil, whereas L-threonine and lysine were not effective in reducing the number of either nematode. Futhermore, greenhouse experiments demonstrated that DL-methionine, sodium methionate, potassium methionate, and methionine hydroxyl analog were equally effective against B. longicaudatus at rates of 112, 224, and 448 kg amino acid/ha, and the highest rate (448 kg amino acid/ha) of all amino acids was more effective in reducing the number of B. longicaudatus than the lower rate. However, phytotoxicity was observed on creeping bentgrass (Agrostis palustris) treated with 448 kg amino acid/ha of methionine hydroxyl analog and DL methionine. In addition, in one of two field experiments on bermudagrass (Cynodon dactylon × C. transvaalensis) turf percentage green cover was increased and the number of B. longicaudatus was reduced by 224 kg amino acid/ha of DL-methionine and potassium methionate compared to untreated controls in one of two trials.
PMCID: PMC3380522  PMID: 22736861
amino acid; Belonolaimus longicaudatus; bermudagrass; Cynodon; methionine; nematode management; sting nematode; turfgrass
5.  Effects of Formulation and Host Nematode Density on the Ability of In Vitro-Produced Pasteuria Endospores to Control its Host Belonolaimus longicaudatus 
Journal of Nematology  2010;42(2):87-90.
The effect of nematode population density at the time of application and formulations of in vitro-produced Pasteuria spp. endospores on the final population density of Belonolaimus longicaudatus was studied in an 84-d-long pot bioassay. The experiment utilized a factorial design consisting of 30 or 300 B. longicaudatus /100 cm3 of sandy soil and three formulations of in vitro-produced Pasteuria spp. endospores (nontreated, granular, or liquid). No differences were observed in percent endospore attachment between nematode inoculum levels during either trial. Granular and liquid formulations of in vitro-produced endospores suppressed nematode population densities by 22% and 59% in the first trial and 20% and 63% in the second, respectively compared with the nontreated control. The liquid formulation increased percent endospore attachment by 147% and 158%, respectively, compared with the granular formulation. The greatest root retention by the host plant was observed at the lower B. longicaudatus inoculation level following application of the liquid formulation. While both the granular and liquid formulations reduced B. longicaudatus population densities in the soil, the liquid spore suspension was most effective.
PMCID: PMC3380477  PMID: 22736843
Belonolaimus longicaudatus; biological control; formulation; management; Pasteuria spp.; sting nematode; suppression; turfgrass

Results 1-5 (5)