Search tips
Search criteria

Results 1-15 (15)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
Document Types
author:("candoo, Z. A.")
1.  Molecular and Morphological Characterization of the Corn Cyst Nematode, Heterodera zeae, from Greece 
Journal of Nematology  2012;44(1):58-66.
The corn cyst nematode Heterodera zeae was detected in soil from an organic maize field in northern Greece. In greenhouse studies, reproduction of H. zeae was detected on maize plants (Zeae mays) using soil high in organic matter; the field was under winter fallow at the time of sampling. Maize plants were grown in a greenhouse with soil from the affected field used as inoculum. Females appeared after six weeks incubation, and abundant cysts were present after 12 weeks. Morphological and molecular diagnosis confirmed the presence of H. zeae in the field. Cysts were identified on the basis of cyst shape and characteristics of the cyst terminal cone, including nature of fenestration, presence of bullae, cyst wall pattern, and fenestral diameter. Second-stage juveniles were identified by body and stylet length, the shape of stylet knobs, shape and length of the tail and hyaline tail terminus, and by the number of lateral lines. Molecular analysis included amplification of the ribosomal internal transcribed spacer regions (ITS 1&2 rDNA) 28S large ribosomal subunit (LSU) D2-D3 expansion segment, and partial 18S small ribosomal subunit (SSU). Restriction fragment length polymorphism (RFLP) of ITS rDNA exhibited several unique enzyme patterns that may be diagnostically useful for H. zeae. These findings are in agreement with prior analysis of H. zeae populations from the U.S. and India. Phylogenetic relationships inferred from ITS rDNA are congruent with previous analyses that placed H. zeae in a clade with H. turcomanica, H. salixophila and species of the Humuli group. Phylogenetic trees based upon heat shock protein (Hsp90) coding sequence were in general agreement with a prior study using the same marker. This study represents the first record of H. zeae in Greece and the second report of this nematode in Europe.
PMCID: PMC3593258  PMID: 23482617
Corn cyst nematode; Heterodera zeae; ITS rDNA; restriction fragment length polymorphism; maize
2.  Molecular rDNA phylogeny of Telotylenchidae Siddiqi, 1960 and evaluation of tail termini 
Journal of Nematology  2010;42(4):359-369.
Three stunt nematode species, Tylenchorhynchus leviterminalis, T. dubius and T. claytoni were characterized with segments of small subunit 18S and large subunit 28S rDNA sequence and placed in molecular phylogenetic context with other polyphyletic taxa of Telotylenchidae. Based upon comparably sized phylogenetic breadth of outgroups and ingroups, the 28S rDNA contained three times the number of phylogenetically informative alignment characters relative to the alignment total compared to the larger 18S dataset even though there were fewer than half the number of taxa represented. Tail shapes and hyaline termini were characterized for taxa within these subfamily trees, and variability discussed for some related species. In 18S trees, similar terminal tail thickness was found in a well-supported clade of three Tylenchorhynchus: broad-tailed T. leviterminalis branched outside relatively narrow-tailed T. claytoni and T. nudus. Terminal tail thickness within Merliniinae, Telotylenchinae and related taxa showed a mosaic distribution. Thick-tailed Trophurus, Macrotrophurus and putative Paratrophurus did not group together in the 18S tree. Extremely thickened tail termini arose at least once in Amplimerlinius and Pratylenchoides among ten species of Merliniinae plus three Pratylenchoides, and three times within twelve taxa of Telotylenchinae and Trophurinae. Conflicting generic and family nomenclature based on characters such as pharyngeal overlap are discussed in light of current molecular phylogeny. Contrary to some expectations from current taxonomy, Telotylenchus and Tylenchorhynchus cf. robustus did not cluster with three Tylenchorhynchus spp. Two putative species of Neodolichorhynchus failed to group together, and two populations of Scutylenchus quadrifer demonstrated as much or greater genetic distance between them than among three related species of Merlinius.
PMCID: PMC3380519  PMID: 22736870
character analysis; evolutionary convergence; morphology; nomenclature; phylogeny; stunt nematode; systematics; tail; taxonomy; Tylenchorhynchus
3.  Morphological and molecular characterization of Pratylenchus lentis n. sp. (Nematoda: Pratylenchidae) from Sicily 
Journal of Nematology  2008;40(3):190-196.
Pratylenchus lentis n. sp. parasitizing roots of lentil in Sicily, Italy, is described and illustrated. The new species is characterized by a relatively high lip region with three annuli, mean stylet length of 16 μm, with anteriorly flattened knobs, cylindrical body with a relatively anterior vulva, large and ovoid spermatheca full of sperm, plump tail with truncate, irregularly annulated terminus, and by the presence of males. Molecular ITS-RFLP and sequencing analyses of the new species showed clear differences from other most morphologically similar species, such as P. thornei and P. mediterraneus. Preliminary host range tests revealed that chickpea, pea, faba bean and durum wheat are good hosts of P. lentis n. sp., whereas common bean, alfalfa and barley are less robust hosts and tomato, bell pepper, eggplant, melon and sunflower are poor hosts for the nematode.
PMCID: PMC2664672  PMID: 19440258
host-range; internal transcribed spacer; ITS1; ITS2; lentil; morphology; new species; Pratylenchus; root lesion nematode; sequencing; Sicily
4.  Morphological and Molecular Identification of Globodera pallida Associated with Potato in Idaho 
Journal of nematology  2007;39(2):133-144.
The identity of a newly discovered population of pale potato cyst nematode Globodera pallida associated with potato in eastern Idaho was established by morphological and molecular methods. Morphometrics of cysts and second-stage juveniles were generally within the expected ranges for G. pallida with some variations noted. The Idaho population and paratype material from Epworth, Lincolnshire, England, both showed variations in tail shape, with bluntly rounded to finely pointed tail termini. Compared to literature values for the paratypes, second-stage juveniles of the Idaho population had a somewhat shorter mean body length, and cysts had a slightly higher mean distance from the anus to the nearest edge of the fenestra. PCR-RFLP of the rDNA ITS region, sequence-specific multiplex PCR and DNA sequence comparisons all confirmed the identity of the Idaho population as G. pallida. The ITS rDNA sequence of the Idaho isolate was identical to those from York, England, and the Netherlands. Species-specific primers that can positively identify the tobacco cyst nematode Globodera tabacum were also developed, providing a new assay for distinguishing this species from G. pallida and the golden potato cyst nematode Globodera rostochiensis.
PMCID: PMC2586493  PMID: 19259482
Globodera; detection; diagnosis; molecular biology; morphology; Nicotiana tabacum; PCR; potato; rDNA; RFLP; Solanumtuberosum; taxonomy
5.  Characterization of the Cystoid Nematode Meloidoderita kirjanovae (Nemata: Sphaeronematidae) from Southern Italy 
Journal of Nematology  2006;38(3):376-382.
A population of the cystoid nematode Meloidoderita kirjanovae was detected parasitizing water mint (Mentha aquatica) in southern Italy. The morphological identification of this species was confirmed by molecular analysis using the internal transcribed spacer 1 (ITS1) and 5.8S gene sequences of nuclear ribosomal DNA (rDNA), which clearly separated it from the closely related species Meloidoderita polygoni. A phylogenetic analysis of M. kirjanovae with species of related genera was conducted using sequences of the D2-D3 expansion segments of the 28S nuclear ribosomal RNA gene. The resulting phylogenetic tree was congruent with trees from an extended dataset for Criconematina and Tylenchida. The basal position of the genus Meloidoderita together with Sphaeronema within the Criconematina clade in this tree may indicate their close relationships. The anatomical changes induced by M. kirjanovae population from Italy in water mint were similar to those reported for a nematode population infecting roots of M. longifolia in Israel. Nematode feeding caused the formation of a stellar syncytium that disorganized the pericycle and vascular root tissues.
PMCID: PMC2586700  PMID: 19259543
histopathology; host-parasite relationships; Mentha aquatica; molecular analysis; morphology; SEM; taxonomy; phylogeny
6.  Morphological and Molecular Characterization of a New Root-Knot Nematode, Meloidogyne thailandica n. sp. (Nematoda: Meloidogynidae), Parasitizing Ginger (Zingiber sp.) 
Journal of Nematology  2005;37(3):343-353.
A root-knot nematode Meloidogyne thailandica n. sp. was discovered on roots of ginger (Zingiber spp.) intercepted from Thailand in October 2002 by the U.S. Department of Agriculture Animal and Plant Health Inspection Service at the port of San Francisco. Comparison by light microscopy (LM) and scanning electron microscopy (SEM) to five other morphologically related species (M. incognita, M. arenaria, M. microcephala, M. megatyla, and M. enterolobii) revealed that the new species differs from these by one or more of the following: body, tail and hyaline tail length, shape of head, tail and tail terminus of second-stage juveniles; stylet length and shape of spicules in males; perineal pattern, stylet length and shape of knobs in females. The distinctive perineal pattern is oval to rectangular, with smooth to moderately wavy and coarse striae, and with characteristic radial structures present underneath the pattern area; the dorsal arch is high, sometimes round to rectangular, and striae in and around the anal area form a thick network-like pattern interrupted by lateral lines and large phasmids. Second-stage juveniles have a long, slender tail and long, gradually tapering hyaline tail region ending in a rounded terminus. Male spicules commonly have an acutely angled shaft with a bidentate terminus. Molecular data from the ribosomal large subunit D3 expansion segment revealed four haplotypes, two of which were unique and distinguish M. thailandica n. sp. from M. arenaria, M. incognita, and M. javanica.
PMCID: PMC2620980  PMID: 19262883
ginger; intergenic spacer (IGS); internal transcribed spacer (ITS1); large subunit (LSU); Meloidogyne; morphology; new species; ribosomal DNA; root-knot nematode; scanning electron microscopy; taxonomy; Thailand
7.  Morphological and Molecular Evaluation of a Meloidogyne hapla Population Damaging Coffee (Coffea arabica) in Maui, Hawaii 
Journal of Nematology  2005;37(2):136-145.
An unusual population of Meloidogyne hapla, earlier thought to be an undescribed species, was found causing large galls, without adventitious roots, and substantial damage to coffee in Maui, Hawaii. Only in Brazil had similar damage to coffee been reported by this species. Unlike M. exigua from South and Central America, this population reproduced well on coffee cv. Mokka and M. incognita-susceptible tomato but poorly on tomato with the Mi resistance gene. Characterization included SEM images, esterase isozymes, and five DNA sequences: i) the D3 segment of the large subunit (LSU-D3 or 28S) rDNA, ii) internal transcribed spacer (ITS-1) rDNA, iii) intergenic spacer (IGS) rDNA, iv) the mitochondrial interval from cytochrome oxidase (CO II) to 16S mtDNA, and v) the nuclear gene Hsp90. Sequences for ITS-1, IGS, and COII were similar to other M. hapla populations, but within species ITS-1 variability was not less than among species. One LSU-D3 haplotype was similar to a previously analyzed population with two minor haplotypes. Hsp90 exhibited some variation between Maryland and Hawaiian populations distinct from other species. Females were narrow with wide vulval slits, large interphasmidial distances, and more posterior excretory pores; 20% of perineal patterns had atypical perivulval lines. Males had a low b ratio (<12 µm). Juveniles had a short distance between stylet and dorsal gland orifice. Juvenile body length was short (<355 µm) and was different between summer and winter populations.
PMCID: PMC2620964  PMID: 19262853
climate; Coffea arabica; Coffea robusta; detection; identification; India; Meloidogyne exigua; M. incognita; M. javanica; M. konaensis; molecular diagnostics; nematode; netherlands; resistance; taxonomy
8.  Morphological and Molecular Characterization of Longidorus americanum n. sp. (Nematoda: Longidoridae), a Needle Nematode Parasitizing Pine in Georgia 
Journal of Nematology  2005;37(1):94-104.
We describe and illustrate a new needle nematode, Longidorus americanum n. sp., associated with patches of severely stunted and chlorotic loblolly pine, (Pinus taeda L.) seedlings in seedbeds at the Flint River Nursery (Byromville, GA). It is characterized by having females with a body length of 5.4-9.0 mm; lip region slightly swollen, anteriorly flattened, giving the anterior end a truncate appearance; long odontostyle (124-165 µm); vulva at 44%-52% of body length; and tail conoid, bluntly rounded to almost hemispherical. Males are rare but present, and in general shorter than females. The new species is morphologically similar to L. biformis, L. paravineacola, L. saginus, and L. tarjani but differs from these species either by the body, odontostyle and total stylet length, or by head and tail shape. Sequence data from the D2-D3 region of the 28S rDNA distinguishes this new species from other Longidorus species. Phylogenetic relationships of Longidorus americanum n. sp. with other longidorids based on analysis of this DNA fragment are presented. Additional information regarding the distribution of this species within the region is required.
PMCID: PMC2620944  PMID: 19262848
DNA sequencing; Georgia; loblolly pine; Longidorus americanum n. sp.; molecular data; morphology; new species; neddle nematode; phylogenetics; SEM; taxonomy
9.  Effect of Entomopathogenic Nematodes on Mesocriconema xenoplax Populations in Peach and Pecan 
Journal of Nematology  2004;36(2):181-185.
The effect of Steinernema riobrave and Heterorhabditis bacteriophora on population density of Mesocriconema xenoplax in peach was studied in the greenhouse. Twenty-one days after adding 112 M. xenoplax adults and juveniles/1,500 cm³ soil to the soil surface of each pot, 50 infective juveniles/cm² soil surface of either S. riobrave or H. bacteriophora were applied. Another entomopathogenic nematode application of the same density was administered 3 months later. The experiment was repeated once. Mesocriconema xenoplax populations were not suppressed (P ≤ 0.05) in the presence of either S. riobrave or H. bacteriophora 180 days following ring nematode inoculation. On pecan, 200 S. riobrave infective-stage juveniles/cm² were applied to the soil surface of 2-year-old established M. xenoplax populations in field microplots. Additional applications of S. riobrave were administered 2 and 4 months later. This study was terminated 150 days following the initial application of S. riobrave. Populations of M. xenoplax were not suppressed in the presence of S. riobrave.
PMCID: PMC2620759  PMID: 19262805
biological control; Carya illinoensis; entomopathogenic nematodes; Heterorhabditis bacteriophora; Mesocriconema xenoplax; nematode; peach; Prunus persica; ring nematode; Steinernema riobrave
10.  Morphological, Molecular, and Differential-Host Characterization of Meloidogyne floridensis n. sp. (Nematoda: Meloidogynidae), a Root-Knot Nematode Parasitizing Peach in Florida 
Journal of Nematology  2004;36(1):20-35.
A root-knot nematode, Meloidogyne floridensis n. sp., is described and illustrated from peach originally collected from Gainesville, Florida. This new species resembles M. incognita, M. christiei, M. graminicola, and M. hispanica, but with LM and SEM observations it differs from these species either by the body length, shape of head, tail and tail terminus of second-stage juveniles, body length and shape of spicules in males, and its distinctive female perineal pattern. This pattern has a high to narrowly rounded arch with coarsely broken and network-like striae in and around anal area, faint lateral lines interrupting transverse striae, a sunken vulva and anus, and large distinct phasmids. Molecular data from ribosomal IGS illustrate that M. floridensis n. sp. is different from the mitotic species M. arenaria, M. incognita, and M. javanica. Data from RAPDs confirm it and suggest that this new species lies in an intermediate phylogenetic position between the previous species and the meiotic species M. hapla, M. fallax, and M. chitwoodi. Differential host tests based on annual crops and on Prunus accessions are reported.
PMCID: PMC2620741  PMID: 19262784
esterase phenotype; Florida; host range; meiotic parthenogenesis; Meloidogyne; morphology; new species; peach; rootknot nematode; scanning electron microscopy; taxonomy
11.  A Survey of Phytoparasitic Nematodes on Cultivated and Non-Cultivated Plants in Northwestern Egypt 
Journal of Nematology  2000;32(4S):478-485.
Surveys were conducted in Alexandria, El-Behera, and Matrouh Governorates in northwestern Egypt during the 1994-1998 cropping seasons to study the occurrence, population density, host associations, and distribution of phytoparasitic nematodes associated with 35 major crops, grasses, and weeds. A total of 220 soil and root samples containing mixed populations of 26 genera and 38 species of phytoparasitic nematodes was analyzed; three known genera and 13 known species are reported for the first time in northwestern Egypt. Root-knot nematodes with 34 occurrences were the most frequently encountered group of nematodes, followed by spiral, stunt, ring, lesion, lance, and dagger nematodes with 19, 18, 15, 9, 8, and 7 occurrences, respectively. New species records are Boleodorus pakistanensis, Criconemella sphaerocephala, Discocriconemella sphaerocephaloides, Hemicriconemoides cocophilus, Hemicycliophora thienmanni, Hoplolaimus clarissimus, Irantylenchus clavidorus, Merlinius nanus, Paratylenchus projectus, Tylenchorhynchus ebriensis, Tylenchus afghanicus, T. exiguus, Xiphinema basilgoodeyi, and X. ensiculiferum. Survey results showed new host plant records for most of the identified nematode species in Egypt.
PMCID: PMC2620488  PMID: 19270998
Egypt; host plants; nematode; phytoparasitic nematodes
12.  Population Dynamics of Meloidogyne incognita, M. arenaria,and Other Nematodes and Crop Yields in Rotations of Cotton, Peanut, and Wheat Under Minimum Tillage 
Journal of Nematology  2000;32(1):52-61.
Wheat, cotton, and peanut were arranged in three cropping sequences to determine the effects of fenamiphos (6.7 kg a.i./ha) and cropping sequence on nematode population densities and crop yields under conservation tillage and irrigation for 6 years. The cropping sequences included a wheat winter cover crop each year and summer crops of cotton every year, peanut every year, or cotton rotated every other year with peanut. The population densities of Meloidogyne spp. and Helicotylenchus dihystera were determined monthly during the experiment. Numbers of M. incognita increased on cotton and decreased on peanut, whereas M. arenaria increased on peanut, and decreased on cotton; both nematode species remained in moderate to high numbers in plots of wheat. Root damage was more severe on cotton than peanut and was not affected by fenamiphos treatment. The H. dihystera population densities were highest in plots with cotton every summer, intermediate in the cotton-peanut rotation, and lowest in plots with peanut every summer. Over all years and cropping sequences, yield increases in fenamiphos treatment over untreated control were 9% for wheat, 8% for cotton, and 0% for peanut. Peanut yields following cotton were generally higher than yields following peanut. These results show that nematode problems may be manageable in cotton and peanut production under conservation tillage and irrigation in the southeastern United States.
PMCID: PMC2620434  PMID: 19270949
Arachis hypogaea; cotton; crop rotation; Gossypium hirsutum; Helicotylenchus dihystera; management; Meloidogyne arenaria; M. incognita; nematicide; nematode; peanut; root-knot nematode; spiral nematode; Ttriticum aestivum; wheat
13.  Crop Yields and Nematode Population Densities in Triticale-Cotton and Triticale-Soybean Rotations 
Journal of Nematology  1998;30(3):353-361.
Triticale cv. Beagle 82, cotton cv. McNair 235, and soybean cv. Twiggs were arranged in three cropping sequences to determine the effects of fenamiphos and cropping sequence on nematode population densities and crop yields under conservation tillage for 4 years. The cropping sequences were triticale (T)-cotton (C)-T-C, T-soybean (S)-T-S, and T-C-T-S. Numbers of Meloidogyne incognita second-stage juveniles declined on trificale but increased on cotton and soybean each year. Root-gall indices of cotton and soybean ranged from 1.00 to 1.08 (1 to 5 scale: 1 = 0%, 2 = 1% to 25%, 3 = 26% to 50%, 4 = 51% to 75%, and 5 = 76% to 100% of roots galled) each year and were not affected by fenamiphos treatment or cropping sequence. Numbers of Pratylenchus brachyurus were maintained on trificale and generally increased more on soybean than on cotton. Population densities of Helicotylenchus dihystera were near or below detection levels in all plots during the first year and increased thereafter in untreated plots in the T-C-T-C and T-S-T-S sequences. Generally, yields of triticale in all cropping sequences declined over the years. Yields of cotton and soybean were not affected by fenamiphos at 6.7 kg a.i./ha. Cotton and soybean were grown successfully with little or no suppression in yields caused by nematodes in conservation tillage following triticale harvested for grain.
PMCID: PMC2620304  PMID: 19274228
conservation tillage; cotton; crop rotation; fenamiphos; Glycine max; Gossypium hirsutum; Helicotylenchus dihystera; lesion nematode; management; Meloidogyne incognita; nematicide; nematode; Pratylenchus brachyurus; root-knot nematode; soybean; spiral nematode; triticale; Triticosecale
14.  Coastal Bermudagrass Rotation and Fallow for Management of Nematodes and Soilborne Fungi on Vegetable Crops 
Journal of Nematology  1997;29(4S):710-716.
The efficacy of clean fallow, bermudagrass (Cynodon dactylon) as a rotational crop, and fenamiphos for control of root-knot nematode (Meloidogyne incognita race 1) and soilborne fungi in okra (Hibiscus esculentus), snapbean (Phaseolus vulgaris), and pepper (Capsicum annuum) production was evaluated in field tests from 1993 to 1995. Numbers of M. incognita in the soil and root-gall indices were greater on okra than on snapbean or pepper. Application of fenamiphos at 6.7 kg a.i./ha did not suppress numbers of nematodes on any sampling date when compared with untreated plots. The lack of efficacy could be the result of microbial degradation of the nematicide. Application of fenamiphos suppressed root-gall development on okra following fallow and 1-year sod in 1993, but not thereafter. A few galls were observed on roots of snapbean following 2- and 3-year fallow but none following 1-, 2-, and 3-year bermudagrass sod. Population densities of Pythium aphanidermatum, P. myriotylum, and Rhizoctonia solani in soil after planting vegetables were suppressed by 2- or 3-year sod compared with fallow but were not affected by fenamiphos. Yields of snapbean, pepper, and okra did not differ between fallow and 1-year sod. In the final year of the study, yields of all crops were greater following 3-year sod than following fallow. Application of fenamiphos prior to planting each crop following fallow or sod did not affect yields.
PMCID: PMC2619836  PMID: 19274273
Bermudagrass; Capsicum annuum; Gynodon dactylon; Cyperus esculentus; fenamiphos; Hibiscus esculentus; management; Meloidogyne incognita; nematicide; nematode; nutsedge; okra; pepper; Phaseolus vulgaris; resistance; root-knot nematode; snapbean; sod-based rotation
15.  Role of Nematodes, Nematicides, and Crop Rotation on the Productivity and Quality of Potato, Sweet Potato, Peanut, and Grain Sorghum 
Journal of Nematology  1996;28(3):389-399.
The objective of this experiment was to determine the effects of fenamiphos 15G and short-cycle potato (PO)-sweet potato (SP) grown continuously and in rotation with peanut (PE)-grain sorghum (GS) on yield, crop quality, and mixed nematode population densities of Meloidogyne arenaria, M. hapla, M. incognita, and Mesocriconema ornatum. Greater root-gall indices and damage by M. hapla and M. incognita occurred on potato than other crops. Most crop yields were higher and root-gall indices lower from fenamiphos-treated plots than untreated plots. The total yield of potato in the PO-SP and PO-SP-PE-GS sequences increased from 1983 to 1985 in plots infested with M. hapla or M. arenaria and M. incognita in combination and decreased in 1986 to 1987 when root-knot nematode populations shifted to M. incognita. The total yields of sweet potato in the PO-SP-PE-GS sequence were similar in 1983 and 1985, and declined each year in the PO-SP sequence as a consequence of M. incognita population density increase in the soil. Yield of peanut from soil infested with M. hapla increased 82% in fenamiphos-treated plots compared to untreated plots. Fenamiphos treatment increased yield of grain sorghum from 5% to 45% over untreated controls. The declining yields of potato and sweet potato observed with both the PO-SP and PO-SP-PE-GS sequences indicate that these crop systems should not be used longer than 3 years in soil infested with M. incognita, M. arenaria, or M. hapla. Under these conditions, these two cropping systems promote a population shift in favor of M. incognita, which is more damaging to potato and sweet potato than M. arenaria and M. hapla.
PMCID: PMC2619705  PMID: 19277157
Arachis hypogaea; crop rotation; fenamiphos; grain sorghum; Ipomoea batatas; Meloidogyne arenaria; Meloidogyne hapla; Meloidogyne incognita; Mesocriconema ornatum; nematode; peanut; potato; root-knot; root-knot nematode; Solanum tuberosum; Sorghum vulgare; sweet potato

Results 1-15 (15)