PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (791)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
1.  The Purkinje cell; 2008 style 
Cardiac Purkinje fibers, due to their unique anatomical location, cell structure and electrophysiologic characteristics, play an important role in cardiac conduction and arrhythmogenesis. Purkinje cell action potentials are longer than their ventricular counterpart, and display two levels of resting potential. Purkinje cells provide for rapid propagation of the cardiac impulse to ventricular cells and have pacemaker and triggered activity, which differs from ventricular cells. Additionally, a unique intracellular Ca2+ release coordination has been revealed recently for the normal Purkinje cell. However, since the isolation of single Purkinje cells is difficult, particularly in small animals, research using Purkinje cells has been restricted. This review concentrates on comparison of Purkinje and ventricular cells in the morphology of the action potential, ionic channel function and molecular determinants by summarizing our present day knowledge of Purkinje cells.
doi:10.1016/j.yjmcc.2008.08.001
PMCID: PMC4332524  PMID: 18778712
Arrhythmias; Purkinje cells; Ion channels; Ca2+ waves; Ventricular cells
2.  Enhancement of Nitric Oxide Release from Nitrosyl Hemoglobin and Nitrosyl Myoglobin by Red/Near Infrared Radiation: Potential Role in Cardioprotection 
Nitric oxide is an important messenger in numerous biological processes, such as angiogenesis, hypoxic vasodilation, and cardioprotection. Although nitric oxide synthases (NOS) produce the bulk of NO, there is increasing interest in NOS independent generation of NO in vivo, particularly during hypoxia or anoxia, where low oxygen tensions limit NOS activity. Interventions that can increase NO bioavailability have significant therapeutic potential. The use of far red and near infrared light (R/NIR) can reduce infarct size, protect neurons from methanol toxicity, and stimulate angiogenesis. How R/NIR modulates these processes in vivo and in vitro is unknown, but it has been suggested that increases in NO levels are involved. In this study we examined if R/NIR light could facilitate the release of NO from nitrosyl heme proteins. In addition, we examined if R/NIR light could enhance the protective effects of nitrite on ischemia and reperfusion injury in the rabbit heart. We show both in purified systems and in myocardium that R/NIR light can decay nitrosyl hemes and release NO, and that this released NO may enhance the cardioprotective effects of nitrite. Thus, the photodissociation to NO and its synergistic effect with sodium nitrite may represent a noninvasive and site specific means for increasing NO bioavailability.
doi:10.1016/j.yjmcc.2009.03.009
PMCID: PMC4329292  PMID: 19328206
3.  APpEaLINg therapeutic target for obesity cardiomyopathy? 
doi:10.1016/j.yjmcc.2013.08.001
PMCID: PMC4327932  PMID: 23948484
5.  [No title available] 
PMCID: PMC3920738  PMID: 24362314
6.  [No title available] 
PMCID: PMC3930036  PMID: 24380729
7.  Focal adhesion kinase antagonizes doxorubicin cardiotoxicity via p21Cip1 
Clinical application of potent anthracycline anticancer drugs, especially doxorubicin (DOX), is limited by a toxic cardiac side effect that is not fully understood and preventive strategies are yet to be established. Studies in genetically modified mice have demonstrated that focal adhesion kinase (FAK) plays a key role in regulating adaptive responses of the adult myocardium to pathological stimuli through activation of intracellular signaling cascades that facilitate cardiomyocyte growth and survival. The objective of this study was to determine if targeted myocardial FAK activation could protect the heart from DOX-induced de-compensation and to characterize the underlying mechanisms. To this end, mice with myocyte-restricted FAK knock-out (MFKO) or myocyte-specific expression of an active FAK variant (termed SuperFAK) were subjected to DOX treatment. FAK depletion enhanced susceptibility to DOX-induced myocyte apoptosis and cardiac dysfunction, while elevated FAK activity provided remarkable cardioprotection. Our mechanistic studies reveal a heretofore unappreciated role for the protective cyclin-dependent kinase inhibitor p21 in the repression of the pro-apoptotic BH3-only protein Bim and the maintenance of mitochondrial integrity and myocyte survival. DOX treatment induced proteasomal degradation of p21, which exacerbated mitochondrial dysfunction and cardiomyocyte apoptosis. FAK was both necessary and sufficient for maintaining p21 levels following DOX treatment and depletion of p21 compromised FAK-dependent protection from DOX. These findings identify p21 as a key determinant of DOX resistance downstream of FAK in cardiomyocytes and indicate that cardiac-restricted enhancement of the FAK/p21 signaling axis might be an effective strategy to preserve myocardial function in patients receiving anthracycline chemotherapy.
doi:10.1016/j.yjmcc.2013.12.002
PMCID: PMC4237309  PMID: 24342076
Anthracycline cardiomyopathy; apoptosis; mitochondria; cardiomyocyte; cell cycle
8.  Caveolin-3 regulates compartmentation of cardiomyocyte beta2-adrenergic receptor-mediated cAMP signaling 
The purpose of this study was to investigate whether caveolin-3 (Cav3) regulates localization of β2-adrenergic receptor (β2AR) and its cAMP signaling in healthy or failing cardiomyocytes. We co-expressed wildtype Cav3 or its dominant-negative mutant (Cav3DN) together with the Förster resonance energy transfer (FRET)-based cAMP sensor Epac2-camps in adult rat ventricular myocytes (ARVMs). FRET and scanning ion conductance microscopy were used to locally stimulate β2AR and to measure cytosolic cAMP. Cav3 overexpression increased the number of caveolae and decreased the magnitude of β2AR-cAMP signal. Conversely, Cav3DN expression resulted in an increased β2AR-cAMP response without altering the whole-cell L-type calcium current. Following local stimulation of Cav3DN-expressing ARVMs, β2AR response could only be generated in T-tubules. However, the normally compartmentalized β2AR-cAMP signal became diffuse, similar to the situation observed in heart failure. Finally, overexpression of Cav3 in failing myocytes led to partial β2AR redistribution back into the T-tubules. In conclusion, Cav3 plays a crucial role for the localization of β2AR and compartmentation of β2AR-cAMP signaling to the T-tubules of healthy ARVMs, and overexpression of Cav3 in failing myocytes can partially restore the disrupted localization of these receptors.
doi:10.1016/j.yjmcc.2013.12.003
PMCID: PMC4266930  PMID: 24345421
beta-adrenergic receptors; cardiomyocytes; T-tubules; FRET; SICM
9.  cAMP-induced actin cytoskeleton remodelling inhibits MKL1-dependent expression of the chemotactic and pro-proliferative factor, CCN1 
Elevation of intracellular cAMP concentration has numerous vascular protective effects that are in part mediated via actin cytoskeleton-remodelling and subsequent regulation of gene expression. However, the mechanisms are incompletely understood. Here we investigated whether cAMP-induced actin-cytoskeleton remodelling modulates VSMC behaviour by inhibiting expression of CCN1. In cultured rat VSMC, CCN1-silencing significantly inhibited BrdU incorporation and migration in a wound healing assay. Recombinant CCN1 enhanced chemotaxis in a Boyden chamber. Adding db-cAMP, or elevating cAMP using forskolin, significantly inhibited CCN1 mRNA and protein expression in vitro; transcriptional regulation was demonstrated by measuring pre-spliced CCN1 mRNA and CCN1-promoter activity. Forskolin also inhibited CCN1 expression in balloon injured rat carotid arteries in vivo. Inhibiting RhoA activity, which regulates actin-polymerisation, by cAMP-elevation or pharmacologically with C3-transferase, or inhibiting its downstream kinase, ROCK, with Y27632, significantly inhibited CCN1 expression. Conversely, expression of constitutively active RhoA reversed the inhibitory effects of forskolin on CCN1 mRNA. Furthermore, CCN1 mRNA levels were significantly decreased by inhibiting actin-polymerisation with latrunculin B or increased by stimulating actin-polymerisation with Jasplakinolide. We next tested the role of the actin-dependent SRF co-factor, MKL1, in CCN1 expression. Forskolin inhibited nuclear translocation of MKL1 and binding of MKL1 to the CCN1 promoter. Constitutively-active MKL1 enhanced basal promoter activity of wild-type but not SRE-mutated CCN1; and prevented forskolin inhibition. Furthermore, pharmacological MKL-inhibition with CCG-1423 significantly inhibited CCN1 promoter activity as well as mRNA and protein expression. Our data demonstrates that cAMP-induced actin-cytoskeleton remodelling regulates expression of CCN1 through MKL1: it highlights a novel cAMP-dependent mechanism controlling VSMC behaviour.
Highlights
•CCN1 promotes VSMC proliferation, migration and chemotaxis.•cAMP inhibits CCN1 expression in vitro and vascular-injury induced CCN1 expression in vivo.•cAMP induced actin remodelling inhibits CCN1 gene transcription.•cAMP-induced actin-cytoskeleton remodelling regulates expression of CCN1 via MKL1.•Highlights a novel cAMP-dependent mechanism controlling VSMC behaviour.
doi:10.1016/j.yjmcc.2014.11.012
PMCID: PMC4312355  PMID: 25446180
CCN1; Cyr61; cAMP; 3′-5′-Cyclic adenosine monophosphate; MKL1; VSMC
10.  Perturbed atrial calcium handling in an ovine model of heart failure: Potential roles for reductions in the L-type calcium current 
Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca2 + and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca2 + concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca2 + transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca2 + removal (kSR, by 32%), L-type Ca2 + current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca2 + content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca2 + current (ICa-L) in control cells reproduced both the decrease in Ca2 + transient amplitude and increase of SR Ca2 + content observed in voltage-clamped HF cells. During β-AR stimulation Ca2 + transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca2 + content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca2 + transient amplitude and increased SR Ca2 + content observed in voltage-clamped cells.
Highlights
•In an ovine model of heart failure systolic Ca2 + is reduced in atrial myocytes.•Action potential duration shortening is not responsible for changes in [Ca2 +]i.•Reductions in L-type Ca2 + current underpin the smaller systolic Ca2 + transient.•NCX current is reduced in heart failure but sarcolemmal Ca2 + extrusion increased.•Decreased Ca2 + buffering power accelerates sarcolemmal Ca2 + extrusion via NCX.
doi:10.1016/j.yjmcc.2014.11.017
PMCID: PMC4312356  PMID: 25463272
Calcium; Atria; Heart failure; Sarcoplasmic reticulum
11.  Redox regulation of cardiomyocyte cell cycling via an ERK1/2 and c-Myc-dependent activation of cyclin D2 transcription 
Adult mammalian cardiomyocytes have a very limited capacity to proliferate, and consequently the loss of cells after cardiac stress promotes heart failure. Recent evidence suggests that administration of hydrogen peroxide (H2O2), can regulate redox-dependent signalling pathway(s) to promote cardiomyocyte proliferation in vitro, but the potential relevance of such a pathway in vivo has not been tested. We have generated a transgenic (Tg) mouse model in which the H2O2-generating enzyme, NADPH oxidase 4 (Nox4), is overexpressed within the postnatal cardiomyocytes, and observed that the hearts of 1–3 week old Tg mice pups are larger in comparison to wild type (Wt) littermate controls. We demonstrate that the cardiomyocytes of Tg mouse pups have increased cell cycling capacity in vivo as determined by incorporation of 5-bromo-2′-deoxyuridine. Further, microarray analyses of the transcriptome of these Tg mouse hearts suggested that the expression of cyclin D2 is significantly increased. We investigated the molecular mechanisms which underlie this more proliferative phenotype in isolated neonatal rat cardiomyocytes (NRCs) in vitro, and demonstrate that Nox4 overexpression mediates an H2O2-dependent activation of the ERK1/2 signalling pathway, which in turn phosphorylates and activates the transcription factor c-myc. This results in a significant increase in cyclin D2 expression, which we show to be mediated, at least in part, by cis-acting c-myc binding sites within the proximal cyclin D2 promoter. Overexpression of Nox4 in NRCs results in an increase in their proliferative capacity that is ablated by the silencing of cyclin D2. We further demonstrate activation of the ERK1/2 signalling pathway, increased phosphorylation of c-myc and significantly increased expression of cyclin D2 protein in the Nox4 Tg hearts. We suggest that this pathway acts to maintain the proliferative capacity of cardiomyocytes in Nox4 Tg pups in vivo and so delays their exit from the cell cycle after birth.
Highlights
•Cardiomyocyte cell cycling is under redox control in vivo.•Nox4 is a potential source of ROS regulating this process.•Redox activation of ERK1/2 promotes cyclin D2 transcription via c-myc activation.•Promotion of proliferation via increased cyclin D2 may be useful therapeutically.
doi:10.1016/j.yjmcc.2014.10.017
PMCID: PMC4312357  PMID: 25450615
BrdU, bromodeoxyuridine; AdNox4, adenoviral Nox4; AdβGal, adenoviral β-galactosidase; PEG, polyethylene glycol; Wt, wild type; Tg, transgenic; NRC, neonatal rat cardiomyocyte; Cardiomyocyte proliferation; ERK1/2; Nox4; Cyclin D2; Redox signalling; c-Myc
12.  p38α regulates SERCA2a function 
cAMP-dependent protein kinase (PKA) regulates the L-type calcium channel, the ryanodine receptor, and phospholamban (PLB) thereby increasing inotropy. Cardiac contractility is also regulated by p38 MAPK, which is a negative regulator of cardiac contractile function. The aim of this study was to identify the mechanism mediating the positive inotropic effect of p38 inhibition. Isolated adult and neonatal cardiomyocytes and perfused rat hearts were utilized to investigate the molecular mechanisms regulated by p38. PLB phosphorylation was enhanced in cardiomyocytes by chemical p38 inhibition, by overexpression of dominant negative p38α and by p38α RNAi, but not with dominant negative p38β. Treatment of cardiomyocytes with dominant negative p38α significantly decreased Ca2+-transient decay time indicating enhanced sarco/endoplasmic reticulum Ca2+-ATPase function and increased cardiomyocyte contractility. Analysis of signaling mechanisms involved showed that inhibition of p38 decreased the activity of protein phosphatase 2A, which renders protein phosphatase inhibitor-1 phosphorylated and thereby inhibits PP1. In conclusion, inhibition of p38α enhances PLB phosphorylation and diastolic Ca2+ uptake. Our findings provide evidence for novel mechanism regulating cardiac contractility upon p38 inhibition.
doi:10.1016/j.yjmcc.2013.12.005
PMCID: PMC4296568  PMID: 24361238
Phospholamban; SERCA2a; p38; Cardiac contractility
13.  Sarcoplasmic Reticulum Ca2+ Cycling Protein Phosphorylation in a Physiologic Ca2+ Milieu Unleashes a High-Power, Rhythmic Ca2+ Clock in Ventricular Myocytes: Relevance to Arrhythmias and Bio-Pacemaker Design 
Basal phosphorylation of sarcoplasmic reticulum (SR) Ca2+ proteins is high in sinoatrial nodal cells (SANC), which generate partially synchronized, spontaneous, rhythmic, diastolic local Ca2+ releases (LCRs), but low in ventricular myocytes (VM), which exhibit rare diastolic, stochastic SR-generated Ca2+ sparks. We tested the hypothesis that in a physiologic Ca2+ milieu, and independent of increased Ca2+ influx, an increase in basal phosphorylation of SR Ca2+ cycling proteins will convert stochastic Ca2+ sparks into periodic, high-power Ca2+ signals of the type that drives SANC normal automaticity. We measured phosphorylation of SR-associated proteins, phospholamban (PLB) and ryanodine receptors (RyR), and spontaneous local Ca2+ release characteristics (LCR) in permeabilized single, rabbit VM in physiologic [Ca2+], prior to and during inhibition of protein phosphatase (PP) and phosphodiesterase (PDE), or addition of exogenous cAMP, or in the presence of an antibody (2D12), that specifically inhibits binding of the PLB to SERCA-2. In the absence of the aforementioned perturbations, VM could only generate stochastic local Ca2+ releases of low power and low amplitude, as assessed by confocal Ca2+ imaging and spectral analysis. When the kinetics of Ca2+ pumping into the SR were increased by an increase in PLB phosphorylation (via PDE and PP inhibition or addition of cAMP) or by 2D12, self-organized, “clock-like” local Ca2+ releases, partially synchronized in space and time (Ca2+ wavelets), emerged, and the ensemble of these rhythmic local Ca2+ wavelets generated a periodic high-amplitude Ca2+ signal. Thus, a Ca2+ clock is not specific to pacemaker cells, but can also be unleashed in VM when SR Ca2+ cycling increases and spontaneous local Ca2+ release becomes partially synchronized. This unleashed Ca2+ clock that emerges in a physiological Ca2+ milieu in VM has two faces, however: it can provoke ventricular arrhythmias; or if harnessed, can be an important feature of novel bio-pacemaker designs.
doi:10.1016/j.yjmcc.2013.11.011
PMCID: PMC3896924  PMID: 24274954
cardiac ventricular myocytes; calcium clock; calcium cycling; protein phosphorylation; spontaneous local calcium releases
14.  HASF is a stem cell paracrine factor that activates PKC epsilon mediated cytoprotection 
Despite advances in the treatment of acute tissue ischemia significant challenges remain in effective cytoprotection from ischemic cell death. It has been documented that injected stem cells, such as mesenchymal stem cells (MSCs), can confer protection to ischemic tissue through the release of paracrine factors. The study of these factors is essential for understanding tissue repair and the development of new therapeutic approaches for regenerative medicine. We have recently shown that a novel factor secreted by MSCs, which we called HASF (Hypoxia and Akt induced Stem cell Factor), promotes cardiomyocyte proliferation. In this study we show that HASF has a cytoprotective effect on ischemia induced cardiomyocyte death. We assessed whether HASF could potentially be used as a therapeutic agent to prevent the damage associated with myocardial infarction. In vitro treatment of cardiomyocytes with HASF protein resulted in decreased apoptosis; tunel positive nuclei were fewer in number, caspase activation and mitochondrial pore opening were inhibited. Purified HASF protein was injected into the heart immediately following myocardial infarction. Heart function was found to be comparable to sham operated animals one month following injury and fibrosis was significantly reduced. In vivo and in vitro HASF activated protein kinase C ε (PKCε). Inhibition of PKCε blocked the HASF effect on apoptosis. Furthermore, the beneficial effects of HASF were lost in mice lacking PKCε. Collectively these results identify HASF as a protein of significant therapeutic potential, acting in part through PKCε.
doi:10.1016/j.yjmcc.2013.11.010
PMCID: PMC3897274  PMID: 24269490
cytoprotection; ischemia; paracrine; PKC epsilon; mesenchymal stem cell
15.  Cellular mechanisms of ventricular arrhythmias in a mouse model of Timothy syndrome (long QT syndrome 8) 
Ca2+ flux through L-type CaV1.2 channels shapes the waveform of the ventricular action potential (AP) and is essential for excitation-contraction (EC) coupling. Timothy syndrome (TS) is a disease caused by a gain-of-function mutation in the CaV1.2 channel (CaV1.2-TS) that decreases inactivation of the channel, which increases Ca2+ influx, prolongs APs, and causes lethal arrhythmias. Although many details of the CaV1.2-TS channels are known, the cellular mechanisms by which they induce arrhythmogenic changes in intracellular Ca2+ remain unclear. We found that expression of CaV1.2-TS channels increased sarcolemmal Ca2+ “leak” in resting TS ventricular myocytes. This resulted in higher diastolic [Ca2+]i in TS ventricular myocytes compared to WT. Accordingly, TS myocytes had higher sarcoplasmic reticulum (SR) Ca2+ load and Ca2+ spark activity, larger amplitude [Ca2+]i transients, and augmented frequency of Ca2+ waves. The large SR Ca2+ release in TS myocytes had a profound effect on the kinetics of CaV1.2 current in these cells, increasing the rate of inactivation to a high, persistent level. This limited the amount of influx during EC coupling in TS myocytes. The relationship between the level of expression of CaV1.2-TS channels and the probability of Ca2+ wave occurrence was non-linear, suggesting that even low levels of these channels were sufficient to induce maximal changes in [Ca2+]i. Depolarization of WT cardiomyocytes with a TS AP waveform increased, but did not equalize, [Ca2+]i compared to depolarization of TS myocytes with the same waveform. We propose that CaV1.2-TS channels increase [Ca2+] in the cytosol and the SR, creating a Ca2+overloaded state that increases the probability of arrhythmogenic spontaneous SR Ca2+ release.
doi:10.1016/j.yjmcc.2013.10.021
PMCID: PMC3903114  PMID: 24215710
CaV1.2; Timothy syndrome; ventricular myocyte; excitation-contraction coupling; calcium wave
16.  PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling 
β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses.
doi:10.1016/j.yjmcc.2013.11.001
PMCID: PMC3927644  PMID: 24225179
17.  Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation 
Fat1 is an atypical cadherin that controls vascular smooth muscle cell (VSMC) proliferation and migration. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1) is an important source of reactive oxygen species (ROS) in VSMCs. Angiotensin II (Ang II) induces the expression and/or activation of both Fat1 and Nox1 proteins. This study tested the hypothesis that Ang II-induced Fat1 activation and VSMC migration are mediated by Nox1-dependent ROS generation and redox signaling. Studies were performed in cultured VSMCs from Sprague-Dawley rats. Cells were treated with Ang II (1 μmol/L) for short (5 to 30 min) or long term stimulations (3 to 12 h) in the absence or presence of the antioxidant apocynin (10 μmol/L), extracellular-signal-regulated kinases 1/2 (Erk1/2) inhibitor PD98059 (1 μmol/L), or Ang II type 1 receptor (AT1R) valsartan (1 μmol/L). siRNA was used to knockdown Nox1 or Fat1. Cell migration was determined by Boyden chamber assay. Ang II increased Fat1 mRNA and protein levels and promoted Fat1 translocation to the cell membrane, responses that were inhibited by AT1R antagonist and antioxidant treatment. Downregulation of Nox1 inhibited the effects of Ang II on Fat1 protein expression. Nox1 protein induction, ROS generation, and p44/p42 MAPK phosphorylation in response to Ang II were prevented by valsartan and apocynin, and Nox1 siRNA inhibited Ang II-induced ROS generation. Knockdown of Fat1 did not affect Ang II-mediated increases in Nox1 expression or ROS. Inhibition of p44/p42 MAPK phosphorylation by PD98059 abrogated the Ang II-induced increase in Fat1 expression and membrane translocation. Knockdown of Fat1 inhibited Ang II-induced VSMC migration, which was also prevented by valsartan, apocynin, PD98059, and Nox1 siRNA. Our findings indicate that Ang II regulates Fat1 expression and activity and induces Fat1-dependent VSMC migration via activation of AT1R, ERK1/2, and Nox1-derived ROS, suggesting a role for Fat1 downstream of Ang II signalling that leads to vascular remodelling.
doi:10.1016/j.yjmcc.2013.10.013
PMCID: PMC3943818  PMID: 24445059
Angiotensin II; Fat1; Nox1; ROS; ERK1/2 MAPK; migration; vascular smooth muscle cell
18.  The C-terminus of the long AKAP13 isoform (AKAP-Lbc) is critical for development of compensatory cardiac hypertrophy 
The objective of this study was to determine the role of A-Kinase Anchoring Protein (AKAP)-Lbc in the development of heart failure, by investigating AKAP-Lbc-protein kinase D1 (PKD1) signaling in vivo in cardiac hypertrophy.
Using a gene-trap mouse expressing a truncated version of AKAP-Lbc (due to disruption of the endogenous AKAP-Lbc gene), that abolishes PKD1 interaction with AKAP-Lbc (AKAPLbc-ΔPKD), we studied two mouse models of pathological hypertrophy: i) angiotensin (AT-II) and phenylephrine (PE) infusion and ii) transverse aortic constriction (TAC)-induced pressure overload.
Our results indicate that AKAP-Lbc-ΔPKD mice exhibit an accelerated progression to cardiac dysfunction in response to AT-II/PE treatment and TAC. AKAP-Lbc-ΔPKD mice display attenuated compensatory cardiac hypertrophy, increased collagen deposition and apoptosis, compared to wild-type (WT) control littermates. Mechanistically, reduced levels of PKD1 activation are observed in AKAP-Lbc-ΔPKD mice compared to WT mice, resulting in diminished phosphorylation of histone deacetylase 5 (HDAC5) and decreased hypertrophic gene expression. This is consistent with a reduced compensatory hypertrophy phenotype leading to progression of heart failure in AKAP-Lbc-ΔPKD mice. Overall, our data demonstrates a critical in vivo role for AKAP-Lbc-PKD1 signaling in the development of compensatory hypertrophy to enhance cardiac performance in response to TAC-induced pressure overload and neurohumoral stimulation by AT-II/PE treatment.
doi:10.1016/j.yjmcc.2013.10.010
PMCID: PMC4074493  PMID: 24161911
A-Kinase Anchoring Protein (AKAP); protein kinase D; cardiac hypertrophy; heart failure.
19.  [No title available] 
PMCID: PMC4294587  PMID: 25268651
20.  Overexpression of MicroRNA-1 Promotes Cardiomyocyte Commitment from Human Cardiovascular Progenitors via Suppressing WNT and FGF Signaling Pathways 
Early heart development takes place through a complex series of steps, including the induction of cardiac mesoderm, formation of the cardiovascular progenitor cells and the commitment of cardiovascular lineage cells, such as cardiomyocytes (CMs), smooth muscle cells (SMCs) and endothelial cells (ECs). Recently, microRNAs, a family of endogenous, small non-coding RNAs, have been implicated as critical regulators at the posttranscriptional level in cardiogenesis as well as cardiovascular disease. Previous studies demonstrated that microRNA-1 (miR-1) could promote cardiac differentiation from mouse and human embryonic stem (ES) cells. However, the underlying mechanism largely remained unclear. We performed microRNA deep sequencing among human ES cells, ES cell derived-multipotent cardiovascular progenitors (MCPs), and MCP-specified CMs, ECs, and SMCs. A specific enrichment of miR-1 was found in CMs, not in SMCs or ECs, implying a key role of miR-1 in determining cardiovascular commitment from MCPs. When overexpressed in human pluripotent stem cells, miR-1 enhanced the expression of key cardiac transcriptional factors and sarcomeric genes. Importantly, we found miR-1 promoted CM differentiation and suppressed EC commitment from MCPs by modulating the activities of WNT and FGF signaling pathways. FZD7 and FRS2 were confirmed as miR-1 targets using luciferase reporter assay and western blot. Overall, this study reveals a switch role of miR-1 at early human cardiovascular commitment stage via suppressing both WNT and FGF signaling pathways.
doi:10.1016/j.yjmcc.2013.07.019
PMCID: PMC4268488  PMID: 23939491
MicroRNA-1; Induced pluripotent stem cells; Cardiomyocyte; Multipotent Cardiovascular Progenitors
21.  Right ventricular remodeling in restrictive ventricular septal defect 
Restrictive ventricular septal defect (rVSD) presents with little/no hemodynamic aberrations despite a patent septal defect. Clinically, these patients are observed with the hope that the defect will functionally close over time without the need for surgical repair and development of heart failure. Without evidence supporting a definitive therapeutic strategy, rVSD patients may have increased risk of a poor outcome. We tested the hypothesis that rVSD results in subclinical RV diastolic dysfunction and molecular remodeling. Five pigs underwent surgical rVSD creation. Echocardiography, hemodynamics, myocyte contractility experiments, and proteomics/Western blot were performed 6-weeks post-rVSD and in controls. *p < 0.05. LV and RV hemodynamics in rVSD were comparable to controls. The tricuspid valve early/late diastolic inflow velocity ratio (TV E/A ratio) decreased from 1.6 ± 0.05 in controls to 1.0 ± 0.08* in rVSD, indicating RV diastolic dysfunction. rVSD RV myocytes showed abnormalities in contraction (departure velocity (Vd) − 51%*, Vd time +55%*) and relaxation (return velocity (Vr) −50%*, Vr time +62%*). Mitochondrial proteins (fatty acid, TCA cycle) increased 2-fold*, indicating heightened RV work. Desmin protein upregulated 285%* in rVSD RV myocardium, suggesting cytoskeletal remodeling. rVSD causes RV diastolic dysfunction, myocyte functional impairment, and mitochondrial/cytoskeletal protein upregulation in our model. Desmin upregulation may hinder sarcomeric organization/relaxation, representing a key subclinical early marker for future RV dysfunction. TV E/A measurements are a non-invasive modality to assess rVSD patients for diastolic dysfunction. Translational research applications may lead to fundamental changes in the clinical management of rVSD by providing evidence for early repair of the defect.
doi:10.1016/j.yjmcc.2010.07.005
PMCID: PMC4263504  PMID: 20637777
Ventricular septal defect; Diastolic dysfunction; Desmin; Remodeling; Congenital; Cytoskeleton; Echocardiography
22.  Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease 
Journal of molecular and cellular cardiology  2013;65:10.1016/j.yjmcc.2013.10.005.
During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis was examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of TCF21, WT1, and TBX18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.
doi:10.1016/j.yjmcc.2013.10.005
PMCID: PMC3848425  PMID: 24140724
Heart disease; Fibrosis; Epicardium-derived cells; Tcf21; Wt1; Tbx18; Mouse; Human
23.  Tgfβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves 
Journal of molecular and cellular cardiology  2013;65:10.1016/j.yjmcc.2013.10.007.
Mature heart valves are complex structures consisting of three highly organized extracellular matrix layers primarily composed of collagens, proteoglycans and elastin. Collectively, these diverse matrix components provide all the necessary biomechanical properties for valve function throughout life. In contrast to healthy valves, myxomatous valve disease is the most common cause of mitral valve prolapse in the human population and is characterized by an abnormal abundance of proteoglycans within the valve tri-laminar structure. Despite the clinical significance, the etiology of this phenotype is not known. Scleraxis (Scx) is a basic-helix-loop-helix transcription factor that we previously showed to be required for establishing heart valve structure during remodeling stages of valvulogenesis. In this study, we report that remodeling heart valves from Scx null mice express decreased levels of proteoglycans, particularly chondroitin sulfate proteoglycans (CSPGs), while overexpression in embryonic avian valve precursor cells and adult porcine valve interstitial cells increases CSPGs. Using these systems we further identify that Scx is positively regulated by canonical Tgfβ2 signaling during this process and this is attenuated by MAPK activity. Finally, we show that Scx is increased in myxomatous valves from human patients and mouse models, and overexpression in human mitral valve interstitial cells modestly increases proteoglycan expression consistent with myxomatous mitral valve phenotypes. Together, these studies identify an important role for Scx in regulating proteoglycans in embryonic and mature valve cells and suggest that imbalanced regulation could influence myxomatous pathogenesis.
doi:10.1016/j.yjmcc.2013.10.007
PMCID: PMC3869408  PMID: 24157418
Proteoglycan; Scleraxis; Heart Valve; Myxomatous; Tgfβ; MAPK
24.  Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress 
Journal of molecular and cellular cardiology  2013;65:10.1016/j.yjmcc.2013.09.013.
Acute inhibition of the NHE1 Na+/H+ exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1−/− mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1−/− hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1−/− hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1−/− hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat dietinduced stress was attenuated in Nhe1−/− hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1−/− mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice.
doi:10.1016/j.yjmcc.2013.09.013
PMCID: PMC3883452  PMID: 24080184
NHE-1; Slc9a1; metabolic syndrome; diabetes; insulin resistance
25.  Angiotensin II stimulates cardiac fibroblast migration via the differential regulation of matrixins and RECK 
Sustained induction and activation of matrixins (matrix metalloproteinases or MMPs), and the destruction and deposition of extracellular matrix (ECM), are the hallmarks of cardiac fibrosis. The reversion-inducing-cysteine-rich protein with Kazal motifs (RECK) is a unique membrane-anchored endogenous MMP inhibitor. We hypothesized that elevated angiotensin II (Ang II), which is associated with fibrosis in the heart, differentially regulates MMPs and RECK both in vivo and in vitro. Continuous infusion of Ang II into male C57Bl/6 mice for 2 weeks resulted in cardiac fibrosis, with increased expressions of MMPs 2, 7, 9 and 14, and of collagens Ia1 and IIIa1. The expression of RECK, however, was markedly suppressed. These effects were inhibited by co-treatment with the Ang II type 1 receptor (AT1) antagonist losartan. In vitro, Ang II suppressed RECK expression in adult mouse cardiac fibroblasts (CF) via AT1/Nox4-dependent ERK/Sp1 activation, but induced MMPs 2, 7 and 9 via NF-κB, AP-1 and/or Sp1 activation. Further, while forced expression of RECK inhibits, its knockdown potentiates Ang II-induced CF migration. Notably, RECK overexpression reduced Ang II-induced MMPs 2, 9 and 14 activation, but enhanced collagens Ia1 and IIIa1 expression and soluble collagen release. These results demonstrate for the first time that Ang II suppresses RECK, but induces MMPs both in vivo and in vitro, and RECK overexpression blunts Ang II induced MMP activation and CF migration in vitro. Strategies that upregulate RECK expression in vivo have the potential to attenuate sustained MMP expression, and blunt fibrosis and adverse remodeling in hypertensive heart diseases.
doi:10.1016/j.yjmcc.2013.09.015
PMCID: PMC3896127  PMID: 24095877
Cardiac fibrosis; Adverse remodeling; RECK; MMP; Nox4

Results 1-25 (791)