PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Therapeutic targeting malignant mesothelioma with a novel 6-substituted pyrrolo[2,3-D]pyrimidine thienoyl antifolate via its selective uptake by the proton-coupled folate transporter 
The 5-substituted pyrrolo[2,3-d]pyrimidine antifolate pemetrexed (Pmx) is an active agent for malignant pleural mesothelioma (MPM). Pmx is transported into MPM cells by the reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). We tested the notion that a novel 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate (compound 2) might be an effective treatment for MPM, reflecting its highly selective membrane transport by PCFT over RFC. Compound 2 selectively inhibited proliferation of a HeLa subline expressing exclusively PCFT (R1-11-PCFT4) over an isogenic subline expressing only RFC (R1-11-RFC6). By outgrowth, H2452 human MPM cells were highly sensitive to the inhibitory effects of compound 2. By colony-forming assays, following an intermittent (24 h) drug exposure, 2 was cytotoxic. Cytotoxic activity by 2 was due to potent inhibition of glycinamide ribonucleotide formyltransferase (GARFTase) in de novo purine biosynthesis, as confirmed by nucleoside protection and in situ GARFTase assays with [14C]glycine. Assays with [3H]compound 2 and R1-11-PCFT4 or R1-11-RFC6 cells directly confirmed selective membrane transport by PCFT over RFC. PCFT transport was also confirmed for H2452 cells. In R1-11-PCFT4 and H2452 cells, [3H]compound 2 was metabolized to polyglutamates. Potent in vivo efficacy was confirmed toward early- and upstage H2452 xenografts in severe combined immunodeficient mice administered intravenous compound 2. Our results demonstrate potent antitumor efficacy of compound 2 toward H2452 MPM in vitro and in vivo, reflecting its efficient membrane transport by PCFT over RFC, synthesis of polyglutamates, and inhibition of GARFTase. Selectivity for non-RFC cellular uptake processes by novel tumor-targeted antifolates such as compound 2 presents an exciting new opportunity for treating solid tumors.
doi:10.1007/s00280-013-2094-0
PMCID: PMC3769948  PMID: 23412628
proton-coupled folate transporter; mesothelioma; folate; antifolate; pemetrexed
2.  A randomized, controlled trial of osteopathic manipulative treatment for acute low back pain in active duty military personnel 
Objective
Acute low back pain (ALBP) may limit mobility and impose functional limitations in active duty military personnel. Although some manual therapies have been reported effective for ALBP in military personnel, there have been no published randomized controlled trials (RCTs) of osteopathic manipulative treatment (OMT) in the military. Furthermore, current military ALBP guidelines do not specifically include OMT.
Methods
This RCT examined the efficacy of OMT in relieving ALBP and improving functioning in military personnel at Fort Lewis, Washington. Sixty-three male and female soldiers ages 18 to 35 were randomly assigned to a group receiving OMT plus usual care or a group receiving usual care only (UCO).
Results
The primary outcome measures were pain on the quadruple visual analog scale, and functioning on the Roland Morris Disability Questionnaire. Outcomes were measured immediately preceding each of four treatment sessions and at four weeks post-trial. Intention to treat analysis found significantly greater post-trial improvement in ‘Pain Now’ for OMT compared to UCO (P = 0·026). Furthermore, the OMT group reported less ‘Pain Now’ and ‘Pain Typical’ at all visits (P = 0·025 and P = 0·020 respectively). Osteopathic manipulative treatment subjects also tended to achieve a clinically meaningful improvement from baseline on ‘Pain at Best’ sooner than the UCO subjects. With similar baseline expectations, OMT subjects reported significantly greater satisfaction with treatment and overall self-reported improvement (P<0·01).
Conclusion
This study supports the effectiveness of OMT in reducing ALBP pain in active duty military personnel.
doi:10.1179/2042618611Y.0000000016
PMCID: PMC3267441  PMID: 23372389
Low back pain; Manual medicine; Manipulation
3.  Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation* 
The Journal of Biological Chemistry  2012;288(8):5530-5538.
Background: Glycosaminoglycans influence stem cell fate but their combination with biomaterials remains to be optimized.
Results: GAG bound to scaffolds presented essential sulfation epitopes and proved biologically active.
Conclusion: Use of plasma polymerized allylamine proved effective in functionalizing a fibrous extracellular matrix mimic.
Significance: The biomaterial has broad applicability to stem cell culture and has potential future applications in regenerative medicine.
As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells.
doi:10.1074/jbc.M112.423012
PMCID: PMC3581394  PMID: 23235146
Biomaterials; Embryonic Stem Cell; Glycobiology; Glycosaminoglycan; Growth Factors; Neurodifferentiation; Oligosaccharide; Plasma Polymerization
4.  Synthesis, biological and antitumor activity of a highly potent 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitor with proton-coupled folate transporter and folate receptor selectivity over the reduced folate carrier that inhibits β-glycinamide ribonucleotide formyltransferase 
Journal of medicinal chemistry  2011;54(20):7150-7164.
2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1–3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with L-glutamate diethyl ester, followed by saponification, afforded 1–3. Compound 3 selectively inhibited proliferation of cells expressing folate receptors (FRs) α or β, or the proton-coupled folate transporter (PCFT), including human tumor cells KB and IGROV1 much more potently than 4. Compound 3 was more inhibitory than 4 toward β-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1, 2 and 4-atom bridge lengths for the activity of this series.
doi:10.1021/jm200739e
PMCID: PMC3209708  PMID: 21879757
5.  Synthesis and biological activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidine thienoyl antifolate inhibitors of purine biosynthesis with selectivity for high affinity folate receptors and the proton-coupled folate transporter over the reduced folate carrier for cellular entry† 
Journal of medicinal chemistry  2010;53(3):1306-1318.
2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines with a thienoyl side chain and 4-6 carbon bridge lengths (compounds 1-3) were synthesized as substrates for folate receptors (FRs) and the proton-coupled folate transporter (PCFT). Conversion of acetylene carboxylic acids to α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidines. Sonogashira coupling with (S)-2-[(5-bromo-thiophene-2-carbonyl)-amino]-pentanedioic acid diethyl ester, followed by hydrogenation and saponification, afforded 1-3. Compounds 1 and 2 potently inhibited KB and IGROV1 human tumor cells that express FRα, reduced folate carrier (RFC), and PCFT. The analogs were selective for FR- and PCFT over RFC. Glycinamide ribonucleotide formyltransferase was the principal cellular target. In SCID mice with KB tumors, 1 was highly active against both early (3.5 log kill, 1/5 cures) and advanced (3.7 log kill, 4/5 complete remissions) stage tumors. Our results demonstrate potent in vitro and in vivo antitumor activity for 1 due to selective transport by FRs and PCFT over RFC.
doi:10.1021/jm9015729
PMCID: PMC2836843  PMID: 20085328
6.  Inducible Overexpression of sFlt-1 in Podocytes Ameliorates Glomerulopathy in Diabetic Mice 
Diabetes  2008;57(10):2824-2833.
OBJECTIVE—Podocyte-specific, doxycycline (DOX)-inducible overexpression of soluble vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1) in adult mice was used to investigate the role of the VEGF-A/VEGF receptor (VEGFR) system in diabetic glomerulopathy.
RESEARCH DESIGN AND METHODS—We studied nondiabetic and diabetic transgenic mice and wild-type controls treated with vehicle (VEH) or DOX for 10 weeks. Glycemia was measured by a glucose-oxidase method and blood pressure by a noninvasive technique. sFlt-1, VEGF-A, VEGFR2, and nephrin protein expression in renal cortex were determined by Western immunoblotting; urine sFlt-1, urine free VEGF-A, and albuminuria by enzyme-linked immunosorbent assay; glomerular ultrastructure by electron microscopy; and VEGFR1 and VEGFR2 cellular localization with Immunogold techniques.
RESULTS—Nondiabetic DOX-treated transgenic mice showed a twofold increase in cortex sFlt-1 expression and a fourfold increase in sFlt-1 urine excretion (P < 0.001). Urine free VEGF-A was decreased by 50%, and cortex VEGF-A expression was upregulated by 30% (P < 0.04). VEGFR2 expression was unchanged, whereas its activation was reduced in DOX-treated transgenic mice (P < 0.02). Albuminuria and glomerular morphology were similar among groups. DOX-treated transgenic diabetic mice showed a 60% increase in 24-h urine sFlt-1 excretion and an ∼70% decrease in urine free VEGF-A compared with VEH-treated diabetic mice (P < 0.04) and had lower urine albumin excretion at 10 weeks than VEH-treated diabetic (d) mice: d-VEH vs. d-DOX, geometric mean (95% CI), 117.5 (69–199) vs. 43 (26.8–69) μg/24 h (P = 0.003). Diabetes-induced mesangial expansion, glomerular basement membrane thickening, podocyte foot-process fusion, and transforming growth factor-β1 expression were ameliorated in DOX-treated diabetic animals (P < 0.05). Diabetes-induced VEGF-A and nephrin expression were not affected in DOX-treated mice.
CONCLUSIONS—Podocyte-specific sFlt-1 overexpression ameliorates diabetic glomerular injury, implicating VEGF-A in the pathogenesis of this complication.
doi:10.2337/db08-0647
PMCID: PMC2551695  PMID: 18647955
7.  Heparan Sulfate Proteoglycan Binding Properties of Adeno-Associated Virus Retargeting Mutants and Consequences for Their In Vivo Tropism 
Journal of Virology  2006;80(14):7265-7269.
Adeno-associated virus type 2 (AAV-2) targeting vectors have been generated by insertion of ligand peptides into the viral capsid at amino acid position 587. This procedure ablates binding of heparan sulfate proteoglycan (HSPG), AAV-2's primary receptor, in some but not all mutants. Using an AAV-2 display library, we investigated molecular mechanisms responsible for this phenotype, demonstrating that peptides containing a net negative charge are prone to confer an HSPG nonbinding phenotype. Interestingly, in vivo studies correlated the inability to bind to HSPG with liver and spleen detargeting in mice after systemic application, suggesting several strategies to improve efficiency of AAV-2 retargeting to alternative tissues.
doi:10.1128/JVI.00076-06
PMCID: PMC1489073  PMID: 16809332

Results 1-7 (7)