Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists 
Journal of medicinal chemistry  2006;49(9):2689-2702.
An alternative approach to overcome the inherent lack of specificity of conventional agonist therapy can be the reengineering of the GPCRs and their agonists. A reengineered receptor (neoceptor) could be selectively activated by a modified agonist, but not by the endogenous agonist. Assisted by rhodopsin-based molecular modeling, we pinpointed mutations of the A3 adenosine receptor (AR) for selective affinity enhancement following complementary modifications of adenosine. Ribose modifications examined included, at 3′: amino, aminomethyl, azido, guanidino, ureido; and at 5′: uronamido, azidodeoxy. N6-variations included: 3-iodobenzyl, 5-chloro-2-methyloxybenzyl, and methyl. An N6-3-iodobenzyl-3′-ureido adenosine derivative 10 activated phospholipase C in COS-7 cells (EC50=0.18 μM) or phospholipase D in chick primary cardiomyocytes mediated by a mutant (H272E), but not the wild-type, A3AR. The affinity enhancements for 10 and the corresponding 3′-acetamidomethyl analogue 6 were >100-fold and >20-fold, respectively. 10 concentration-dependently protected cardiomyocytes transfected with the neoceptor against hypoxia. Unlike 10, adenosine activated the wild-type A3AR (EC50 of 1.0 μM), but had no effect on the H272E mutant A3AR (100 μM). Compound 10 was inactive at human A1, A2A, and A2BARs. The orthogonal pair comprising an engineered receptor and a modified agonist should be useful for elucidating signaling pathways and could be therapeutically applied to diseases following organ-targeted delivery of the neoceptor gene.
PMCID: PMC3471142  PMID: 16640329
2.  Modulation of adenosine receptor affinity and intrinsic efficacy in adenine nucleosides substituted at the 2-position 
Bioorganic & medicinal chemistry  2004;12(11):2995-3007.
We studied the structural determinants of binding affinity and efficacy of adenosine receptor (AR) agonists. Substituents at the 2-position of adenosine were combined with N6-substitutions known to enhance human A3AR affinity. Selectivity of binding of the analogues and their functional effects on cAMP production were studied using recombinant human A1, A2A, A2B, and A3ARs. Mainly sterically small substituents at the 2-position modulated both the affinity and intrinsic efficacy at all subtypes. The 2-cyano group decreased hA3AR affinity and efficacy in the cases of N6-(3-iodobenzyl) and N6-(trans-2-phenyl-1-cyclopropyl), for which a full A3AR agonist was converted into a selective antagonist; the 2-cyano-N6-methyl analogue was a full A3AR agonist. The combination of N6-benzyl and various 2-substitutions (chloro, trifluoromethyl, and cyano) resulted in reduced efficacy at the A1AR. The environment surrounding the 2-position within the putative A3AR binding site was explored using rhodopsin-based homology modeling and ligand docking.
PMCID: PMC3463103  PMID: 15142558
Purines; Cyclic AMP; Binding; Antagonists; Agonists; GPCR; Molecular modeling
3.  Exploring human adenosine A3 receptor complementarity and activity for adenosine analogues modified in the ribose and purine moiety 
Bioorganic & medicinal chemistry  2005;13(4):973-983.
In this paper we investigated the influence on affinity, selectivity and intrinsic activity upon modification of the adenosine agonist scaffold at the 3′- and 5′-positions of the ribofuranosyl moiety and the 2- and N6-positions of the purine base. This resulted in the synthesis of various analogues, that is, 3–12 and 24–33, with good hA3AR selectivity and moderate-to-high affinities (as in 32, Ki = 27 nM). Interesting was the ability to tune the intrinsic activity depending on the substituent introduced at the 3′-position.
PMCID: PMC3460517  PMID: 15670905
Adenosine receptors; Nucleoside analogues; Binding; Efficacy
4.  Neoceptor Concept Based on Molecular Complementarity in GPCRs: A Mutant Adenosine A3 Receptor with Selectively Enhanced Affinity for Amine-Modified Nucleosides 
Journal of medicinal chemistry  2001;44(24):4125-4136.
Adenosine A3 receptors are of interest in the treatment of cardiac ischemia, inflammation, and neurodegenerative diseases. In an effort to create a unique receptor mutant that would be activated by tailor-made synthetic ligands, we mutated the human A3 receptor at the site of a critical His residue in TM7, previously proposed to be involved in ligand recognition through interaction with the ribose moiety. The H272E mutant receptor displayed reduced affinity for most of the uncharged A3 receptor agonists and antagonists examined. For example, the nonselective agonist 1a was 19-fold less potent at the mutant receptor than at the wild-type receptor. The introduction of an amino group on the ribose moiety of adenosine resulted in either equipotency or enhanced binding affinity at the H272E mutant relative to wild-type A3 receptors, depending on the position of the amino group. 3′-Amino-3′-deoxyadenosine proved to be 7-fold more potent at the H272E mutant receptor than at the wild-type receptor, while the corresponding 2′- and 5′-amino analogues did not display significantly enhanced affinities. An 3′-amino-N6-iodobenzyl analogue showed only a small enhancement at the mutant (Ki = 320 nM) vs wild-type receptors. The 3′-amino group was intended for a direct electrostatic interaction with the negatively charged ribose-binding region of the mutant receptor, yet molecular modeling did not support this notion. This design approach is an example of engineering the structure of mutant receptors to recognize synthetic ligands for which they are selectively matched on the basis of molecular complementarity between the mutant receptor and the ligand. We have termed such engineered receptors “neoceptors”, since the ligand recognition profile of such mutant receptors need not correspond to the profile of the parent, native receptor.
PMCID: PMC3413945  PMID: 11708915

Results 1-4 (4)