PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Largazole, a class I histone deacetylase inhibitor, enhances TNF-α to induce ICAM-1 and VCAM-1 expression in Rheumatoid Arthritis Synovial Fibroblasts 
In the present study, we evaluated the effect of largazole (LAR), a marine-derived class I HDAC inhibitor, on tumor necrosis factor-α (TNF-α)-induced expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and matrix metalloproteinase-2 (MMP-2) activity. LAR (1-5 μM) had no adverse effect on the viability of RA synovial fibroblasts. Among the different class I HDACs screened, LAR (1-5 μM) inhibited the constitutive expression of HDAC1 (0-30%). Surprisingly, LAR increased class II HDAC [HDAC6] by ~220% with a concomitant decrease in HDAC5 [30-58%] expression in RA synovial fibroblasts. SAHA (5 μM), a pan-HDAC inhibitor, also induced HDAC6 expression in RA synovial fibroblasts. Pretreatment of RA synovial fibroblasts with LAR further enhanced TNF-α-induced ICAM-1 and VCAM-1 expression. However, LAR inhibited TNF-α-induced MMP-2 activity in RA synovial fibroblasts by 35% when compared to the TNF-α-treated group. Further, the addition of HDAC6 specific inhibitor Tubastatin A with LAR suppressed TNF-α+LAR-induced ICAM-1 and VCAM-1 expression and completely blocked MMP-2 activity, suggesting a role of HDAC6 in LAR-induced ICAM-1 and VCAM-1 expression. LAR also enhanced TNF-α-induced phospho-p38 and phospho-AKT expression, but inhibited the expression of phospho-JNK and nuclear translocation of NF-κBp65 in RA synovial fibroblasts. These results suggest that LAR activates p38 and Akt pathways and influences class II HDACs, in particular HDAC6, to enhance some of the detrimental effects of TNF-α in RA synovial fibroblasts. Understanding the exact role of different HDAC isoenzymes in RA pathogenesis is extremely important in order to develop highly effective HDAC inhibitors for the treatment of RA.
doi:10.1016/j.taap.2013.04.014
PMCID: PMC3766723  PMID: 23632129
2.  Largazole and Analogues with Modified Metal-Binding Motifs Targeting Histone Deacetylases: Synthesis and Biological Evaluation 
Journal of medicinal chemistry  2011;54(21):7453-7463.
The histone deacetylase inhibitor, largazole 1 was synthesized by a convergent approach which involved several efficient and high yielding single pot multistep protocols. Initial attempts using t-butyl as thiol protecting group proved problematic and synthesis was accomplished by switching to trityl protecting group. This synthetic protocol provides a convenient approach to many new largazole analogues. Three side chain analogues with multiple heteroatoms for chelation with Zn2+ were synthesized and their biological activities were evaluated. They were less potent than largazole 1 in growth inhibition of HCT116 colon carcinoma cell line and in inducing increases in global H3 acetylation. Largazole 1 and the three side chain analogues had no effect on HDAC6 as indicated by the lack of increased acetylation of α-tubulin.
doi:10.1021/jm200432a
PMCID: PMC3208063  PMID: 21936551
3.  Total Synthesis and Selective Activity of a NewClass of Conformationally Restrained Epothilones 
Stereoselective total syntheses of two novel conformationally restrained epothilone analogues are described. Evans asymmetric alkylation, Brown allylation, and a diastereoselective aldol reaction served as the key steps in the stereoselective synthesis of one of the two key fragments of the convergent synthetic approach.Enzyme resolution was employed to obtain the second fragment as a single enantiomer. The molecules were assembled by esterification, followed by ring-closing metathesis. In preliminary cytotoxicity studies, one of the analogues showed strong and selective growth inhibitory activity against two leukemia cell lines over solid human tumor cell lines. The precise biological mechanism of action and high degree of selectivity of this analogue remain to be examined.
doi:10.1002/chem.200701143
PMCID: PMC2712887  PMID: 17955508
antitumor agents; epothilone analogues; macrolide; natural products; total synthesis

Results 1-3 (3)