PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Discovery of Novel Antimalarial Compounds Enabled by QSAR-based Virtual Screening 
Quantitative structure–activity relationship (QSAR) models have been developed for a dataset of 3133 compounds defined as either active or inactive against P. falciparum. Since the dataset was strongly biased towards inactive compounds, different sampling approaches were employed to balance the ratio of actives vs. inactives, and models were rigorously validated using both internal and external validation approaches. The balanced accuracy for assessing the antimalarial activities of 70 external compounds was between 87% and 100% depending on the approach used to balance the dataset. Virtual screening of the ChemBridge database using QSAR models identified 176 putative antimalarial compounds that were submitted for experimental validation, along with 42 putative inactives as negative controls. Twenty five (14.2%) computational hits were found to have antimalarial activities with minimal cytotoxicity to mammalian cells, while all 42 putative inactives were confirmed experimentally. Structural inspection of confirmed active hits revealed novel chemical scaffolds, which could be employed as starting points to discover novel antimalarial agents.
doi:10.1021/ci300421n
PMCID: PMC3644566  PMID: 23252936
Antimalarial activity; quantitative structure–activity relationships; virtual screening; experimental confirmation
2.  Synthesis and evaluation of 7-substituted 4-aminoquinoline analogs for antimalarial activity 
Journal of medicinal chemistry  2011;54(20):7084-7093.
We previously reported that substituted 4-aminoquinolines with a phenylether substituent at the 7-position of the quinoline ring and the capability of intramolecular hydrogen bonding between the protonated amine on the side chain and a hydrogen bond acceptor on the amine’s alkyl substituents exhibited potent antimalarial activity against the multi-drug resistant strain P. falciparum W2. We employed a parallel synthetic method to generate diaryl ether, biaryl, and alkylaryl 4-aminoquinoline analogs, in the background of a limited number of side chain variations that had previously afforded potent 4-aminoquinolines. All subsets were evaluated for their antimalarial activity against the chloroquine-sensitive strain 3D7 and the chloroquine-resistant K1 and cytotoxicity mammalian cell lines. While all three arrays showed good antimalarial activity, only the biaryl-containing subset showed consistently good potency against the drug-resistant K1strain good selectivity with regard to mammalian cytotoxicity. Overall, our data indicate that the biaryl-containing series contains promising candidates for further study.
doi:10.1021/jm200636z
PMCID: PMC3697074  PMID: 21910466
3.  Optimization of Propafenone Analogues as Anti-Malarial Leads 
Journal of medicinal chemistry  2011;54(21):7477-7485.
Propafenone, a class Ic antiarrythmic drug, inhibits growth of cultured Plasmodium falciparum. While the drug’s potency is significant, further development of propafenone as an antimalarial would require divorcing the antimalarial and cardiac activities as well as improving the pharmacokinetic profile of the drug. A small array of propafenone analogs was designed and synthesized to address the cardiac ion channel and PK liabilities. Testing of this array revealed potent inhibitors of the 3D7 (drug sensitive) and K1 (drug resistant) strains of P. falciparum that possessed significantly reduced ion channel effects and improved metabolic stability. Propafenone analogues are unusual among antimalarial leads in that they are more potent against the multi-drug resistant K1 strain of P. falciparum compared to the 3D7 strain.
doi:10.1021/jm2005546
PMCID: PMC3208124  PMID: 21955244
propafenone; malaria; microwave epoxide ring opening; hERG
4.  Evaluation of Diarylureas for Activity Against Plasmodium falciparum 
ACS medicinal chemistry letters  2010;1(9):460-465.
A library of diarylurea IGFR inhibitors was screened for activity against chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The 4-aminoquinaldine-derived diarylureas displayed promising antimalarial potency. Further exploration of the B ring of 4-aminoquinaldinyl ureas allowed identification of several quinaldin-4-yl ureas 4{13, 39} and 4{13, 58} sufficiently potent against both 3D7 and K1 strains to qualify as bone fide leads.
doi:10.1021/ml100083c
PMCID: PMC3019604  PMID: 21243104
Malaria; diarylurea
5.  Synthesis and Structure-Activity Relationships of Antimalarial 4-oxo-3-carboxyl quinolones 
Bioorganic & medicinal chemistry  2010;18(7):2756-2766.
Malaria is endemic in tropical and subtropical regions of Africa, Asia, and the Americas. The increasing prevalence of multi-drug-resistant Plasmodium falciparum drives the ongoing need for the development of new antimalarial drugs. In this light, novel scaffolds to which the parasite has not been exposed are of particular interest. Recently, workers at the Swiss Tropical Institute discovered two novel 4-oxo-3-carboxyl quinolones active against the intra-erythrocytic stages of P. falciparum while carrying out rationally directed low-throughput screening of potential antimalarial agents as part of an effort directed by the World Health Organization. Here we report the design, synthesis, and preliminary pharmacologic characterization of a series of analogues of 4-oxo-3-carboxyl quinolones. These studies indicate that the series has good potential for preclinical development.
doi:10.1016/j.bmc.2010.02.013
PMCID: PMC2850272  PMID: 20206533
6.  A C-Terminal Inhibitory Domain Controls the Activity of p63 by an Intramolecular Mechanism 
Molecular and Cellular Biology  2002;22(24):8601-8611.
The human genome is far smaller than originally estimated, and one explanation is that alternative splicing creates greater proteomic complexity than a simple count of open reading frames would suggest. The p53 homologue p63, for example, is a tetrameric transcription factor implicated in epithelial development and expressed as at least six isoforms with widely differing transactivation potential. In particular, p63α isoforms contain a 27-kDa C-terminal region that drastically reduces their activity and is of clear biological importance, since patients with deletions in this C terminus have phenotypes very similar to patients with mutations in the DNA-binding domain. We have identified a novel domain within this C terminus that is necessary and sufficient for transcriptional inhibition and which acts by binding to a region in the N-terminal transactivation domain of p63 homologous to the MDM2 binding site in p53. Based on this mechanism, we provide a model that explains the transactivation potential of homo- and heterotetramers composed of different p63 isoforms and their effect on p53.
doi:10.1128/MCB.22.24.8601-8611.2002
PMCID: PMC139862  PMID: 12446779

Results 1-6 (6)