PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Optimizing catecholaminergic polymorphic ventricular tachycardia therapy in calsequestrin-mutant mice 
BACKGROUND
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal arrhythmia provoked by physical or emotional stress and mediated by spontaneous Ca2+ release and delayed after-depolarizations. Beta-adrenergic blockers are the therapy of choice but fail to control arrhythmia in up to 50% of patients.
OBJECTIVE
To optimize antiarrhythmic therapy in recessively inherited CPVT caused by calsequestrin (CASQ2) mutations.
METHODS
Murine heart rhythm telemetry was obtained at rest, during treadmill exercise, and after injection of epinephrine. The protocol was repeated after injection of different antiarrhythmic drugs. Results were then validated in human patients.
RESULTS
Adult CASQ2 mutant mice had complex ventricular arrhythmia at rest and developed bidirectional and polymorphic ventricular tachycardia on exertion. Class I antiarrhythmic agents (procainamide, lidocaine, flecainide) were ineffective in controlling arrhythmia. Propranolol and sotalol attenuated arrhythmia at rest but failed to prevent VT during sympathetic stimulation. The calcium channel blocker verapamil showed a dose-dependent protection against CPVT. Verapamil was more effective than the dihydropyridine L-type Ca2+ channel blocker nifedipine, and its activity was markedly enhanced when combined with propranolol. Human patients homozygous for CASQ2D307H mutation, remaining symptomatic despite chronic β-blocker therapy, underwent exercise testing according to the Bruce protocol with continuous electrocardiogram recording. Verapamil was combined with propranolol at maximum tolerated doses. Adding verapamil attenuated ventricular arrhythmia and prolonged exercise duration in five of 11 patients.
CONCLUSION
Verapamil is highly effective against catecholamine-induced arrhythmia in mice with CASQ2 mutations and may potentiate the antiarrhythmic activity of β-blockers in humans with CPVT2.
doi:10.1016/j.hrthm.2010.07.004
PMCID: PMC4103178  PMID: 20620233
Ventricular arrhythmia; Sympathetic; Murine model; Human; Calcium channel blocker
2.  The role of mutant protein level in autosomal recessive catecholamine dependent polymorphic ventricular tachycardia (CPVT2) 
Biochemical pharmacology  2013;86(11):1576-1583.
Humans and genetically engineered mice with recessively inherited CPVT develop arrhythmia which may arise due to malfunction or degradation of calsequestrin (CASQ2). We investigated the relation between protein level and arrhythmia severity in CASQ2D307H/D307H (D307H), compared to CASQ2Δ/Δ (KO) and wild type (WT) mice. CASQ2 expression and Ca2+ transients were recorded in cardiomyocytes from neonatal or adult mice. Arrhythmia was studied in vivo using heart rhythm telemetry at rest, exercise and after epinephrine injection. CASQ2 protein was absent in KO heart. Neonatal D307H and WT hearts expressed significantly less CASQ2 protein than the level found in the adult WT. Adult D307H expressed only 20% of CASQ2 protein found in WT. Spontaneous Ca2+ release was more prevalent in neonatal KO cardiomyocytes (89%) compared to 33–36% of either WT or D307H, respectively, p < 0.001. Adult cardiomyocytes from both mutant mice had more Ca2+ abnormalities compared to control (KO: 82%, D307H 63%, WT 12%, p < 0.01). Calcium oscillations were most common in KO cardiomyocytes. We then treated mice with bortezomib to inhibit CASQ2D307H degradation. Bortezomib increased CASQ2 expression in D307H hearts by ~50% (p < 0.05). Bortezomib-treated D307H mice had lower CPVT prevalence and less premature ventricular beats during peak exercise. No benefit against arrhythmia was observed in bortezomib treated KO mice. These results indicate that the mutant CASQ2D307H protein retains some of its physiological function. Its expression decreases with age and is inversely related to arrhythmia severity. Preventing the degradation of mutant protein should be explored as a possible therapeutic strategy in appropriate CPVT2 patients.
doi:10.1016/j.bcp.2013.09.012
PMCID: PMC4103182  PMID: 24070655
Arrhythmia; Calsequestrin; Mouse model; Calcium transients; Protein degradation; Bortezomib
3.  Heme Oxygenase-1 Induction Improves Cardiac Function following Myocardial Ischemia by Reducing Oxidative Stress 
PLoS ONE  2014;9(3):e92246.
Background
Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1), a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI) and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation.
Methods
In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP) and tin protoporphyrin (SnPP) prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured.
Results
HO-1 induction lowered release of lactate dehydrogenase (LDH) and creatine phospho kinase (CK), decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS) was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05). CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01), reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively). CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05). The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05). CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05) in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects.
Conclusions
HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by the increased levels of pAKT with a concomitant inhibition of pGSK3β leading to preserved mitochondrial membrane potential.
doi:10.1371/journal.pone.0092246
PMCID: PMC3962395  PMID: 24658657
4.  P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo 
Purinergic Signalling  2013;9(4):633-642.
Extracellular nucleotides acting via P2 receptors play important roles in cardiovascular physiology/pathophysiology. Pyrimidine nucleotides activate four G protein-coupled P2Y receptors (P2YRs): P2Y2 and P2Y4 (UTP-activated), P2Y6, and P2Y14. Previously, we showed that uridine 5′-triphosphate (UTP) activating P2Y2R reduced infarct size and improved mouse heart function after myocardial infarct (MI). Here, we examined the cardioprotective role of P2Y2R in vitro and in vivo following MI using uridine-5′-tetraphosphate δ-phenyl ester tetrasodium salt (MRS2768), a selective and more stable P2Y2R agonist. Cultured rat cardiomyocytes pretreated with MRS2768 displayed protection from hypoxia [as revealed by lactate dehydrogenase (LDH) release and propidium iodide (PI) binding], which was reduced by P2Y2R antagonist, AR-C118925 (5-((5-(2,8-dimethyl-5H-dibenzo[a,d][7]annulen-5-yl)-2-oxo-4-thioxo-3,4-dihydropyrimidin-1(2H)-yl)methyl)-N-(1H-tetrazol-5-yl)furan-2-carboxamide). In vivo, echocardiography and infarct size staining of triphenyltetrazolium chloride (TTC) in 3 groups of mice 24 h post-MI: sham, MI, and MI+MRS2768 indicated protection. Fractional shortening (FS) was higher in MRS2768-treated mice than in MI alone (40.0 ± 3.1 % vs. 33.4 ± 2.7 %, p < 0.001). Troponin T and tumor necrosis factor-α (TNF-α) measurements demonstrated that MRS2768 pretreatment reduced myocardial damage (p < 0.05) and c-Jun phosphorylation increased. Thus, P2Y2R activation protects cardiomyocytes from hypoxia in vitro and reduces post-ischemic myocardial damage in vivo.
doi:10.1007/s11302-013-9374-3
PMCID: PMC3889391  PMID: 23828651
Cardioprotection; Heart; Ischemia/hypoxia; P2Y2 receptors
5.  Popeye Domain Containing 1 (Popdc1/Bves) Is a Caveolae-Associated Protein Involved in Ischemia Tolerance 
PLoS ONE  2013;8(9):e71100.
Popeye domain containing1 (Popdc1), also named Bves, is an evolutionary conserved membrane protein. Despite its high expression level in the heart little is known about its membrane localization and cardiac functions. The study examined the hypothesis that Popdc1 might be associated with the caveolae and play a role in myocardial ischemia tolerance. To address these issues, we analyzed hearts and cardiomyocytes of wild type and Popdc1-null mice. Immunoconfocal microscopy revealed co-localization of Popdc1 with caveolin3 in the sarcolemma, intercalated discs and T-tubules and with costameric vinculin. Popdc1 was co-immunoprecipitated with caveolin3 from cardiomyocytes and from transfected COS7 cells and was co-sedimented with caveolin3 in equilibrium density gradients. Caveolae disruption by methyl-β-cyclodextrin or by ischemia/reperfusion (I/R) abolished the cellular co-localization of Popdc1 with caveolin3 and modified their density co-sedimentation. The caveolin3-rich fractions of Popdc1-null hearts redistributed to fractions of lower buoyant density. Electron microscopy showed a statistically significant 70% reduction in caveolae number and a 12% increase in the average diameter of the remaining caveolae in the mutant hearts. In accordance with these changes, Popdc1-null cardiomyocytes displayed impaired [Ca+2]i transients, increased vulnerability to oxidative stress and no pharmacologic preconditioning. In addition, induction of I/R injury to Langendorff-perfused hearts indicated a significantly lower functional recovery in the mutant compared with wild type hearts while their infarct size was larger. No improvement in functional recovery was observed in Popdc1-null hearts following ischemic preconditioning. The results indicate that Popdc1 is a caveolae-associated protein important for the preservation of caveolae structural and functional integrity and for heart protection.
doi:10.1371/journal.pone.0071100
PMCID: PMC3774711  PMID: 24066022
6.  Bone Marrow and Nonbone Marrow Toll Like Receptor 4 Regulate Acute Hepatic Injury Induced by Endotoxemia 
PLoS ONE  2013;8(8):e73041.
Background
Toll-like receptors (TLRs) are expressed in immune cells and hepatocytes. We examined whether hepatic Toll-like receptor 4 (TLR4) is involved in the acute hepatic injury caused by the administration of lipopolysaccharide (LPS) (septic shock model).
Methods
Wild type (WT), TLR4-deficient and chimera mice underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the liver or in the immune-hematopoietic system. Mice were injected with LPS and sacrificed 4 hours later.
Results
Compared to TLR4 deficient mice, WT mice challenged with LPS displayed increased serum liver enzymes and hepatic cellular inflammatory infiltrate together with increased serum and hepatic levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNFα) ,Up-regulation of hepatic mRNA encoding TLR4, IκB and c-jun expressions. TLR4 mutant mice transplanted with WT bone marrow were more protected than WT chimeric mice bearing TLR4 mutant hemopoietic cells from LPS, as seen by IL-1β and TNFα levels. We then used hepatocytes (Huh7) and macrophages from monocytic cell lines to detect TLR mRNA expression. Macrophages expressed a significantly higher level of TLR4 mRNA and TLR2 (more than 3000- and 8000-fold respectively) compared with the hepatocyte cell line. LPS administration induced TLR4 activation in a hepatocyte cell line in a dose dependent manner while TLR2 mRNA hardly changed.
Conclusions
These results suggest that TLR4 activation of hepatocytes participate in the immediate response to LPS induced hepatic injury. However, in this response, the contribution of TLR4 on bone marrow derived cells is more significant than those of the hepatocytes. The absence of the TLR4 gene plays a pivotal role in reducing hepatic LPS induced injury.
doi:10.1371/journal.pone.0073041
PMCID: PMC3744496  PMID: 23977376
7.  Anti-ischemic effects of multivalent dendrimeric A3 adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart 
Pharmacological Research  2011;65(3):338-346.
Adenosine released during myocardial ischemia mediates cardioprotective preconditioning. Multivalent drugs covalently bound to nanocarriers may differ greatly in chemical and biological properties from the corresponding monomeric agents. Here, we conjugated chemically functionalized nucleosides to poly(amidoamine) (PAMAM) dendrimeric polymers and investigated their effects in rat primary cardiac cell cultures and in the isolated heart. Three conjugates of A3 adenosine receptor (AR) agonists, chain-functionalized at the C2 or N6 position, were cardioprotective, with greater potency than monomeric agonist Cl-IB-MECA. Multivalent amide-linked MRS5216 was selective for A1 and A3ARs, and triazole-linked MRS5246 and MRS5539 (optionally containing fluorescent label) were A3AR-selective. The conjugates protected ischemic rat cardiomyocytes, an effect blocked by an A3AR antagonist MRS1523, and isolated hearts with significantly improved infarct size, rate of pressure product, and rate of contraction and relaxation. Thus, strategically derivatized nucleosides tethered to biocompatible polymeric carriers display enhanced cardioprotective potency via activation of A3AR on the cardiomyocyte surface.
doi:10.1016/j.phrs.2011.11.013
PMCID: PMC3278557  PMID: 22154845
dendrimer; cardiomyocyte; adenosine receptor; ischemia; isolated heart; rat
8.  ‘Reversine’ and its 2-Substituted Adenine Derivatives as Potent and Selective A3 Adenosine Receptor Antagonists 
Journal of medicinal chemistry  2005;48(15):4910-4918.
The dedifferentiation agent ‘reversine’ (2-(4-morpholinoanilino)-N6-cyclohexyladenine 2) was found to be a moderately potent antagonist for the human A3 adenosine receptor (AR) with a Ki value 0.66 μM. This result prompted an exploration of the structure-activity relationship of related derivatives, synthesized via sequential substitution of 6-chloro-2-fluoropurine with selected nucleophiles. Optimization of substituents at these two positions identified 2-phenylamino-N6-(cyclohexyl)adenine 12, 2-phenylamino-N6-(cycloheptyl)adenine 19, and 2-phenylamino-N6-(endo-norbornyl)adenine 21 as potent A3 AR ligands with Ki values of 51, 42 and 37 nM, respectively, with 30 – 200-fold selectivity in comparison to A1 and A2A ARs. The most selective A3 AR antagonist (>200-fold) was 2-phenyloxy-N6-(cyclohexyl)adenine 22. 9-Methylation of 12, but not 19, was well tolerated in A3 AR binding. Extension of the 2-phenylamino group to 2-benzyl- and 2-(2-phenylethylamino) reduced affinity. In the series of 2-phenylamino, 2-phenyloxy, and 2-phenylthio substitutions, the order of affinity at the A3 AR was oxy ≥ amino > thio. Selected derivatives, including reversine (KB value of 466 nM in Schild analysis), competitively antagonized the functional effects of a selective A3 AR agonist, i.e. inhibition of forskolin-stimulated cAMP production in stably transfected Chinese hamster ovary (CHO) cells. These results are in agreement with other studies suggesting the presence of a lipophilic pocket in the AR binding site that is filled by moderately sized cycloalkyl rings at the N6 position of both adenine and adenosine derivatives. Thus, the compound series reported herein comprise an important new series of selective A3 AR antagonists. We were unable to reproduce the dedifferentiation effect of reversine, previously reported, or to demonstrate any connection between A3 AR antagonist effects and dedifferentiation.
doi:10.1021/jm050221l
PMCID: PMC3474371  PMID: 16033270
9.  Role of adenosine A1 and A3 receptors in regulation of cardiomyocyte homeostasis after mitochondrial respiratory chain injury 
Activation of either the A1 or the A3 adenosine receptor (A1R or A3R, respectively) elicits delayed cardioprotection against infarction, ischemia, and hypoxia. Mitochondrial contribution to the progression of cardiomyocyte injury is well known; however, the protective effects of adenosine receptor activation in cardiac cells with a respiratory chain deficiency are poorly elucidated. The aim of our study was to further define the role of A1R and A3R activation on functional tolerance after inhibition of the terminal link of the mitochondrial respiratory chain with sodium azide, in a state of normoxia or hypoxia, compared with the effects of the mitochondrial ATP-sensitive K+ channel opener diazoxide. Treatment with 10 mM sodium azide for 2 h in normoxia caused a considerable decrease in the total ATP level; however, activation of adenosine receptors significantly attenuated this decrease. Diazoxide (100 µM) was less effective in protection. During treatment of cultured cardiomyocytes with hypoxia in the presence of 1 mM sodium azide, the A1R agonist 2-chloro-N6-cyclopentyladenosine was ineffective, whereas the A3R agonist 2-chloro-N6-iodobenzyl-5′-N-methylcarboxamidoadenosine (Cl-IB-MECA) attenuated the decrease in ATP level and prevented cell injury. Cl-IB-MECA delayed the dissipation in the mitochondrial membrane potential during hypoxia in cells impaired in the mitochondrial respiratory chain. In cells with elevated intracellular Ca2+ concentration after hypoxia and treatment with NaN3 or after application of high doses of NaN3, Cl-IB-MECA immediately decreased the elevated intracellular Ca2+ concentration toward the diastolic control level. The A1R agonist was ineffective. This may be especially important for the development of effective pharmacological agents, because mitochondrial dysfunction is a leading factor in the pathophysiological cascade of heart disease.
doi:10.1152/ajpheart.01157.2004
PMCID: PMC3457058  PMID: 15681707
Ca2+ transience; hypoxia; ATP-sensitive K+ channel; sodium azide; heart disease; ischemia
10.  Involvement of uracil nucleotides in protection of cardiomyocytes from hypoxic stress 
Biochemical pharmacology  2005;69(8):1215-1223.
Cardiomyocytes express one or more subtypes of P2 receptors for extracellular nucleotides. P2 purinoceptors, which are activated by nucleotides, are classified as P2X or P2Y: P2X receptors are ligand-gated intrinsic ion channels, and P2Y receptors are G protein-coupled receptors. Extracellular pyrimidine and purine nucleotides are released from the heart during hypoxia. Although the cardioprotective effects of purines acting via purinoceptors were studied intensively, the physiological role of uracil nucleotide-responsive P2Y2, P2Y4, P2Y6, and P2Y14 receptors is still unclear, especially in the cardiovascular system. This study revealed that uridine-5′-triphosphate (UTP) protected cultured rat cardiomyocytes during hypoxia and explored the UTP signaling pathway leading to this cardioprotection. We found that UTP, but not UDP or uridine, significantly reduced cardiomyocyte death induced by hypoxia. Incubation with UTP for 1 h, before exposure to hypoxic conditions, protected the cells 24 h later. The cardioprotective effect of UTP was reduced in the presence of the P2 antagonist suramin. In addition, UTP caused a transient increase of [Ca2+]i in cardiomyocytes. Pyridoxal-5′-phosphate-6-azophenyl-2,4-disulfonate (PPADS) or Reactive blue 2 (RB-2), other antagonists of P2 receptors, abolished the [Ca2+]i elevation caused by UTP. We used various inhibitors of the Ca2+ signaling pathway to show that UTP elevated levels of [Ca2+]i, originating from intracellular sources, via activation of phospholipase C and the IP3 receptor. Interestingly, these inhibitors of the Ca2+ signaling pathway did not prevent the immediate protective effect caused by UTP. Although mitochondrial KATP channels are involved in other preconditioning mediator pathways, the involvement of these channels in the cardioprotective effect induced by UTP was ruled out, because 5-hydroxydecanoic acid (5-HD), a specific inhibitor of these channels, did not prevent the protection.
doi:10.1016/j.bcp.2005.01.018
PMCID: PMC3449160  PMID: 15794942
P2Y2 nucleotide receptor; G protein-coupled receptor; Pyrimidines; Cardioprotection; Ischemia; Preconditioning
11.  Involvement of UTP in protection of cardiomyocytes from hypoxic stress1 
Massive amounts of nucleotides are released during ischemia in the cardiovascular system. Although the effect of the purine nucleotide ATP has been intensively studied in myocardial infarction, the cardioprotective role of the pyrimidine nucleotide UTP is still unclear, especially in the cardiovascular system. The purpose of our study was to elucidate the protective effects of UTP receptor activation and describe the downstream cascade for the cardioprotective effect. Cultured cardiomyocytes and left anterior descending (LAD)-ligated rat hearts were pretreated with UTP and exposed to hypoxia–ischemia. In vitro experiments revealed that UTP reduced cardiomyocyte death induced by hypoxia, an effect that was diminished by suramin. UTP caused several effects that could trigger a cardioprotective response: a transient increase of [Ca2+]i, an effect that was abolished by PPADS or RB2; phosphorylation of the kinases ERK and Akt, which was abolished by U0126 and LY294002, respectively; and reduced mitochondrial calcium elevation after hypoxia. In vivo experiments revealed that UTP maintained ATP levels, improved mitochondrial activity, and reduced infarct size. In conclusion, UTP administrated before ischemia reduced infarct size and improved myocardial function. Reduction of mitochondrial calcium overload can partially explain the protective effect of UTP after hypoxic–ischemic injury.
doi:10.1139/Y09-010
PMCID: PMC3415250  PMID: 19370082
calcium; cardioprotection; cardiac cell culture; heart; hypoxia; ischemia; nucleotides; preconditioning; pyrimidines
12.  Multivalent dendrimeric and monomeric adenosine agonists attenuate cell death in HL-1 mouse cardiomyocytes expressing the A3 receptor 
Biochemical pharmacology  2010;80(2):188-196.
Multivalent dendrimeric conjugates of GPCR ligands may have increased potency or selectivity in comparison to monomeric ligands, a phenomenon that was tested in a model of cytoprotection in mouse HL-1 cardiomyocytes. Quantitative RT-PCR indicated high expression levels of endogenous A1 and A2A adenosine receptors (ARs), but not of A2B and A3ARs. Activation of the heterologously expressed human A3AR in HL-1 cells by AR agonists significantly attenuated cell damage following 4 h exposure to H2O2 (750 μM) but not in untransfected cells. The A3 agonist IB-MECA (EC50 3.8 μM) and the non-selective agonist NECA (EC50 3.9 μM) protected A3 AR-transfected cells against H2O2 in a concentration-dependent manner, as determined by lactate dehydrogenase release. A generation 5.5 PAMAM (polyamidoamine) dendrimeric conjugate of a N6-chain-functionalized adenosine agonist was synthesized and its mass indicated an average of 60 amide-linked nucleoside moieties out of 256 theoretical attachment sites. It nonselectively activated the A3AR to inhibit forskolin-stimulated cAMP formation (IC50 66 nM) and, similarly, protected A3–transfected HL-1 cells from apoptosis-inducing H2O2 with greater potency (IC50 35 nM) than monomeric nucleosides. Thus, a PAMAM conjugate retained AR binding affinity and displayed greatly enhanced cardioprotective potency.
doi:10.1016/j.bcp.2010.03.020
PMCID: PMC2880883  PMID: 20346920
cardioprotection; nucleoside; G protein-coupled receptor; dendrimers; polymeric drugs; HL-1 cells
13.  Enhanced A3 adenosine receptor selectivity of multivalent nucleoside-dendrimer conjugates 
Background
An approach to use multivalent dendrimer carriers for delivery of nucleoside signaling molecules to their cell surface G protein-coupled receptors (GPCRs) was recently introduced.
Results
A known adenosine receptor (AR) agonist was conjugated to polyamidoamine (PAMAM) dendrimer carriers for delivery of the intact covalent conjugate to on the cell surface. Depending on the linking moiety, multivalent conjugates of the N6-chain elongated functionalized congener ADAC (N6-[4-[[[4-[[[(2-aminoethyl)amino]carbonyl]methyl]anilino]carbonyl]methyl]phenyl]-adenosine) achieved unanticipated high selectivity in binding to the cytoprotective human A3 AR, a class A GPCR. The key to this selectivity of > 100-fold in both radioreceptor binding (Ki app = 2.4 nM) and functional assays (EC50 = 1.6 nM in inhibition of adenylate cyclase) was maintaining a free amino group (secondary) in an amide-linked chain. Attachment of neutral amide-linked chains or thiourea-containing chains preserved the moderate affinity and efficacy at the A1 AR subtype, but there was no selectivity for the A3 AR. Since residual amino groups on dendrimers are associated with cytotoxicity, the unreacted terminal positions of this A3 AR-selective G2.5 dendrimer were present as carboxylate groups, which had the further benefit of increasing water-solubility. The A3 AR selective G2.5 dendrimer was also visualized binding the membrane of cells expressing the A3 receptor but did not bind cells that did not express the receptor.
Conclusion
This is the first example showing that it is feasible to modulate and even enhance the pharmacological profile of a ligand of a GPCR based on conjugation to a nanocarrier and the precise structure of the linking group, which was designed to interact with distal extracellular regions of the 7 transmembrane-spanning receptor. This ligand tool can now be used in pharmacological models of tissue rescue from ischemia and to probe the existence of A3 AR dimers.
doi:10.1186/1477-3155-6-12
PMCID: PMC2582240  PMID: 18947419
14.  Insights into the cardioprotective function of adenosine A1 and A3 receptors 
Experimental & Clinical Cardiology  2002;7(2-3):138-145.
OBJECTIVES:
Cardioprotection (delaying of irreversible damage in hypoxia or prevention of doxorubicin [DOX] toxicity) is achieved by increasing the energy supply, or decreasing the energy demand in the cell and may be regulated through adenosine (ADO) receptor (AR) signalling. The aim of this study was to define of the protective role of ADO A1R and A3R against these two different kinds of stress conditions via direct action on isolated cardiomyocytes. Effects of A1 and A3 adenosine receptors were assessed by comparing morphological-functional tolerance, cellular energy state and contribution of the mitochondrial KATP channels during development of hypoxia and DOX cytotoxicity.
METHODS:
The primary cardiac myocyte cultures were treated in a hypoxic chamber of N2 (100%) in glucose-free media. A second group of cells were treated on day 4 in culture with 0.5 to 5 μM DOX for 18 h and then incubated in drug-free growth medium for an additional 24 h or 72 h. The hypoxic and cytotoxic damage was characterized by morphological and biochemical evaluations.
RESULTS:
The A1R and A3R selective agonists (CCPA and Cl-IB-MECA, respectively) significantly decreased damage to cardiac myocytes under hypoxic conditions. Activation of both A1R and A3R together (100 nM) was more efficient in protection against hypoxia than by each one alone. The A3R agonist Cl-IB-MECA (100 nM) shows cardioprotective activity to the DOX-treated cells; however, the A1R agonist CCPA (10 nM to 10 μM) was not effective in protection against DOX toxicity.
CONCLUSION:
Activation of both the ADO receptors (A1R and A3R) leads to positive beneficial effects in cultured cardiomyocytes in 90 min hypoxia, but only A3R activation renders positive response against slowly developed DOX toxicity. Hence, the cascade of events involved in cardioprotection appears to be distinct for A1 and A3 receptor signalling.
PMCID: PMC2719165  PMID: 19649238
Adenosine receptors; Cardiomyocytes; Cardioprotection; Doxorubicin; Hypoxia

Results 1-14 (14)