PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Novel substrate-based inhibitors of human glutamate carboxypeptidase II with enhanced lipophilicity 
Journal of medicinal chemistry  2011;54(21):7535-7546.
Virtually all low molecular weight inhibitors of human glutamate carboxypeptidase II (GCPII) are highly polar compounds that have limited use in settings where more lipophilic molecules are desired. Here we report the identification and characterization of GCPII inhibitors with enhanced liphophilicity that are derived from a series of newly identified dipeptidic GCPII substrates featuring non-polar aliphatic side chains at the C-terminus. To analyze the interactions governing the substrate recognition by GCPII, we determined crystal structures of the inactive GCPII(E424A) mutant in complex with selected dipeptides and complemented the structural data with quantum mechanics/molecular mechanics calculations. Results reveal the importance of non-polar interactions governing GCPII affinity towards novel substrates as well as formerly unnoticed plasticity of the S1′ specificity pocket. Based on those data, we designed, synthesized and evaluated a series of novel GCPII inhibitors with enhanced lipophilicity, with the best candidates having low nanomolar inhibition constants and clogD > -0.3. Our findings offer new insights into the design of more lipophilic inhibitors targeting GCPII.
doi:10.1021/jm200807m
PMCID: PMC3222833  PMID: 21923190
PSMA; NAALADase; GCPII; zinc peptidase; folate hydrolase; inhibition; quantum mechanics/molecular mechanics (QM/MM)
2.  Multireference Ab Initio Calculations of g tensors for Trinuclear Copper Clusters in Multicopper Oxidases 
The journal of physical chemistry. B  2010;114(22):7692-7702.
EPR spectroscopy has proven to be an indispensable tool in elucidating the structure of metal sites in proteins. In recent years, experimental EPR data have been complemented by theoretical calculations, which have become a standard tool of many quantum chemical packages. However, there have only been a few attempts to calculate EPR g tensors for exchange-coupled systems with more than two spins. In this work, we present a quantum chemical study of structural, electronic, and magnetic properties of intermediates in the reaction cycle of multicopper oxidases and of their inorganic models. All these systems contain three copper(II) ions bridged by hydroxide or O2− anions and their ground states are antiferromagnetically coupled doublets. We demonstrate that only multireference methods, such as CASSCF/CASPT2 or MRCI can yield qualitatively correct results (compared to the experimental values) and consider the accuracy of the calculated EPR g tensors as the current benchmark of quantum chemical methods. By decomposing the calculated g tensors into terms arising from interactions of the ground state with the various excited states, the origin of the zero-field splitting is explained. The results of the study demonstrate that a truly quantitative prediction of the g tensors of exchange-coupled systems is a great challenge to contemporary theory. The predictions strongly depend on small energy differences that are difficult to predict with sufficient accuracy by any quantum chemical method that is applicable to systems of the size of our target systems.
doi:10.1021/jp103098r
PMCID: PMC2885356  PMID: 20469875
3.  General Base Catalysis for Cleavage by the Active-Site Cytosine of the Hepatitis Delta Virus Ribozyme: QM/MM Calculations Establish Chemical Feasibility 
The journal of physical chemistry. B  2008;112(35):11177-11187.
The hepatitis delta virus (HDV) ribozyme is an RNA motif embedded in human pathogenic HDV RNA. Previous experimental studies have established that the active-site nucleotide C75 is essential for self-cleavage of the ribozyme, although its exact catalytic role in the process remains debated. Structural data from X-ray crystallography generally indicate that C75 acts as the general base that initiates catalysis by deprotonating the 2′-OH nucleophile at the cleavage site, while a hydrated magnesium ion likely protonates the 5′-oxygen leaving group. In contrast, some mechanistic studies support the role of C75 acting as general acid and thus being protonated before the reaction. We report combined quantum chemical/molecular mechanical calculations for the C75 general base pathway, utilizing the available structural data for the wild type HDV genomic ribozyme as a starting point. Several starting configurations differing in magnesium ion placement were considered and both one-dimensional and two-dimensional potential energy surface scans were used to explore plausible reaction paths. Our calculations show that C75 is readily capable of acting as the general base, in concert with the hydrated magnesium ion as the general acid. We identify a most likely position for the magnesium ion, which also suggests it acts as a Lewis acid. The calculated energy barrier of the proposed mechanism, ~20 kcal/mol, would lower the reaction barrier by ~15 kcal/mol compared to the uncatalyzed reaction and is in good agreement with experimental data.
doi:10.1021/jp802592z
PMCID: PMC2566740  PMID: 18686993
catalysis; RNA; MPW1K; CCSD(T); ONIOM

Results 1-3 (3)