Search tips
Search criteria

Results 1-25 (175)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  The Discovery and Characterization of ML218: A Novel, Centrally Active T-Type Calcium Channel Inhibitor with Robust Effects in STN Neurons and in a Rodent Model of Parkinson’s Disease 
ACS chemical neuroscience  2011;2(12):730-742.
T-type Ca2+ channel inhibitors hold tremendous therapeutic potential for the treatment of pain, epilepsy, sleep disorders, essential tremor and other neurological disorders; however, a lack of truly selective tools has hindered basic research, and selective tools from the pharmaceutical industry are potentially burdened with intellectual property (IP) constraints. Thus, an MLPCN high-throughput screen (HTS) was conducted to identify novel T-type Ca2+ channel inhibitors free from IP constraints, and freely available through the MLPCN, for use by the biomedical community to study T-type Ca2+ channels. While the HTS provided numerous hits, these compounds could not be optimized to the required level of potency to be appropriate tool compounds. Therefore, a scaffold hopping approach, guided by SurflexSim, ultimately afforded ML218 (CID 45115620) a selective T-Type Ca2+ (Cav3.1, Cav3.2, Cav3.3) inhibitor (Cav3.2, IC50 = 150 nM in Ca2+ flux; Cav3.2 IC50 = 310 nM and Cav3.3 IC50 = 270 nM, respectively in patch clamp electrophysiology) with good DMPK properties, acceptable in vivo rat PK and excellent brain levels. Electrophysiology studies in subthalamic nucleus (STN) neurons demonstrated robust effects of ML218 on the inhibition of T-Type calcium current, inhibition of low threshold spike and rebound burst activity. Based on the basal ganglia circuitry in Parkinson’s disease (PD), the effects of ML218 in STN neurons suggest a therapeutic role for T-type Ca2+ channel inhibitors, and ML218 was found to be orally efficacious in haloperidol-induced catalepsy, a preclinical PD model, with comparable efficacy to an A2A antagonist, a clinically validated PD target. ML218 proves to be a powerful new probe to study T-Type Ca2+ function in vitro and in vivo, and freely available.
PMCID: PMC3285241  PMID: 22368764
T-Type calcium channel; inhibitor; electrophysiology; Parkinson’s disease
2.  Selective inhibition of the Kir2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR and pharmacological characterization of ML133 
ACS chemical biology  2011;6(8):845-856.
The Kir inward rectifying potassium channels have a broad tissue distribution and are implicated in a variety of functional roles. At least seven classes (Kir1 – Kir7) of structurally related inward rectifier potassium channels are known, and there are no selective small molecule tools to study their function. In an effort to develop selective Kir2.1 inhibitors, we performed a high-throughput screen (HTS) of more than 300,000 small molecules within the MLPCN for modulators of Kir2.1 function. Here we report one potent Kir2.1 inhibitor, ML133, which inhibits Kir2.1 with IC50 of 1.8 μM at pH 7.4 and 290 nM at pH 8.5, but exhibits little selectivity against other members of Kir2.x family channels. However, ML133 has no effect on Kir1.1 (IC50 > 300 μM), and displays weak activity for Kir4.1 (76 μM) and Kir7.1 (33 μM), making ML133 the most selective small molecule inhibitor of the Kir family reported to date. Due to the high homology within the Kir family, the channels share a common design of a pore region flanked by two transmembrane domains, identification of site(s) critical for isoform specificity would be an important basis for future development of more specific and potent Kir inhibitors. Using chimeric channels between Kir2.1 and Kir1.1 and site-directed mutagenesis, we have identified D172 and I176 within M2 segment of Kir2.1 as molecular determinants critical for the potency of ML133 mediated inhibition. Double mutation of the corresponding residues of Kir1.1 to those of Kir2.1 (N171D and C175I) transplants ML133 inhibition to Kir1.1. Together, the combination of a potent, Kir2 family selective inhibitor and identification of molecular determinants for the specificity provides both a tool and a model system to enable further mechanistic studies of modulation of Kir2 inward rectifier potassium channels.
PMCID: PMC3177608  PMID: 21615117
Kir2.1; inward rectifying potassium channel; ion channel; mutagenesis; structure-activity-relationship; medicinal chemistry; ion works; patch clamp; high throughput screening; MLPCN
3.  Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system 
ACS chemical neuroscience  2010;1(2):104-121.
Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M1-M5. Of the mAChR subtypes, M1 is among the most heavily expressed in regions that are critical for learning and memory, and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M1 and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M1. Using a functional HTS screen and subsequent diversity-oriented synthesis approach we have discovered a novel series of highly selective M1 allosteric agonists. These compounds activate M1 with EC50 values in the 150 nM to 500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M1 receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M1 allosteric agonists provides critical research tools to allow dissection of M1-mediated effects in the CNS and potential leads for novel treatments for Alzheimer’s disease and schizophrenia.
PMCID: PMC3180826  PMID: 21961051
mAChR; muscarinic; allosteric; agonist; cognition
4.  Design, Synthesis and Biological Evaluation of Halogenated N-(2-(4-Oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethylbenzamides: Discovery of an Isoform-Selective Small Molecule Phospholipase D2 (PLD2) Inhibitor 
Journal of medicinal chemistry  2010;53(18):6706-6719.
Phospholipase D (PLD) catalyzes the conversion of phosphatidylcholine to the lipid second messenger phosphatidic acid. Two mammalian isoforms of PLD have been identified, PLD1 and PLD2, which share 53% sequence identity and are subject to different regulatory mechanisms. Inhibition of PLD enzymatic activity leads to increased cancer cell apoptosis, decreased cancer cell invasion and decreased metastasis of cancer cells; therefore, the development of isoform-specific, PLD inhibitors is a novel approach for the treatment of cancer. Previously, we developed potent dual PLD1/PLD2, PLD1-specific (>1,700-fold selective) and moderately PLD2 preferring (>10-fold preferring) inhibitors. Here, we describe a matrix library strategy that afforded the most potent (PLD2 IC50 = 20 nM) and selective (75-fold selective versus PLD1) PLD2 inhibitor to date, N-(2(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide (22a), with an acceptable DMPK profile. Thus, these new isoform-selective PLD inhibitors will enable researchers to dissect the signaling roles and therapeutic potential of individual PLD isoforms to an unprecedented degree.
PMCID: PMC3179181  PMID: 20735042
phospholipase D; PLD; cancer; isoform; allosteric
5.  Centrally Active Allosteric Potentiators of the M4 Muscarinic Acetylcholine Receptor Reverse Amphetamine-Induced Hyperlocomotor Activity in Ratss 
Previous clinical and animal studies suggest that selective activators of M1 and/or M4 muscarinic acetylcholine receptors (mAChRs) have potential as novel therapeutic agents for treatment of schizophrenia and Alzheimer’s disease. However, highly selective centrally penetrant activators of either M1 or M4 have not been available, making it impossible to determine the in vivo effects of selective activation of these receptors. We previously identified VU10010 [3-amino-N-(4-chlorobenzyl)-4, 6-dimethylthieno[2,3-b]pyridine-2-carboxamide] as a potent and selective allosteric potentiator of M4 mAChRs. However, unfavorable physiochemical properties prevented use of this compound for in vivo studies. We now report that chemical optimization of VU10010 has afforded two centrally penetrant analogs, VU0152099 [3-amino-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide] and VU0152100 [3-amino-N-(4-methoxybenzyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide], that are potent and selective positive allosteric modulators of M4. VU0152099 and VU0152100 had no agonist activity but potentiated responses of M4 to acetylcholine. Both compounds were devoid of activity at other mAChR subtypes or at a panel of other GPCRs. The improved physiochemical properties of VU0152099 and VU0152100 allowed in vivo dosing and evaluation of behavioral effects in rats. Interestingly, these selective allosteric potentiators of M4 reverse amphetamine-induced hyperlocomotion in rats, a model that is sensitive to known antipsychotic agents and to nonselective mAChR agonists. This is consistent with the hypothesis that M4 plays an important role in regulating midbrain dopaminergic activity and raises the possibility that positive allosteric modulation of M4 may mimic some of the antipsychotic-like effects of less selective mAChR agonists.
PMCID: PMC2745822  PMID: 18772318
6.  Discovery of Desketoraloxifene Analogues as Inhibitors of Mammalian, Pseudomonas aeruginosa, and NAPE Phospholipase D Enzymes 
ACS chemical biology  2014;10(2):421-432.
Phospholipase D (PLD) hydrolyses cellular lipids to produce the important lipid second messenger phosphatidic acid. A PLD enzyme expressed by Pseudomonas aeruginosa (PldA) has been shown to be important in bacterial infection, and NAPE-PLD has emerged as being key in the synthesis of endocannabinoids. In order to better understand the biology and therapeutic potential of these less explored PLD enzymes, small molecule tools are required. Selective estrogen receptor modulators (SERMs) have been previously shown to inhibit mammalian PLD (PLD1 and PLD2). By targeted screening of a library of SERM analogues, additional parallel synthesis, and evaluation in multiple PLD assays, we discovered a novel desketoraloxifene-based scaffold that inhibited not only the two mammalian PLDs but also structurally divergent PldA and NAPE-PLD. This finding represents an important first step toward the development of small molecules possessing universal inhibition of divergent PLD enzymes to advance the field.
PMCID: PMC4336625  PMID: 25384256
7.  ACS Chemical Neuroscience in 2014 
PMCID: PMC3931298
8.  Total Synthesis of Stemaphylline N-oxide and Related C9a-Epimeric Analogs 
PMCID: PMC3925759  PMID: 23956045
stemaphylline; stemaphylline N-oxide; alkaloid; relay ring closing metathesis; total synthesis
9.  Novel GlyT1 inhibitor chemotypes by scaffold hopping. Part 2. Development of a [3.3.0]-based series and other piperidine bioisosteres 
This letter describes the development and SAR of a novel series of GlyT1 inhibitors derived from a scaffold hopping approach, in lieu of an HTS campaign, which provided intellectual property position. Members within this new [3.3.0]-based series displayed excellent GlyT1 potency, selectivity, free fraction, and modest CNS penetration. Moreover, enantioselective GlyT1 inhibition was observed, within this novel series and a number of other piperidine bioisosteric cores.
PMCID: PMC3951244  PMID: 24462664
GlyT1; Scaffold hopping; transporter; schizophrenia
10.  Novel GlyT1 inhibitor chemotypes by scaffold hopping. Part 1. Development of a potent and CNS penetrant [3.1.0]-based lead 
This letter describes the development and SAR of a novel series of GlyT1 inhibitors derived from a scaffold hopping approach that provided a robust intellectual property position, in lieu of a traditional, expensive HTS campaign. Members within this new [3.1.0]-based series displayed excellent GlyT1 potency, selectivity, free fraction, CNS penetration and efficacy in a preclinical model of schizophrenia (prepulse inhibition).
PMCID: PMC3951249  PMID: 24461352
GlyT1; Scaffold hopping; transporter; schizophrenia
11.  High-Affinity Small-Molecule Inhibitors of the Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a Natural Protein–Protein Interaction 
Journal of Medicinal Chemistry  2014;57(4):1543-1556.
The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ∼288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interaction with IC50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.
PMCID: PMC3983337  PMID: 24472025
12.  Classics in Chemical Neuroscience: Fluoxetine (Prozac) 
ACS Chemical Neuroscience  2013;5(1):14-23.
Fluoxetine (Prozac) was the first major breakthrough for the treatment of depression since the introduction of tricyclic antidepressants (TCAs) and monoamine oxidase inhibitors (MAOIs) nearly 30 years earlier. It was the first selective serotonin reuptake inhibitor (SSRI) approved by the United States Food and Drug Administration, offering superior efficacy and reduced side effects relative to TCAs and MAOIs. Though a debate remains regarding the exact mechanism by which the clinical efficacy of fluoxetine is manifested, the importance of fluoxetine and related SSRIs to the field is unquestionable. The trade name Prozac has permeated popular culture, helping to raise awareness of depression and to diminish the prevalence of long-standing stigmas associated with this illness. In this Review, we will showcase the history and importance of fluoxetine to neuroscience in general, as well as for the treatment of depression, and review the synthesis, pharmacology, drug metabolism, and adverse effects of fluoxetine.
PMCID: PMC3894728
Fluoxetine; Prozac; antidepressant; depression; SSRI; serotonin
13.  Drugs for Allosteric Sites on Receptors 
The presence of druggable, topographically distinct allosteric sites on a wide range of receptor families has offered new paradigms for small molecules to modulate receptor function. Moreover, ligands that target allosteric sites offer significant advantages over the corresponding orthosteric ligands in terms of selectivity, including subtype selectivity within receptor families, and can also impart improved physicochemical properties. However, allosteric ligands are not a panacea. Many chemical issues (e.g., flat structure-activity relationships) and pharmacological issues (e.g., ligand-biased signaling) that are allosteric centric have emerged. Notably, the fact that allosteric sites are less evolutionarily conserved leads to improved selectivity; however, this can also lead to species differences that can hinder safety assessment. Many allosteric ligands possess molecular switches, wherein a small structural change (chemical or metabolic) can modulate the mode of pharmacology or receptor subtype selectivity. As the field has matured, as described here, key principles and strategies have emerged for the design of ligands/drugs for allosteric sites.
PMCID: PMC4063350  PMID: 24111540
G protein–coupled receptors; GPCRs; kinases; phospholipases; molecular switch; drug discovery; structure-activity relationship; SAR
14.  Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape 
Akt plays a pivotal role in cell survival and proliferation through a number of downstream effectors; unregulated activation of the PI3K/PTEN/Akt pathway is a prominent feature of many human cancers. Akt is considered an attractive target for cancer therapy by the inhibition of Akt alone or in combination with standard cancer chemotherapeutics. Both preclinical animal studies and clinical trials in humans have validated Akt as an important target of cancer drug discovery.
Area covered
A historical perspective of Akt inhibitors, including PI analogs, ATP-competitive and allosteric Akt inhibitors, along with other inhibitory mechanisms are reviewed in this paper with a focus on issued patents, patent applications and a summary of clinical trial updates since the last review in 2007.
Expert opinion
A vast diversity of inhibitors of Akt, both small molecule and biologic, have been developed in the past 5 years, with over a dozen in various phases of clinical development, and several displaying efficacy in humans. While it is not yet clear which mechanism of Akt inhibition will be optimal in humans, or which Akt isoforms to inhibit, or whether a small molecule or biologic agent will be best, data to all of these points will be available in the near future.
PMCID: PMC4279453  PMID: 21635152
Akt; allosteric; apoptosis; ATP-competitive; cancer; chemotherapy; clinical trial; inhibitors; kinase; PH domain; PKB; schizophrenia
15.  Hyperactivation of EGFR and downstream effector phospholipase D1 by oncogenic FAM83B 
Oncogene  2013;33(25):3298-3306.
Despite the progress made in targeted anticancer therapies in recent years, challenges remain. The identification of new potential targets will ensure that the arsenal of cancer therapies continues to expand. FAM83B was recently discovered in a forward genetic screen for novel oncogenes that drive human mammary epithelial cell (HMEC) transformation. We report here that elevated FAM83B expression increases Phospholipase D (PLD) activity, and that suppression of PLD1 activity prevents FAM83B-mediated transformation. The increased PLD activity is engaged by hyperactivation of epidermal growth factor receptor (EGFR), which is regulated by an interaction involving FAM83B and EGFR. Preventing the FAM83B/EGFR interaction by site-directed mutation of lysine 230 of FAM83B suppressed PLD activity and MAPK signaling. Furthermore, ablation of FAM83B expression from breast cancer cells inhibited EGFR phosphorylation and suppressed cell proliferation. We propose that understanding the mechanism of FAM83B-mediated transformation will provide a foundation for future therapies aimed at targeting its function as an intermediary in EGFR, MAPK, and mTOR activation.
PMCID: PMC3923847  PMID: 23912460
FAM83B; EGFR; PLD1; MAPK; mTOR; HMEC transformation
16.  Reversible Inhibitors of Regulators of G-protein Signaling Identified in a High-throughput Cell-based Calcium Signaling Assay 
Cellular signalling  2013;25(12):10.1016/j.cellsig.2013.09.007.
Regulator of G-protein signaling (RGS) proteins potently suppress G-protein coupled receptor (GPCR) signal transduction by accelerating GTP hydrolysis on activated heterotrimeric G-protein α subunits. RGS4 is enriched in the CNS and is proposed as a therapeutic target for treatment of neuropathological states including epilepsy and Parkinson’s disease. Therefore, identification of novel RGS4 inhibitors is of interest. An HEK293-FlpIn cell-line stably expressing M3-muscarinic receptor with Doxycycline-regulated RGS4 expression was employed to identify compounds that inhibit RGS4-mediated suppression of M3-muscarinic receptor signaling. Over 300,000 compounds were screened for an ability to enhance Gαq-mediated calcium signaling in the presence of RGS4. Compounds that modulated the calcium response in a counter-screen in the absence of RGS4 were not pursued. Of the 1,365 RGS4-dependent primary screen hits, thirteen compounds directly target the RGS-G-protein interaction in purified systems. All thirteen compounds lose activity against an RGS4 mutant lacking cysteines, indicating that covalent modification of free thiol groups on RGS4 is a common mechanism. Four compounds produce >85% inhibition of RGS4-G-protein binding at 100 μM, yet are >50% reversible within a ten-minute time frame. The four reversible compounds significantly alter the thermal melting temperature of RGS4, but not G-protein, indicating that inhibition is occurring through interaction with the RGS protein. The HEK cell-line employed for this study provides a powerful tool for efficiently identifying RGS-specific modulators within the context of a GPCR signaling pathway. As a result, several new reversible, cell-active RGS4 inhibitors have been identified for use in future biological studies.
PMCID: PMC3848259  PMID: 24041654
G-protein coupled receptors; M3 muscarinic acetylcholine receptor; Regulator of G-protein signaling; Small molecule inhibitor; High-throughput screen
17.  Allosteric modulation of the M1 muscarinic acetylcholine receptor: improving cognition and a potential treatment for schizophrenia and Alzheimer′s disease 
Drug discovery today  2013;18(0):10.1016/j.drudis.2013.09.005.
Allosteric modulation of AMPA, NR2B, mGlu2, mGlu5 and M1, targeting glutamatergic dysfunction, represents a significant area of research for the treatment of schizophrenia. Of these targets, clinical promise has been demonstrated using muscarinic activators for the treatment of Alzheimer’s disease (AD) and schizophrenia. These diseases have inspired researchers to determine the effects of modulating cholinergic transmission in the forebrain, which is primarily regulated by one of five subtypes of muscarinic acetylcholine receptor (mAChR), a subfamily of G-protein-coupled receptors (GPCRs). Of these five subtypes, M1 is highly expressed in brain regions responsible for learning, cognition and memory. Xanomeline, an orthosteric muscarinic agonist with modest selectivity, was one of the first compounds that displayed improvements in behavioral disturbances in AD patients and efficacy in schizophrenics. Since these initial clinical results, many scientists, including those in our laboratories, have strived to elucidate the role of M1 with compounds that display improved selectivity for this receptor by targeting allosteric modes of receptor activation. A survey of selected compounds in this area will be presented.
PMCID: PMC3876030  PMID: 24051397
18.  Discovery of the first M5-selective and CNS penetrant negative allosteric modulator (NAM) of a muscarinic acetylcholine receptor: (S)-9b-(4-chlorophenyl)-1-(3,4-difluorobenzoyl)-2,3-dihydro-1H-imidazo[2,1-a]isoindol-5(9bH)-one (ML375) 
Journal of medicinal chemistry  2013;56(22):10.1021/jm4013246.
A functional high throughput screen and subsequent multi-dimensional, iterative parallel synthesis effort identified the first muscarinic acetylcholine receptor (mAChR) negative allosteric modulator (NAM) selective for the M5 subtype. ML375 is a highly selective M5 NAM with sub-micromolar potency (human M5 IC50 = 300 nM, rat M5 IC50 = 790 nM, M1–4 IC50 >30 μM), excellent multi-species PK, high CNS penetration, and enantiospecific inhibition.
PMCID: PMC3876027  PMID: 24164599
Muscarinic acetylcholine receptor; M5; negative allosteric modulator (NAM); ML375; MLPCN probe
20.  Discovery of N-(benzo[1,2,3]triazol-1-yl)-N-(benzyl)acetamido)phenyl) carboxamides as severe acute respiratory syndrome coronavirus (SARS-CoV) 3CLpro inhibitors: identification of ML300 and non-covalent nanomolar inhibitors with an induced-fit binding 
Bioorganic & medicinal chemistry letters  2013;23(22):10.1016/j.bmcl.2013.08.112.
Herein we report the discovery and SAR of a novel series of SARS-CoV 3CLpro inhibitors identified through the NIH Molecular Libraries Probe Production Centers Network (MLPCN). In addition to ML188, ML300 represents the second probe declared for 3CLpro from this collaborative effort. The X-ray structure of SARS-CoV 3CLpro bound with a ML300 analog highlights a unique induced-fit reorganization of the S2-S4 binding pockets leading to the first sub-micromolar non-covalent 3CLpro inhibitors retaining a single amide bond.
PMCID: PMC3878165  PMID: 24080461
3CLpro; severe acute respiratory syndrome; SARS; MERS; coronavirus
21.  Discovery of VU0409106: A negative allosteric modulator of mGlu5 with activity in a mouse model of anxiety 
Bioorganic & medicinal chemistry letters  2013;23(21):10.1016/j.bmcl.2013.09.001.
Development of SAR in an aryl ether series of mGlu5 NAMs leading to the identification of tool compound VU0409106 is described in this Letter. VU0409106 is a potent and selective negative allosteric modulator of mGlu5 that binds at the known allosteric binding site and demonstrates good CNS exposure following intraperitoneal dosing in mice. VU0409106 also proved efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists as well as clinically efficacious anxiolytics.
PMCID: PMC3846293  PMID: 24074843
22.  Exploration of Allosteric Agonism Structure-Activity Relationships within an Acetylene Series of Metabotropic Glutamate Receptor 5 (mGlu5) Positive Allosteric Modulators (PAMs): discovery of 5-((3-fluorophenyl)ethynyl)-N-(3-methyloxetan-3-yl)picolinamide (ML254) 
Journal of medicinal chemistry  2013;56(20):7976-7996.
Positive allosteric modulators (PAMs) of metabotropic glutamate receptor 5 (mGlu5) represent a promising therapeutic strategy for the treatment of schizophrenia. Both allosteric agonism and high glutamate fold-shift have been implicated in the neurotoxic profile of some mGlu5 PAMs; however, these hypotheses remain to be adequately addressed. To develop tool compounds to probe these hypotheses, the structure-activity relationship of allosteric agonism was examined within an acetylenic series of mGlu5 PAMs exhibiting allosteric agonism in addition to positive allosteric modulation (ago-PAMs). PAM 38t, a low glutamate fold-shift allosteric ligand (maximum fold-shift ~3.0), was selected as a potent PAM with no agonism in the in vitro system used for compound characterization and in two native electrophysiological systems using rat hippocampal slices. PAM 38t (ML254) will be useful to probe the relative contribution of cooperativity and allosteric agonism to the adverse effect liability and neurotoxicity associated with this class of mGlu5 PAMs.
PMCID: PMC3908770  PMID: 24050755
23.  Dihydrothiazolopyridone Derivatives as a Novel Family of Positive Allosteric Modulators of the Metabotropic Glutamate 5 (mGlu5) Receptor 
Journal of medicinal chemistry  2013;56(18):7243-7259.
Starting from a singleton chromanone high throughput screening (HTS) hit, we describe a focused medicinal chemistry optimization effort leading to the identification of a novel series of phenoxymethyl-dihydrothiazolopyridone derivatives as selective positive allosteric modulators (PAMs) of the metabotropic glutamate 5 (mGlu5) receptor. These dihydrothiazolopyridones potentiate receptor responses in recombinant systems. In vitro and in vivo drug metabolism and pharmacokinetic (DMPK) evaluation allowed us to select compound 16a for its assessment in a preclinical animal screen of possible antipsychotic activity. 16a was able to reverse amphetamine-induced hyperlocomotion in rats in a dose-dependent manner without showing any significant motor impairment or overt neurological side effects at comparable doses. Evolution of our medicinal chemistry program, structure activity, and properties relationships (SAR and SPR) analysis as well as a detailed profile for optimized mGlu5 receptor PAM 16a are described.
PMCID: PMC3924858  PMID: 23947773
24.  ML297 (VU0456810), the First Potent and Selective Activator of the GIRK Potassium Channel, Displays Antiepileptic Properties in Mice 
ACS Chemical Neuroscience  2013;4(9):1278-1286.
The G-protein activated, inward-rectifying potassium (K+) channels, “GIRKs”, are a family of ion channels (Kir3.1-Kir3.4) that has been the focus of intense research interest for nearly two decades. GIRKs are comprised of various homo- and heterotetrameric combinations of four different subunits. These subunits are expressed in different combinations in a variety of regions throughout the central nervous system and in the periphery. The body of GIRK research implicates GIRK in processes as diverse as controlling heart rhythm, to effects on reward/addiction, to modulation of response to analgesics. Despite years of GIRK research, very few tools exist to selectively modulate GIRK channels’ activity and until now no tools existed that potently and selectively activated GIRKs. Here we report the development and characterization of the first truly potent, effective, and selective GIRK activator, ML297 (VU0456810). We further demonstrate that ML297 is active in two in vivo models of epilepsy, a disease where up to 40% of patients remain with symptoms refractory to present treatments. The development of ML297 represents a truly significant advancement in our ability to selectively probe GIRK’s role in physiology as well as providing the first tool for beginning to understand GIRK’s potential as a target for a diversity of therapeutic indications.
PMCID: PMC3778424  PMID: 23730969
GIRK; G-protein; inward rectifier; potassium channel; epilepsy; activator
25.  Octahydropyrrolo[3,4-c]pyrrole negative allosteric modulators of mGlu1 
Development of SAR in an octahydropyrrolo[3,4-c]pyrrole series of negative allosteric modulators of mGlu1 using a functional cell-based assay is described in this Letter. The octahydropyrrolo[3,4-c]pyrrole scaffold was chosen as an isosteric replacement for the piperazine ring found in the initial hit compound. Characterization of selected compounds in protein binding assays was used to identify the most promising analogs, which were then profiled in P450 inhibition assays in order to further assess the potential for drug-likeness within this series of compounds.
PMCID: PMC3901432  PMID: 23932792
Glutamate; GPCR; mGlu1; Allosteric modulator; CNS; Octahydropyrrolo[3,4-c]pyrrole

Results 1-25 (175)