PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (41)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Comparative Mitogenomics of Plant Bugs (Hemiptera: Miridae): Identifying the AGG Codon Reassignments between Serine and Lysine 
PLoS ONE  2014;9(7):e101375.
Insect mitochondrial genomes are very important to understand the molecular evolution as well as for phylogenetic and phylogeographic studies of the insects. The Miridae are the largest family of Heteroptera encompassing more than 11,000 described species and of great economic importance. For better understanding the diversity and the evolution of plant bugs, we sequence five new mitochondrial genomes and present the first comparative analysis of nine mitochondrial genomes of mirids available to date. Our result showed that gene content, gene arrangement, base composition and sequences of mitochondrial transcription termination factor were conserved in plant bugs. Intra-genus species shared more conserved genomic characteristics, such as nucleotide and amino acid composition of protein-coding genes, secondary structure and anticodon mutations of tRNAs, and non-coding sequences. Control region possessed several distinct characteristics, including: variable size, abundant tandem repetitions, and intra-genus conservation; and was useful in evolutionary and population genetic studies. The AGG codon reassignments were investigated between serine and lysine in the genera Adelphocoris and other cimicomorphans. Our analysis revealed correlated evolution between reassignments of the AGG codon and specific point mutations at the antidocons of tRNALys and tRNASer(AGN). Phylogenetic analysis indicated that mitochondrial genome sequences were useful in resolving family level relationship of Cimicomorpha. Comparative evolutionary analysis of plant bug mitochondrial genomes allowed the identification of previously neglected coding genes or non-coding regions as potential molecular markers. The finding of the AGG codon reassignments between serine and lysine indicated the parallel evolution of the genetic code in Hemiptera mitochondrial genomes.
doi:10.1371/journal.pone.0101375
PMCID: PMC4079613  PMID: 24988409
2.  Identification of Selective Small Molecule Inhibitors of the Nucleotide-Binding Oligomerization Domain 1 (NOD1) Signaling Pathway 
PLoS ONE  2014;9(5):e96737.
NOD1 is an intracellular pattern recognition receptor that recognizes diaminopimelic acid (DAP), a peptidoglycan component in gram negative bacteria. Upon ligand binding, NOD1 assembles with receptor-interacting protein (RIP)-2 kinase and initiates a signaling cascade leading to the production of pro-inflammatory cytokines. Increased NOD1 signaling has been associated with a variety of inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility. We utilized a cell-based screening approach with extensive selectivity profiling to search for small molecule inhibitors of the NOD1 signaling pathway. Via this process we identified three distinct chemical series, xanthines (SB711), quinazolininones (GSK223) and aminobenzothiazoles (GSK966) that selectively inhibited iE-DAP-stimulated IL-8 release via the NOD1 signaling pathway. All three of the newly identified compound series failed to block IL-8 secretion in cells following stimulation with ligands for TNF receptor, TLR2 or NOD2 and, in addition, none of the compound series directly inhibited RIP2 kinase activity. Our initial exploration of the structure-activity relationship and physicochemical properties of the three series directed our focus to the quinazolininone biarylsulfonamides (GSK223). Further investigation allowed for the identification of significantly more potent analogs with the largest boost in activity achieved by fluoro to chloro replacement on the central aryl ring. These results indicate that the NOD1 signaling pathway, similarly to activation of NOD2, is amenable to modulation by small molecules that do not target RIP2 kinase. These compounds should prove useful tools to investigate the importance of NOD1 activation in various inflammatory processes and have potential clinical utility in diseases driven by hyperactive NOD1 signaling.
doi:10.1371/journal.pone.0096737
PMCID: PMC4013053  PMID: 24806487
3.  Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via re-specification of lineage-restricted precursors 
Cell stem cell  2013;13(4):10.1016/j.stem.2013.09.002.
Summary
Human pluripotent stem cells (hPSCs) represent a promising source of patient-specific cells for disease modeling, drug screens, and cellular therapies. However, the inability to derive engraftable human hematopoietic stem and progenitor (HSPCs) has limited their characterization to in vitro assays. We report a strategy to re-specify lineage-restricted CD34+CD45+ myeloid precursors derived from hPSCs into multilineage progenitors that can be expanded in vitro and engraft in vivo. HOXA9, ERG, and RORA conferred self-renewal and multilineage potential in vitro and maintained primitive CD34+CD38− cells. Screening cells via transplantation revealed that two additional factors, SOX4 and MYB, were required for engraftment. Progenitors specified with all five factors gave rise to reproducible short-term engraftment with myeloid and erythroid lineages. Erythroid precursors underwent hemoglobin switching in vivo, silencing embryonic and activating adult globin expression. Our combinatorial screening approach establishes a strategy for obtaining transcription factor-mediated engraftment of blood progenitors from human pluripotent cells.
doi:10.1016/j.stem.2013.09.002
PMCID: PMC3888026  PMID: 24094326
4.  Structure-guided optimization of small molecule c-Abl activators 
c-Abl kinase is maintained in its normal inactive state in the cell through an assembled, compact conformation. We describe two chemical series that bind to the myristoyl site of the c-Abl kinase domain and stimulate c-Abl activation. We hypothesize that these molecules activate c-Abl either by blocking the C-terminal helix from adopting a bent conformation that is critical for the formation of the autoinhibited conformation or by simply providing no stabilizing interactions to the bent conformation of this helix. Structure-based molecular modeling guided the optimization of binding and activation of c-Abl of these two chemical series and led to the discovery of c-Abl activators with nanomolar potency. The small molecule c-Abl activators reported herein could be used as molecular tools to investigate the biological functions of c-Abl and therapeutic implications of its activation.
Electronic supplementary material
The online version of this article (doi:10.1007/s10822-014-9731-5) contains supplementary material, which is available to authorized users.
doi:10.1007/s10822-014-9731-5
PMCID: PMC3949015  PMID: 24573412
c-Abl; Myristoyl; Kinase activation; Kinase activators; Multi-fragment search; Docking
5.  Zfp322a Regulates Mouse ES Cell Pluripotency and Enhances Reprogramming Efficiency 
PLoS Genetics  2014;10(2):e1004038.
Embryonic stem (ES) cells derived from the inner cell mass (ICM) of blastocysts are characterised by their ability to self-renew and their potential to differentiate into many different cell types. Recent studies have shown that zinc finger proteins are crucial for maintaining pluripotent ES cells. Mouse zinc finger protein 322a (Zfp322a) is expressed in the ICM of early mouse embryos. However, little is known regarding the role of Zfp322a in the pluripotency maintenance of mouse ES cells. Here, we report that Zfp322a is required for mES cell identity since depletion of Zfp322a directs mES cells towards differentiation. Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays revealed that Zfp322a binds to Pou5f1 and Nanog promoters and regulates their transcription. These data along with the results obtained from our ChIP-seq experiment showed that Zfp322a is an essential component of mES cell transcription regulatory network. Targets which are directly regulated by Zfp322a were identified by correlating the gene expression profile of Zfp322a RNAi-treated mES cells with the ChIP-seq results. These experiments revealed that Zfp322a inhibits mES cell differentiation by suppressing MAPK pathway. Additionally, Zfp322a is found to be a novel reprogramming factor that can replace Sox2 in the classical Yamanaka's factors (OSKM). It can be even used in combination with Yamanaka's factors and that addition leads to a higher reprogramming efficiency and to acceleration of the onset of the reprogramming process. Together, our results demonstrate that Zfp322a is a novel essential component of the transcription factor network which maintains the identity of mouse ES cells.
Author Summary
Embryonic stem (ES) cells are featured by their ability to self-renew and by their potential to differentiate into many different cell types. Recent studies have revealed that the unique properties of mouse ES cells are governed by a specific transcription regulatory network, including master regulators Oct4/Sox2/Nanog and other pluripotency factors. The importance of these factors was highlighted by the subsequent finding that combination of several transcription factors can reprogram differentiated fibroblasts back to pluripotent stem cells. Here, we report that Zfp322a is a novel factor which is required for mES cell identity. We revealed that Zfp322a can regulate the key pluripotency genes Pou5f1 and Nanog and functions as a repressor of MAPK/ERK pathway in mES cells, therefore preventing mES cell differentiation. Furthermore, we discovered that Zfp332a can promote the generation of induced pluripotent stem cells (iPSCs) from mouse embryonic fibroblasts (MEFs). Our results reveal that Zfp322a is a novel essential transcription factor which not only regulates ES cell pluripotency but also enhances iPSC formation.
doi:10.1371/journal.pgen.1004038
PMCID: PMC3923668  PMID: 24550733
6.  Central role for RNase YbeY in Hfq-dependent and Hfq-independent small-RNA regulation in bacteria 
BMC Genomics  2014;15:121.
Background
Conceptual parallels exist between bacterial and eukaryotic small-RNA (sRNA) pathways, yet relatively little is known about which protein may recognize and recruit bacterial sRNAs to interact with targets. In eukaryotes, Argonaute (AGO) proteins discharge such functions. The highly conserved bacterial YbeY RNase has structural similarities to the MID domain of AGOs. A limited study had indicated that in Sinorhizobium meliloti the YbeY ortholog regulates the accumulation of sRNAs as well as the target mRNAs, raising the possibility that YbeY may play a previously unrecognized role in bacterial sRNA regulation.
Results
We have applied a multipronged approach of loss-of-function studies, genome-wide mRNA and sRNA expression profiling, pathway analysis, target prediction, literature mining and network analysis to unravel YbeY-dependent molecular responses of E. coli exposed to hydroxyurea (HU). Loss of ybeY function, which results in a marked resistance to HU, had global affects on sRNA-mediated gene expression. Of 54 detectable E. coli sRNAs in our microarray analysis, 30 sRNAs showed a differential expression upon HU stress, of which 28 sRNAs displayed a YbeY-dependent change in expression. These included 12 Hfq-dependent and 16 Hfq-independent sRNAs. We successfully identified at least 57 experimentally inferred sRNA-mRNA relationships. Further applying a ‘context likelihood of relatedness’ algorithm, we reverse engineered the YbeY-dependent Hfq-dependent sRNA-mRNA network as well as YbeY-dependent Hfq-independent sRNA-mRNA network.
Conclusion
YbeY extensively modulates Hfq-dependent and independent sRNA-mRNA interactions. YbeY-dependent sRNAs have central roles in modulating cellular response to HU stress.
doi:10.1186/1471-2164-15-121
PMCID: PMC3933206  PMID: 24511998
YbeY; Small-RNA; Hfq; Hydroxyurea; Stress adaptation; E. coli
7.  Description of two new species of the leafhopper subgenus Pediopsoides (Pediopsoides) (Hemiptera, Cicadellidae, Macropsinae) from Guangxi Province, Southern China 
ZooKeys  2013;15-23.
Two new species of the Macropsinae leafhopper subgenus Pediopsoides (Pediopsoides) Matsumura, 1912, Pediopsoides (Pediopsoides) damingshanensis Li, Dai & Li, sp. n. and Pediopsoides (Pediopsoides) tishetshkini Li, Dai & Li sp. n., are described and illustrated from Guangxi Province of southern China. A key to males is provided to distinguish the species of the subgenus along with a map showing the distribution of the new species.
doi:10.3897/zookeys.321.5454
PMCID: PMC3744143  PMID: 23950687
Auchenorrhyncha; taxonomy; morphology; description
8.  Identification of Benzimidazole Diamides as Selective Inhibitors of the Nucleotide-Binding Oligomerization Domain 2 (NOD2) Signaling Pathway 
PLoS ONE  2013;8(8):e69619.
NOD2 is an intracellular pattern recognition receptor that assembles with receptor-interacting protein (RIP)-2 kinase in response to the presence of bacterial muramyl dipeptide (MDP) in the host cell cytoplasm, thereby inducing signals leading to the production of pro-inflammatory cytokines. The dysregulation of NOD2 signaling has been associated with various inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility. To identify inhibitors of the NOD2 signaling pathway, we utilized a cell-based screening approach and identified a benzimidazole diamide compound designated GSK669 that selectively inhibited an MDP-stimulated, NOD2-mediated IL-8 response without directly inhibiting RIP2 kinase activity. Moreover, GSK669 failed to inhibit cytokine production in response to the activation of Toll-like receptor (TLR)-2, tumor necrosis factor receptor (TNFR)-1 and closely related NOD1, all of which share common downstream components with the NOD2 signaling pathway. While the inhibitors blocked MDP-induced NOD2 responses, they failed to block signaling induced by NOD2 over-expression or single stranded RNA, suggesting specificity for the MDP-induced signaling complex and activator-dependent differences in NOD2 signaling. Investigation of structure-activity relationship allowed the identification of more potent analogs that maintained NOD2 selectivity. The largest boost in activity was achieved by N-methylation of the C2-ethyl amide group. These findings demonstrate that the NOD2 signaling pathway is amenable to modulation by small molecules that do not target RIP2 kinase activity. The compounds we identified should prove useful tools to investigate the importance of NOD2 in various inflammatory processes and may have potential clinical utility.
doi:10.1371/journal.pone.0069619
PMCID: PMC3731320  PMID: 23936340
9.  THE ANTI-AGING PROTEIN KLOTHO ENHANCES OLIGODENDROCYTE MATURATION AND MYELINATION OF THE CENTRAL NERVOUS SYSTEM 
We have previously shown that myelin abnormalities and loss characterize the normal aging process of the brain and that an age-associated reduction in Klotho is conserved across species. Predominantly generated in brain and kidney, Klotho overexpression extends life span, whereas loss of Klotho accelerates the development of aging-like phenotypes. While the function of Klotho in brain is unknown, loss of Klotho expression leads to cognitive deficits. In the present study, we found significant effects of Klotho on oligodendrocyte functions including induced maturation of rat primary oligodendrocytic progenitor cells (OPCs) in vitro and myelination. Phosphoprotein Western analysis indicated Klotho's downstream effects involve Akt and ERK signal pathways. Klotho increased OPCs maturation, and inhibition of Akt or ERK function blocked this effect on OPCs. In vivo studies of Klotho knockout mice and their control littermates revealed that knockout mice have a significant reduction in major myelin protein and gene expression. By immunohistochemistry, the number of total and mature oligodendrocytes was significantly lower in Klotho knockout mice. Strikingly, at the ultrastructural level, Klotho knockout mice exhibited significantly impaired myelination of the optic nerve and corpus callosum. These mice also displayed severe abnormalities at the nodes of Ranvier. In order to decipher the mechanisms by which Klotho affects oligodendrocytes, we used luciferase pathway reporters to identify the transcription factors involved. Taken together, these studies provide novel evidence for Klotho as a key player in myelin biology, which may thus be a useful therapeutic target in efforts to protect brain myelin against age-dependent changes.
doi:10.1523/JNEUROSCI.2080-12.2013
PMCID: PMC3711388  PMID: 23365232
10.  The complete mitochondrial genomes of three parasitic nematodes of birds: a unique gene order and insights into nematode phylogeny 
BMC Genomics  2013;14:414.
Background
Analyses of mitochondrial (mt) genome sequences in recent years challenge the current working hypothesis of Nematoda phylogeny proposed from morphology, ecology and nuclear small subunit rRNA gene sequences, and raise the need to sequence additional mt genomes for a broad range of nematode lineages.
Results
We sequenced the complete mt genomes of three Ascaridia species (family Ascaridiidae) that infest chickens, pigeons and parrots, respectively. These three Ascaridia species have an identical arrangement of mt genes to each other but differ substantially from other nematodes. Phylogenetic analyses of the mt genome sequences of the Ascaridia species, together with 62 other nematode species, support the monophylies of seven high-level taxa of the phylum Nematoda: 1) the subclass Dorylaimia; 2) the orders Rhabditida, Trichinellida and Mermithida; 3) the suborder Rhabditina; and 4) the infraorders Spiruromorpha and Oxyuridomorpha. Analyses of mt genome sequences, however, reject the monophylies of the suborders Spirurina and Tylenchina, and the infraorders Rhabditomorpha, Panagrolaimomorpha and Tylenchomorpha. Monophyly of the infraorder Ascaridomorpha varies depending on the methods of phylogenetic analysis. The Ascaridomorpha was more closely related to the infraorders Rhabditomorpha and Diplogasteromorpha (suborder Rhabditina) than they were to the other two infraorders of the Spirurina: Oxyuridorpha and Spiruromorpha. The closer relationship among Ascaridomorpha, Rhabditomorpha and Diplogasteromorpha was also supported by a shared common pattern of mitochondrial gene arrangement.
Conclusions
Analyses of mitochondrial genome sequences and gene arrangement has provided novel insights into the phylogenetic relationships among several major lineages of nematodes. Many lineages of nematodes, however, are underrepresented or not represented in these analyses. Expanding taxon sampling is necessary for future phylogenetic studies of nematodes with mt genome sequences.
doi:10.1186/1471-2164-14-414
PMCID: PMC3693896  PMID: 23800363
Mitochondrial genome; Ascaridia; Nematode; Gene arrangement; Phylogeny
11.  Ancestral Gene Organization in the Mitochondrial Genome of Thyridosmylus langii (McLachlan, 1870) (Neuroptera: Osmylidae) and Implications for Lacewing Evolution 
PLoS ONE  2013;8(5):e62943.
The first complete mitochondrial genome of the lacewing family Osmylidae (Thyridosmylus langii (McLachlan, 1870)) (Neuroptera) was sequenced in this study. The genome is a circular molecule of 16,221 bp containing the typical 37 genes but is arranged in the same order as that of the putative ancestor of hexapod and lacks translocation of trnC as shared by all previously sequenced neuropteran mtDNAs. This reveals that trnC translocation does not represent an organizational synapomorphy in the mitochondrion for the entire Neuroptera clade. Comparative analysis of neuropteran tRNA genes reveals a relatively slow and conserved evolution of the mitochondrion throughout the order. Secondary structure models of the ribosomal RNA genes of T. langii largely agree with those proposed for other insect orders. Nevertheless, domain I of T. langii rrnL is consisted of nine helices rather than eight helices which is typical for neuropteran rrnL. Protein-coding genes have typical mitochondrial start codons, with the exception of COI, which uses the TCG start codon also found in Ithonidae and Chrysopidae. Like other neuropteran insects, the control region is the most AT-rich region and comparatively simple, with little evidence of conserved blocks or long tandem repeats. Considering the issues of base-compositional and branch length heterogeneity, we used a range of phylogenetic approaches to recover neuropteridan relationships and explored the effect of method choice on recovery of monophyly of Neuropterida: ((Neuroptera + Megaloptera) + Raphidioptera). The monophyly of Neuroptera and the more basal position of Osmylidae were also recovered by different datasets and phylogenetic methods.
doi:10.1371/journal.pone.0062943
PMCID: PMC3662673  PMID: 23717397
12.  Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA 
Cell stem cell  2010;7(5):618-630.
SUMMARY
Clinical application of induced pluripotent stem (iPS) cells is limited by the low efficiency of iPS derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPS cells towards clinically useful cell types are lacking. Here we describe a simple, non-integrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate anti-viral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem (RiPS) cells into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling and regenerative medicine.
doi:10.1016/j.stem.2010.08.012
PMCID: PMC3656821  PMID: 20888316
13.  Genomic Approaches to Deconstruct Pluripotency 
Embryonic stem cells (ESCs) first derived from the inner cell mass of blastocyst-stage embryos have the unique capacity of indefinite self-renewal and potential to differentiate into all somatic cell types. Similar developmental potency can be achieved by reprogramming differentiated somatic cells into induced pluripotent stem cells (iPSCs). Both types of pluripotent stem cells provide great potential for fundamental studies of tissue differentiation, and hold promise for disease modeling, drug development, and regenerative medicine. Although much has been learned about the molecular mechanisms that underlie pluripotency in such cells, our understanding remains incomplete. A comprehensive understanding of ESCs and iPSCs requires the deconstruction of complex transcription regulatory networks, epigenetic mechanisms, and biochemical interactions critical for the maintenance of self-renewal and pluripotency. In this review, we will discuss recent advances gleaned from application of global “omics” techniques to dissect the molecular mechanisms that define the pluripotent state.
doi:10.1146/annurev-genom-082410-101506
PMCID: PMC3652340  PMID: 21801025
14.  The transcriptional landscape of hematopoietic stem cell ontogeny 
Cell stem cell  2012;11(5):701-714.
Transcriptome analysis of adult hematopoietic stem cells (HSC) and their progeny has revealed mechanisms of blood differentiation and leukemogenesis, but a similar analysis of HSC development is lacking. Here, we acquired the transcriptomes of developing HSC purified from >2500 murine embryos and adult mice. We found that embryonic hematopoietic elements clustered into three distinct transcriptional states characteristic of the definitive yolk sac, HSCs undergoing specification, and definitive HSCs. We applied a network biology-based analysis to reconstruct the gene regulatory networks of sequential stages of HSC development and functionally validated candidate transcriptional regulators of HSC ontogeny by morpholino-mediated knock-down in zebrafish embryos. Moreover, we found that HSCs from in vitro differentiated embryonic stem cells closely resemble definitive HSC, yet lack a Notch-signaling signature, likely accounting for their defective lymphopoiesis. Our analysis and web resource (http://hsc.hms.harvard.edu) will enhance efforts to identify regulators of HSC ontogeny and facilitate the engineering of hematopoietic specification.
doi:10.1016/j.stem.2012.07.018
PMCID: PMC3545475  PMID: 23122293
15.  Mitochondrial Genomes of Two Barklice, Psococerastis albimaculata and Longivalvus hyalospilus (Psocoptera: Psocomorpha): Contrasting Rates in Mitochondrial Gene Rearrangement between Major Lineages of Psocodea 
PLoS ONE  2013;8(4):e61685.
The superorder Psocodea has ∼10,000 described species in two orders: Psocoptera (barklice and booklice) and Phthiraptera (parasitic lice). One booklouse, Liposcelis bostrychophila and six species of parasitic lice have been sequenced for complete mitochondrial (mt) genomes; these seven species have the most rearranged mt genomes seen in insects. The mt genome of a barklouse, lepidopsocid sp., has also been sequenced and is much less rearranged than those of the booklouse and the parasitic lice. To further understand mt gene rearrangements in the Psocodea, we sequenced the mt genomes of two barklice, Psococerastis albimaculata and Longivalvus hyalospilus, the first representatives from the suborder Psocomorpha, which is the most species-rich suborder of the Psocodea. We found that these two barklice have the least rearranged mt genomes seen in the Psocodea to date: a protein-coding gene (nad3) and five tRNAs (trnN, trnS1, trnE, trnM and trnC) have translocated. Rearrangements of mt genes in these two barklice can be accounted for by two events of tandem duplication followed by random deletions. Phylogenetic analyses of the mt genome sequences support the view that Psocoptera is paraphyletic whereas Phthiraptera is monophyletic. The booklouse, L. bostrychophila (suborder Troctomorpha) is most closely related to the parasitic lice. The barklice (suborders Trogiomorpha and Psocomorpha) are closely related and form a monophyletic group. We conclude that mt gene rearrangement has been substantially faster in the lineage leading to the booklice and the parasitic lice than in the lineage leading to the barklice. Lifestyle change appears to be associated with the contrasting rates in mt gene rearrangements between the two lineages of the Psocodea.
doi:10.1371/journal.pone.0061685
PMCID: PMC3632521  PMID: 23630609
16.  Regulation of Physiologic Actions of LRRK2: Focus on Autophagy 
Neuro-Degenerative Diseases  2011;10(1-4):238-241.
Background
Mutations in LRRK2 are associated with familial and sporadic Parkinson's disease (PD). Subjects with PD caused by LRRK2 mutations show pleiotropic pathology that can involve inclusions containing α-synuclein, tau or neither protein. The mechanisms by which mutations in LRRK2 lead to this pleiotropic pathology remain unknown. Objectives: To investigate mechanisms by which LRRK2 might cause PD.
Methods
We used systems biology to investigate the transcriptomes from human brains, human blood cells and Caenorhabditis elegans expressing wild-type LRRK2. The role of autophagy was tested in lines of C. elegans expressing LRRK2, V337M tau or both proteins. Neuronal function was measured by quantifying thrashing.
Results
Genes regulating autophagy were coordinately regulated with LRRK2. C. elegans expressing V337M tau showed reduced thrashing, as has been noted previously. Coexpressing mutant LRRK2 (R1441C or G2019S) with V337M tau increased the motor deficits. Treating the lines of C. elegans with an mTOR inhibitor that enhances autophagic flux, ridaforolimus, increased the thrashing behavior to the same level as nontransgenic nematodes.
Conclusion
These data support a role for LRRK2 in autophagy, raise the possibility that deficits in autophagy contribute to the pathophysiology of LRRK2, and point to a potential therapeutic approach addressing the pathophysiology of LRRK2 in PD.
doi:10.1159/000332599
PMCID: PMC3363354  PMID: 22204929
LRRK2 mutations; Autophagy; Familial and sporadic Parkinson's disease
17.  Inverted Expression Profiles of Sex-Biased Genes in Response to Toxicant Perturbations and Diseases 
PLoS ONE  2013;8(2):e56668.
The influence of sex factor is widely recognized in various diseases, but its molecular basis, particularly how sex-biased genes, those with sexually dimorphic expression, behave in response to toxico-pathological changes is poorly understood. In this study, zebrafish toxicogenomic data and transcriptomic data from human pathological studies were analysed for the responses of male- and female-biased genes. Our analyses revealed obvious inverted expression profiles of sex-biased genes, where affected males tended to up-regulate genes of female-biased expression and down-regulate genes of male-biased expression, and vice versa in affected females, in a broad range of toxico-pathological conditions. Intriguingly, the extent of these inverted profiles correlated well to the susceptibility or severity of a given toxico-pathological state, suggesting that inverted expression profiles of sex-biased genes observed in this study can be used as important indicators to assess biological disorders.
doi:10.1371/journal.pone.0056668
PMCID: PMC3573008  PMID: 23457601
18.  Influence of reproductive tract obstruction on expression of epididymal proteins and their restoration after patency 
Asian Journal of Andrology  2012;15(1):105-109.
Vasectomy is a simple and reliable method of male contraception. A growing number of men after vasectomy request vasectomy reversal due to various reasons. The pregnancy rate is lower than the patency rate after vasovasostomy and the pregnancy rate is time dependent. In this study, we evaluated the influence of reproductive tract obstruction on expression of epididymal proteins and their restoration after patency. Adult male Wistar rats were studied 30, 60 and 120 days after vasectomy, 30 days after vasovasostomy or after sham operations. Two-dimensional gel electrophoresis, mass-spectrometric technique, multidatabase search, Western blotting and real-time PCR were used to analyze the expression regulation of epididymal proteins. Total integrated intensity and total spot area of autoradiograms showed a consistent downward trend with time after obstruction, and this trend remained after patency. The intensity of the autoradiographic spots in three patency groups showed three trends: a downward trend, similar intensity and an upward trend compared with the correspondent obstruction group, respectively. Further verified experiments on human epididymis 2 (HE2), fertilization antigen-1 (FA-1), clusterin and PH20 demonstrated that compared with the correspondent obstruction group, the translation levels of HE2 and the mRNA transcription levels of HE2 showed an upward trend in patency groups, especially in the groups of obstruction for 60 days where the expression levels of HE2 were significantly upregulated after patency (P<0.05). Reproductive tract obstruction provokes a disregulation of gene expression in the epididymis and this disregulation remained after patency. Successful reversal may recover some proteins and the recovery is time dependent. Obstruction differentially alters mRNA transcription of different proteins and the content of proteins seemed to be easier to be influenced than the gene transcription.
doi:10.1038/aja.2012.64
PMCID: PMC3739126  PMID: 22922320
epididymal secretory proteins; vasectomy; vasovasostomy
19.  Design, synthesis and biological evaluation of novel betulinic acid derivatives 
Background
Tumor, is one of the major reason for human death, due to its widespread occurrence. Betulinic acid derivatives have attracted considerable attention as cancer chemopreventive agents and also as cancer therapeutics. Many of its derivatives inhibit the growth of human cancer cell lines by triggering apoptosis. With this background, we planned to synthesize a series of betulinic acid derivatives to assess their antiproliferation efficacy on human cancer cell lines.
Results
A series of novel betulinic acid derivatives were designed and synthesized as highlighted by the preliminary antitumor evaluation against MGC-803, PC3, A375, Bcap-37 and A431 human cancer cell lines in vitro. The pharmacological results showed that some of the compounds displayed moderate to high levels of antitumor activities with most of new exhibiting higher inhibitory activities compared to BA. The IC50 values of compound 3c on the five cancer cell lines were 2.3, 4.6, 3.3, 3.6, and 4.3 μM, respectively. Subsequent fluorescence staining and flow cytometry analysis (FCM) indicated that compound 3c could induce apoptosis in MGC-803 and PC3 cell lines, and the apoptosis ratios reached the peak (37.38% and 33.74%) after 36 h of treatment at 10 μM.
Conclusions
This study suggests that most of betulinic acid derivatives could inhibit the growth of human cancer cell lines. Furthermore, compound 3c could induce apoptosis of cancer cells.
doi:10.1186/1752-153X-6-141
PMCID: PMC3541990  PMID: 23174002
20.  Structure–Activity Relationships and Molecular Modeling of 3,5-Diacyl-2,4-dialkylpyridine Derivatives as Selective A3 Adenosine Receptor Antagonists 
Journal of medicinal chemistry  1998;41(17):3186-3201.
The structure-activity relationships of 6-phenyl-1,4-dihydropyridine derivatives as selective antagonists at human A3 adenosine receptors have been explored (Jiang et al. J. Med. Chem. 1997, 39, 4667-4675). In the present study, related pyridine derivatives have been synthesized and tested for affinity at adenosine receptors in radioligand binding assays. Ki values in the nanomolar range were observed for certain 3,5-diacyl-2,4-dialkyl-6-phenylpyridine derivatives in displacement of [125I]AB-MECA (N6-(4-amino-3-iodobenzyl)-5′-N-methylcarbamoyladenosine) at recombinant human A3 adenosine receptors. Selectivity for A3 adenosine receptors was determined vs radioligand binding at rat brain A1 and A2A receptors. Structure–activity relationships at various positions of the pyridine ring (the 3- and 5-acyl substituents and the 2- and 4-alkyl substituents) were probed. A 4-phenylethynyl group did not enhance A3 selectivity of pyridine derivatives, as it did for the 4-substituted dihydropyridines. At the 2-and 4-positions ethyl was favored over methyl. Also, unlike the dihydropyridines, a thioester group at the 3-position was favored over an ester for affinity at A3 adenosine receptors, and a 5-position benzyl ester decreased affinity. Small cycloalkyl groups at the 6-position of 4-phenylethynyl-1,4-dihydropyridines were favorable for high affinity at human A3 adenosine receptors, while in the pyridine series a 6-cyclopentyl group decreased affinity. 5-Ethyl 2,4-diethyl-3-(ethylsulfanylcarbonyl)-6-phenylpyridine-5-carboxylate, 38, was highly potent at human A3 receptors, with a Ki value of 20 nM. A 4-propyl derivative, 39b, was selective and highly potent at both human and rat A3 receptors, with Ki values of 18.9 and 113 nM, respectively. A 6-(3-chlorophenyl) derivative, 44, displayed a Ki value of 7.94 nM at human A3 receptors and selectivity of 5200-fold. Molecular modeling, based on the steric and electrostatic alignment (SEAL) method, defined common pharmacophore elements for pyridine and dihydropyridine structures, e.g., the two ester groups and the 6-phenyl group. Moreover, a relationship between affinity and hydrophobicity was found for the pyridines.
doi:10.1021/jm980093j
PMCID: PMC3474377  PMID: 9703464
21.  Methanocarba Analogues of Purine Nucleosides as Potent and Selective Adenosine Receptor Agonists 
Journal of medicinal chemistry  2000;43(11):2196-2203.
Adenosine receptor agonists have cardioprotective, cerebroprotective, and antiinflammatory properties. We report that a carbocyclic modification of the ribose moiety incorporating ring constraints is a general approach for the design of A1 and A3 receptor agonists having favorable pharmacodynamic properties. While simple carbocyclic substitution of adenosine agonists greatly diminishes potency, methanocarba-adenosine analogues have now defined the role of sugar puckering in stabilizing the active adenosine receptor-bound conformation and thereby have allowed identification of a favored isomer. In such analogues a fused cyclopropane moiety constrains the pseudosugar ring of the nucleoside to either a Northern (N) or Southern (S) conformation, as defined in the pseudorotational cycle. In binding assays at A1, A2A, and A3 receptors, (N)-methanocarba-adenosine was of higher affinity than the (S)-analogue, particularly at the human A3 receptor (N/S affinity ratio of 150). (N)-Methanocarba analogues of various N6-substituted adenosine derivatives, including cyclopentyl and 3-iodobenzyl, in which the parent compounds are potent agonists at either A1 or A3 receptors, respectively, were synthesized. The N6-cyclopentyl derivatives were A1 receptor-selective and maintained high efficacy at recombinant human but not rat brain A1 receptors, as indicated by stimulation of binding of [35S]GTP-γ-S. The (N)-methanocarba-N6-(3-iodobenzyl)adenosine and its 2-chloro derivative had Ki values of 4.1 and 2.2 nM at A3 receptors, respectively, and were highly selective partial agonists. Partial agonism combined with high functional potency at A3 receptors (EC50 < 1 nM) may produce tissue selectivity. In conclusion, as for P2Y1 receptors, at least three adenosine receptors favor the ribose (N)-conformation.
PMCID: PMC3471159  PMID: 10841798
22.  Comparative Mitogenomic Analysis of Damsel Bugs Representing Three Tribes in the Family Nabidae (Insecta: Hemiptera) 
PLoS ONE  2012;7(9):e45925.
Background
Nabidae, a family of predatory heteropterans, includes two subfamilies and five tribes. We previously reported the complete mitogenome of Alloeorhynchus bakeri, a representative of the tribe Prostemmatini in the subfamily Prostemmatinae. To gain a better understanding of architecture and evolution of mitogenome in Nabidae, mitogenomes of five species representing two tribes (Gorpini and Nabini) in the subfamily Nabinae were sequenced, and a comparative mitogenomic analysis of three nabid tribes in two subfamilies was carried out.
Methodology/Principal Findings
Nabid mitogenomes share a similar nucleotide composition and base bias, except for the control region, where differences are observed at the subfamily level. In addition, the pattern of codon usage is influenced by the GC content and consistent with the standard invertebrate mitochondrial genetic code and the preference for A+T-rich codons. The comparison among orthologous protein-coding genes shows that different genes have been subject to different rates of molecular evolution correlated with the GC content. The stems and anticodon loops of tRNAs are extremely conserved, and the nucleotide substitutions are largely restricted to TψC and DHU loops and extra arms, with insertion-deletion polymorphisms. Comparative analysis shows similar rates of substitution between the two rRNAs. Long non-coding regions are observed in most Gorpini and Nabini mtDNAs in-between trnI-trnQ and/or trnS2-nad1. The lone exception, Nabis apicalis, however, has lost three tRNAs. Overall, phylogenetic analysis using mitogenomic data is consistent with phylogenies constructed mainly form morphological traits.
Conclusions/Significance
This comparative mitogenomic analysis sheds light on the architecture and evolution of mitogenomes in the family Nabidae. Nucleotide diversity and mitogenomic traits are phylogenetically informative at subfamily level. Furthermore, inclusion of a broader range of samples representing various taxonomic levels is critical for the understanding of mitogenomic evolution in damsel bugs.
doi:10.1371/journal.pone.0045925
PMCID: PMC3461043  PMID: 23029320
23.  Functionalized Congeners of 1,4-Dihydropyridines as Antagonist Molecular Probes for A3 Adenosine Receptors 
Bioconjugate chemistry  1999;10(4):667-677.
4-Phenylethynyl-6-phenyl-1,4-dihydropyridine derivatives are selective antagonists at human A3 adenosine receptors, with Ki values in a radioligand binding assay vs [125I]AB-MECA [N6-(4-amino-3-iodobenzyl)-5′-N-methylcarbamoyl-adenosine] in the submicromolar range. In this study, functionalized congeners of 1,4-dihydropyridines were designed as chemically reactive adenosine A3 antagonists, for the purpose of synthesizing molecular probes for this receptor subtype. Selectivity of the new analogues for cloned human A3 adenosine receptors was determined in radioligand binding in comparison to binding at rat brain A1 and A2A receptors. Benzyl ester groups at the 3- and/or 5-positions and phenyl groups at the 2- and/or 6-positions were introduced as potential sites for chain attachment. Structure–activity analysis at A3 adenosine receptors indicated that 3,5-dibenzyl esters, but not 2,6-diphenyl groups, are tolerated in binding. Ring substitution of the 5-benzyl ester with a 4-fluorosulfonyl group provided enhanced A3 receptor affinity resulting in a Ki value of 2.42 nM; however, a long-chain derivative containing terminal amine functionalization at the 4-position of the 5-benzyl ester showed only moderate affinity. This sulfonyl fluoride derivative appeared to bind irreversibly to the human A3 receptor (1 h incubation at 100 nM resulting in the loss of 56% of the specific radioligand binding sites), while the binding of other potent dihydropyridines and other antagonists was generally reversible. At the 3-position of the dihydropyridine ring, an amine-functionalized chain attached at the 4-position of a benzyl ester provided higher A3 receptor affinity than the corresponding 5-position isomer. This amine congener was also used as an intermediate in the synthesis of a biotin conjugate, which bound to A3 receptors with a Ki value of 0.60 μM.
doi:10.1021/bc9900136
PMCID: PMC3446815  PMID: 10411465
24.  Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells 
Nature Biotechnology  2011;29(12):1117-1119.
We compared bona-fide human induced pluripotent stem cells (iPSC) derived from umbilical cord blood (CB) and neonatal keratinocytes (K). As a consequence of both incomplete erasure of tissue-specific methylation and aberrant de novo methylation, CB-iPSC and K-iPSC are distinct in genome-wide DNA methylation profiles and differentiation potential. Extended passage of some iPSC clones in culture didn't improve their epigenetic resemblance to ESC, implying that some human iPSC retain a residual “epigenetic memory” of their tissue of origin.
doi:10.1038/nbt.2052
PMCID: PMC3357310  PMID: 22119740
25.  The Complete Mitochondrial Genome and Novel Gene Arrangement of the Unique-Headed Bug Stenopirates sp. (Hemiptera: Enicocephalidae) 
PLoS ONE  2012;7(1):e29419.
Many of true bugs are important insect pests to cultivated crops and some are important vectors of human diseases, but few cladistic analyses have addressed relationships among the seven infraorders of Heteroptera. The Enicocephalomorpha and Nepomorpha are consider the basal groups of Heteroptera, but the basal-most lineage remains unresolved. Here we report the mitochondrial genome of the unique-headed bug Stenopirates sp., the first mitochondrial genome sequenced from Enicocephalomorpha. The Stenopirates sp. mitochondrial genome is a typical circular DNA molecule of 15, 384 bp in length, and contains 37 genes and a large non-coding fragment. The gene order differs substantially from other known insect mitochondrial genomes, with rearrangements of both tRNA genes and protein-coding genes. The overall AT content (82.5%) of Stenopirates sp. is the highest among all the known heteropteran mitochondrial genomes. The strand bias is consistent with other true bugs with negative GC-skew and positive AT-skew for the J-strand. The heteropteran mitochondrial atp8 exhibits the highest evolutionary rate, whereas cox1 appears to have the lowest rate. Furthermore, a negative correlation was observed between the variation of nucleotide substitutions and the GC content of each protein-coding gene. A microsatellite was identified in the putative control region. Finally, phylogenetic reconstruction suggests that Enicocephalomorpha is the sister group to all the remaining Heteroptera.
doi:10.1371/journal.pone.0029419
PMCID: PMC3250431  PMID: 22235294

Results 1-25 (41)