PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (52)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Epigenetic Regulation of Autophagy by the Methyltransferase G9a 
Molecular and Cellular Biology  2013;33(20):3983-3993.
Macroautophagy is an evolutionarily conserved cellular process involved in the clearance of proteins and organelles. Although the cytoplasmic machinery that orchestrates autophagy induction during starvation, hypoxia, or receptor stimulation has been widely studied, the key epigenetic events that initiate and maintain the autophagy process remain unknown. Here we show that the methyltransferase G9a coordinates the transcriptional activation of key regulators of autophagosome formation by remodeling the chromatin landscape. Pharmacological inhibition or RNA interference (RNAi)-mediated suppression of G9a induces LC3B expression and lipidation that is dependent on RNA synthesis, protein translation, and the methyltransferase activity of G9a. Under normal conditions, G9a associates with the LC3B, WIPI1, and DOR gene promoters, epigenetically repressing them. However, G9a and G9a-repressive histone marks are removed during starvation and receptor-stimulated activation of naive T cells, two physiological inducers of macroautophagy. Moreover, we show that the c-Jun N-terminal kinase (JNK) pathway is involved in the regulation of autophagy gene expression during naive-T-cell activation. Together, these findings reveal that G9a directly represses genes known to participate in the autophagic process and that inhibition of G9a-mediated epigenetic repression represents an important regulatory mechanism during autophagy.
doi:10.1128/MCB.00813-13
PMCID: PMC3811684  PMID: 23918802
2.  Use of the Nitrile Oxide Cycloaddition (NOC) Reaction for Molecular Probe Generation: A New Class of Enzyme Selective Histone Deacetylase Inhibitors (HDACIs) Showing Picomolar Activity at HDAC6 
Journal of medicinal chemistry  2008;51(15):4370-4373.
A series of hydroxamate based HDAC inhibitors containing a phenylisoxazole as the CAP group has been synthesized using nitrile oxide cycloaddition chemistry. An HDAC6 selective inhibitor having a potency of ∼2 picomolar was identified. Some of the compounds were examined for their ability to block pancreatic cancer cell growth and found to be about 10-fold more potent than SAHA. This research provides valuable, new molecular probes for use in exploring HDAC biology.
doi:10.1021/jm8002894
PMCID: PMC3913184  PMID: 18642892
3.  An optimized RAD51 inhibitor that disrupts homologous recombination without requiring Michael acceptor reactivity 
Journal of medicinal chemistry  2012;56(1):254-263.
Homologous recombination (HR) is an essential process in cells that provides repair of DNA double-strand breaks and lesions that block DNA replication. RAD51 is an evolutionarily conserved protein that is central to HR. Overexpression of RAD51 protein is common in cancer cells and represents a potential therapeutic target in oncology. We previously described a chemical inhibitor of RAD51, called RI-1 (referred to as compound 1 in this report). The chloromaleimide group of this compound is thought to act as a Michael acceptor and react with the thiol group on C319 of RAD51, using a conjugate addition-elimination mechanism. In order to reduce the likelihood of off-target effects and to improve compound stability in biological systems, we developed an analog of compound 1 that lacks maleimide-based reactivity but retains RAD51 inhibitory activity. This compound, 1-(3,4-dichlorophenyl)-3-(4-methoxyphenyl)-4-morpholino-1H-pyrrole-2,5-dione, named RI-2 (referred to as compound 7a in this report), appears to bind reversibly to the same site on the RAD51 protein as does compound 1. Like compound 1, compound 7a specifically inhibits HR repair in human cells.
doi:10.1021/jm301565b
PMCID: PMC3619390  PMID: 23231413
DNA repair; Homologous recombination; RAD51; medicinal chemistry; structure activity relationship
4.  Chemistry, Pharmacology, and Behavioral Studies Identify Chiral Cyclopropanes as Selective α4β2- Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile. Part II 
Journal of medicinal chemistry  2013;56(13):10.1021/jm400510u.
A 3-pyridyl ether scaffold bearing a cyclopropane-containing side chain was recently identified in our efforts to create novel antidepressants that act as partial agonists at α4β2-nicotinic acetylcholine receptors. In this study, a systematic structure-activity relationship investigation was carried out on both the azetidine moiety present in compound 3 and its right-hand side chain, thereby discovering a variety of novel nicotinic ligands that retain bioactivity and feature improved chemical stability. The most promising compounds 24, 26, and 30 demonstrated comparable or enhanced pharmacological profiles compared to the parent compound 4, and the N-methylpyrrolidine analogue 26 also exhibited robust antidepressant-like efficacy in the mouse forced swim test. The favorable ADMET profile and chemical stability of 26 further indicate this compound to be a promising lead as a drug candidate warranting further advancement down the drug discovery pipeline.
doi:10.1021/jm400510u
PMCID: PMC3843973  PMID: 23734673
5.  Pharmacokinetics and brain penetration of LF-3-88, (2-[5-[5-(2(S)-azetidinylmethoxyl)-3-pyridyl]-3-isoxazolyl]ethanol, a selective α4β2-nAChR partial agonist and promising antidepressant 
LF-3-88 (2-[5-[5-(2(S)-azetidinylmethoxyl)-3-pyridyl]-3-isoxazolyl] ethanol) was identified as a highly selective α4β2-nAChRs partial agonist, with a Ki value of 0.4 nM and EC50 value of 110 nM. A sensitive and selective ultra high pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS-MS) method was developed and validated to study the pharmacokinetics profile of this compound in mice. Protein precipitation with acetonitrile was used to prepare the plasma and brain samples, and the recovery was greater than 90%. The inter-day and intra-day accuracy and precision of the quantitative method ranged from 95 % to 106 % for plasma and from 93 % to 105 % for brain homogenates. The precision of the assay was <10 %. The limit of detection and limit of quantitation were 0.5 ng/mL (1.8 nM) and 1 ng/mL (3.6 nM), respectively. LF-3-88 was stable (>93 %) for 24 h on the bench top at room temperature, and for at least 3 weeks at 4 °C and −80 °C. The UHPLC-MS-MS assay was applied to the measurement of plasma and brain levels of LF-3-88 following oral administration to male Balb/c mice. Plasma concentrations of LF-3-88 and brain levels were dose-dependent with half-lives of approximately 60 min and 180 min, respectively, indicating good oral bioavailability and penetration of the blood-brain barrier.
doi:10.1016/j.jchromb.2012.11.011
PMCID: PMC3538945  PMID: 23246847
α4β2-nAChRs partial agonist; Antidepressant; UHPLC-MS-MS Pharmacokinetics; Quantitative analysis
6.  A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice: implications for Rett syndrome 
Rett syndrome (RTT) is a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional modulator methyl-CpG-binding protein 2 (MECP2). One of the most prominent gene targets of MeCP2 is brain-derived neurotrophic factor (Bdnf), a potent modulator of activity-dependent synaptic development, function and plasticity. Dysfunctional BDNF signaling has been demonstrated in several pathophysiological mechanisms of RTT disease progression. To evaluate whether the dynamics of BDNF trafficking is affected by Mecp2 deletion, we analyzed movements of BDNF tagged with yellow fluorescent protein (YFP) in cultured hippocampal neurons by time-lapse fluorescence imaging. We found that both anterograde and retrograde vesicular trafficking of BDNF-YFP are significantly impaired in Mecp2 knockout hippocampal neurons. Selective inhibitors of histone deacetylase 6 (HDAC6) show neuroprotective effects in neurodegenerative diseases and stimulate microtubule-dependent vesicular trafficking of BDNF-containing dense core vesicles. Here, we show that the selective HDAC6 inhibitor Tubastatin-A increased the velocity of BDNF-YFP vesicles in Mecp2 knockout neurons in both directions by increasing α–tubulin acetylation. Tubastatin-A also restored activity-dependent BDNF release from Mecp2 knockout neurons to levels comparable to those shown by wildtype neurons. These findings demonstrate that a selective HDAC6 inhibitor is a potential pharmacological strategy to reverse cellular and synaptic impairments in RTT resulting from impaired BDNF signaling.
doi:10.3389/fncel.2014.00068
PMCID: PMC3945638  PMID: 24639629
Rett syndrome; dense core vesicle; activity-dependent BDNF release; Tubastatin-A; tubulin acetylation
7.  From α4β2 Nicotinic Ligands to the Discovery of σ1 Receptor Ligands: Pharmacophore Analysis and Rational Design 
ACS medicinal chemistry letters  2012;3(12):1054-1058.
Comparative analyses of the pharmacophoric elements required for σ1 and nicotinic ligands led to the identification of a potent and selective σ1 ligand (15). Compound 15 displayed high selectivity for the σ1 receptor (Ki, σ1 = 4.1 nM, Ki, σ2 = 1312 nM) with moderate binding affinity for the DAT (Ki = 373 nM) and NET (Ki = 203 nM) in the PDSP broad screening panel of common CNS neurotransmitter transporters and receptors. The key finding in this present work is that a subtle structural modifica tion could be used as a tool to switch a ligand’s selectivity between nAChRs and sigma receptors.
doi:10.1021/ml3002715
PMCID: PMC3638970  PMID: 23641311
Nicotinic acetylcholine receptor; sigma-1 receptor; alkoxyisoxazole; pharmacophore; broad screening
8.  Discovery of Highly Potent and Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists Containing an Isoxazolylpyridine Ether Scaffold that Demonstrate Antidepressant-like Activity. Part II 
Journal of medicinal chemistry  2012;55(22):9998-10009.
In our continued efforts to develop α4β2-nicotinic acetylcholine receptor (nAChR) partial agonists as novel antidepressants having a unique mechanism of action, structure activity relationship (SAR) exploration of certain isoxazolylpyridine ethers is presented. In particular, modifications to both the azetidine ring present in the starting structure 4 and its metabolically liable hydroxyl side chain substituent have been explored to improve compound druggability. The pharmacological characterization of all new compounds has been carried out using [3H]epibatidine binding studies together with functional assays based on 86Rb+ ion flux measurements. We found that the deletion of the metabolically liable hydroxyl group or its replacement by a fluoromethyl group not only maintained potency and selectivity, but also resulted in compounds showing antidepressant-like properties in the mouse forced swim test. These isoxazolylpyridine ethers appear to represent promising lead candidates in the design of innovative chemical tools containing reporter groups for imaging purposes and of possible therapeutics.
doi:10.1021/jm301177j
PMCID: PMC3532055  PMID: 23092294
9.  Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth 
Journal of medicinal chemistry  2012;55(22):9891-9899.
The incidence of malignant melanoma has dramatically increased in recent years thus requiring the need for improved therapeutic strategies. In our efforts to design selective histone deactylase inhibitors (HDACI), we discovered that the aryl urea 1 is a modestly potent yet non-selective inhibitor. Structure activity relationship studies revealed that adding substituents to the nitrogen atom of the urea so as to generate compounds bearing a branched linker group results in increased potency and selectivity for HDAC6. Compound 5g shows low nanomolar inhibitory potency against HDAC6 and a selectivity of ~600-fold relative to the inhibition of HDAC1. These HDACIs were evaluated for their ability to inhibit the growth of B16 melanoma cells with the most potent and selective HDAC6I being found to decrease tumor cell growth. To the best of our knowledge, this work constitutes the first report of HDAC6 selective inhibitors that possess antiproliferative effects against melanoma cells.
doi:10.1021/jm301098e
PMCID: PMC3562128  PMID: 23009203
10.  A microenvironment-mediated c-Myc/miR-548m/HDAC6 amplification loop in non-Hodgkin B cell lymphomas 
The Journal of Clinical Investigation  2013;123(11):4612-4626.
A dynamic interaction occurs between the lymphoma cell and its microenvironment, with each profoundly influencing the behavior of the other. Here, using a clonogenic coculture growth system and a xenograft mouse model, we demonstrated that adhesion of mantle cell lymphoma (MCL) and other non-Hodgkin lymphoma cells to lymphoma stromal cells confers drug resistance, clonogenicity, and induction of histone deacetylase 6 (HDAC6). Furthermore, stroma triggered a c-Myc/miR-548m feed-forward loop, linking sustained c-Myc activation, miR-548m downregulation, and subsequent HDAC6 upregulation and stroma-mediated cell survival and lymphoma progression in lymphoma cell lines, primary MCL and other B cell lymphoma cell lines. Treatment with an HDAC6-selective inhibitor alone or in synergy with a c-Myc inhibitor enhanced cell death, abolished cell adhesion–mediated drug resistance, and suppressed clonogenicity and lymphoma growth ex vivo and in vivo. Together, these data suggest that the lymphoma-stroma interaction in the lymphoma microenvironment directly impacts the biology of lymphoma through genetic and epigenetic regulation, with HDAC6 and c-Myc as potential therapeutic targets.
doi:10.1172/JCI64210
PMCID: PMC3809771  PMID: 24216476
11.  Insights into the Structural Determinants Required for High Affinity Binding of Chiral Cyclopropane-Containing Ligands to α4β2-Nicotinic Acetylcholine Receptors; An Integrated Approach to Behaviorally Active Nicotinic Ligands 
Journal of medicinal chemistry  2012;55(18):8028-8037.
Structure-based drug design can potentially accelerate the development of new therapeutics. In this study, a co-crystal structure of the acetylcholine binding protein (AChBP) from Capitella teleta (Ct) in complex with a cyclopropane-containing, selective α4β2-nicotinic acetylcholine receptor (nAChR) partial agonist (compound 5) was acquired. The structural determinants required for ligand binding obtained from this AChBP X-ray structure were used to refine our previous model of the human α4β2-nAChR, thus possibly providing a better understanding of the structure of the human receptor. In order to validate the potential application of the structure of the Ct-AChBP in the engineering of new α4β2-nAChR ligands, homology modeling methods, combined with in silico ADME calculations, were used to design analogs of compound 5. The most promising compound 12, exhibited an improved metabolic stability in comparison to the parent compound 5 while retaining favorable pharmacological parameters together with appropriate behavioral endpoints in the rodent studies.
doi:10.1021/jm3008739
PMCID: PMC3464052  PMID: 22928944
12.  Synthesis, Biological Evaluation and Structure-Activity Relationships of N-Benzoyl-2-hydroxybenzamides as Agents Active against P. falciparum (K1 strain), Trypanosomes, and Leishmania 
Journal of Medicinal Chemistry  2012;55(7):3088-3100.
In our efforts to identify novel chemical scaffolds for the development of new antiprotozoal drugs, a compound library was screened against T. gondii tachyzoites with activity discovered for N-(4-ethylbenzoyl)-2-hydroxybenzamide 1a against T. gondii as described elsewhere.1 Synthesis of a compound set was guided by T. gondii SAR with 1r found to be superior for T. gondii, also active against Thai and Sierra Leone strains of P. falciparum, and with superior ADMET properties as described elsewhere.1 Herein, synthesis methods and details of the chemical analysis of the compounds in this series are described. Further, this series of N-benzoyl-2-hydroxybenzamides was re-purposed for testing against four other protozoan parasites: T. b. rhodesiense, T. cruzi, L. donovani, and P. falciparum (K1 isolate). Structure-activity analyses led to the identification of compounds in this set with excellent anti-leishmanial activity (compound 1d). Overall, compound 1r was the best and had activity 21-fold superior to that of the standard anti-malarial drug chloroquine against the K1 P. falciparum isolate.
doi:10.1021/jm2015183
PMCID: PMC3330251  PMID: 22352841
13.  Identification of Novel α4β2-Nicotinic Acetylcholine Receptor (nAChR) Agonists Based on an Isoxazole Ether Scaffold that Demonstrate Antidepressant-like Activity 
Journal of Medicinal Chemistry  2012;55(2):812-823.
There is considerable evidence to support the hypothesis that the blockade of nAChR is responsible for the antidepressant action of nicotinic ligands. The nicotinic acetylcholine receptor (nAChR) antagonist, mecamylamine, has been shown to be an effective add-on in patients that do not respond to selective serotonin reuptake inhibitors. This suggests that nAChR ligands may address an unmet clinical need by providing relief from depressive symptoms in refractory patients. In this study, a new series of nAChR ligands based on an isoxazole-ether scaffold have been designed and synthesized for binding and functional assays. Preliminary structure-activity relationship (SAR) efforts identified a lead compound 43, which possesses potent antidepressant-like activity (1 mg/kg, IP; 5 mg/kg, PO) in the classical mouse forced swim test. Early stage absorption, distribution, metabolism, excretion, and toxicity (ADME-Tox) studies also suggested favorable drug-like properties, and broad screening towards other common neurotransmitter receptors indicated that compound 43 is highly selective for nAChRs over the other 45 neurotransmitter receptors and transporters tested.
doi:10.1021/jm201301h
PMCID: PMC3272775  PMID: 22148173
14.  Chemistry and Behavioral Studies Identify Chiral Cyclopropanes as Selective α4β2-Nicotinic Acetylcholine Receptor Partial Agonists Exhibiting an Antidepressant Profile 
Journal of Medicinal Chemistry  2012;55(2):717-724.
Despite their discovery in the early 20th century and intensive study over the last twenty years, nicotinic acetylcholine receptors (nAChRs) are still far from being well understood. Only a few chemical entities targeting nAChRs are currently undergoing clinical trials, and even fewer have reached the marketplace. In our efforts to discover novel and truly selective nAChR ligands, we designed and synthesized a series of chiral cyclopropane-containing α4β2-specific ligands that display low nanomolar binding affinities and excellent subtype selectivity, while acting as partial agonists at α4β2-nAChRs. Their favorable antidepressant-like properties were demonstrated in the classical mouse forced swim test. Preliminary ADMET studies and broad screening towards other common neurotransmitter receptors were also carried out to further evaluate their safety profile and eliminate their potential off-target activity. These highly potent cyclopropane ligands possess superior subtype selectivity compared to other α4β2-nAChR agonists reported to date, including the marketed drug varenicline, and therefore may fully satisfy the crucial prerequisite for avoiding adverse side effects. These novel chemical entities could potentially be advanced to the clinic as new drug candidates for treating depression.
doi:10.1021/jm201157c
PMCID: PMC3292870  PMID: 22171543
15.  Identification of a Maleimide-Based Glycogen Synthase Kinase-3 (GSK-3) Inhibitor, BIP-135, that Prolongs the Median Survival Time of Δ7 SMA KO Mouse Model of Spinal Muscular Atrophy 
ACS chemical neuroscience  2012;3(1):5-11.
The discovery of upregulated glycogen synthase kinase-3 (GSK-3) in various pathological conditions has led to the development of a host of chemically diverse small molecule GSK-3 inhibitors, such as BIP-135. GSK-3 inhibition emerged as an alternative therapeutic target for treating spinal muscular atrophy (SMA) when a number of GSK-3 inhibitors were shown to elevate survival motor neuron (SMN) levels in vitro and to rescue motor neurons when their intrinsic SMN level was diminished by SMN-specific short hairpin RNA (shRNA). Despite their cellular potency, the in vivo efficacy of GSK-3 inhibitors has yet to be evaluated in an animal model of SMA. Herein, we disclose that a potent and reasonably selective GSK-3 inhibitor, namely BIP-135, was tested in a transgenic Δ7 SMA KO mouse model of SMA, and found to prolong the median survival of these animals. In addition, this compound was shown to elevate the SMN protein level in SMA patient-derived fibroblast cells as determined by western blot, and was neuroprotective in a cell-based, SMA-related model of oxidative stress-induced neurodegeneration.
doi:10.1021/cn200085z
PMCID: PMC3279955  PMID: 22348181
GSK-3 inhibitor; BIP-135; median survival; spinal muscular atrophy; survival motor neuron; Δ7 SMA KO mice
16.  Identification of a Maleimide-Based Glycogen Synthase Kinase-3 (GSK-3) Inhibitor, BIP-135, That Prolongs the Median Survival Time of Δ7 SMA KO Mouse Model of Spinal Muscular Atrophy 
ACS Chemical Neuroscience  2011;3(1):5-11.
The discovery of upregulated glycogen synthase kinase-3 (GSK-3) in various pathological conditions has led to the development of a host of chemically diverse small molecule GSK-3 inhibitors, such as BIP-135. GSK-3 inhibition emerged as an alternative therapeutic target for treating spinal muscular atrophy (SMA) when a number of GSK-3 inhibitors were shown to elevate survival motor neuron (SMN) levels in vitro and to rescue motor neurons when their intrinsic SMN level was diminished by SMN-specific short hairpin RNA (shRNA). Despite their cellular potency, the in vivo efficacy of GSK-3 inhibitors has yet to be evaluated in an animal model of SMA. Herein, we disclose that a potent and reasonably selective GSK-3 inhibitor, namely BIP-135, was tested in a transgenic Δ7 SMA KO mouse model of SMA and found to prolong the median survival of these animals. In addition, this compound was shown to elevate the SMN protein level in SMA patient-derived fibroblast cells as determined by Western blot, and was neuroprotective in a cell-based, SMA-related model of oxidative stress-induced neurodegeneration.
doi:10.1021/cn200085z
PMCID: PMC3279955  PMID: 22348181
GSK-3 inhibitor; BIP-135; median survival; spinal muscular atrophy; survival motor neuron; Δ7 SMA KO mice
17.  Rational Drug Design Leading to the Identification of a Potent 5-HT2C Agonist Lacking 5-HT2B Activity 
ACS medicinal chemistry letters  2011;2(12):929-932.
The 5-HT2C receptor is an attractive drug target in the quest for new therapeutics to treat a variety of human disorders. We have previously undertaken a structural optimization campaign that has led to some potent and moderately selective 5-HT2C receptor agonists. After expanding our structure-function library, we were able to combine our datasets so as to allow the design of compounds of improved selectivity and potency. We disclose herein the structural optimization of our previously reported 5-HT2B/5-HT2C agonists, which has led to the identification of a highly selective 5-HT2C agonist, (+)-trans-[2-(2-cyclopropylmethoxyphenyl)cyclopropyl]methylamine hydrochloride, with an EC50 of 55 nM and no detectable agonism at the 5-HT2B receptor.
doi:10.1021/ml200206z
PMCID: PMC3390974  PMID: 22778800
Serotonin; 5-HT2C receptor; 5-HT2B receptor; Agonist; Hydrophobic interactions
18.  Discovery of Isoxazole Analogs of Sazetidine-A as Selective α4β2-Nicotinic Acetylcholine Receptor (nAChR) Partial Agonists for the Treatment of Depression 
Journal of medicinal chemistry  2011;54(20):7280-7288.
Depression, a common neurological condition, is one of the leading causes of disability and suicide worldwide. Standard treatment targeting monoamine transporters selective for the neurotransmitters serotonin and noradrenalin are not able to help many patients that are poor responders. This study advances the development of sazetidine-A analogs that interact with α4β2-nAChR as partial agonists and that possess favorable antidepressant profiles. The resulting compounds that are highly selective for the α4β2 subtype of nAChR over α3β4-nAChRs are partial agonists at the α4β2 subtype and have excellent antidepressant behavioral profiles as measured by the mouse forced swim test. Preliminary ADMET studies for one promising ligand revealed an excellent plasma protein binding (PPB) profile, low CYP450 related metabolism, and low cardiovascular toxicity, suggesting it is a promising lead as well as a drug candidate to be advanced through the drug discovery pipeline.
doi:10.1021/jm200855b
PMCID: PMC3197876  PMID: 21905669
19.  Identification of a Glycogen Synthase Kinase-3β Inhibitor that Attenuates Hyperactivity in CLOCK Mutant Mice 
ChemMedChem  2011;6(9):1593-1602.
Bipolar disorder is characterized by a cycle of mania and depression, which affects approximately 5 million people in the United States. Current treatment regimes include the so-called “mood-stabilizing drugs”, such as lithium and valproate that are relatively dated drugs with various known side effects. Glycogen synthase kinase-3β (GSK-3β) plays a central role in regulating circadian rhythms, and lithium is known to be a direct inhibitor of GSK-3β. We designed a series of second generation benzofuran-3-yl-(indol-3-yl)maleimides containing a piperidine ring that possess IC50 values in the range of 4 to 680 nm against human GSK-3β. One of these compounds exhibits reasonable kinase selectivity and promising preliminary absorption, distribution, metabolism, and excretion (ADME) data. The administration of this compound at doses of 10 to 25 mgkg−1 resulted in the attenuation of hyperactivity in amphetamine/ chlordiazepoxide-induced manic-like mice together with enhancement of prepulse inhibition, similar to the effects found for valproate (400 mgkg−1) and the antipsychotic haloperidol (1 mgkg−1). We also tested this compound in mice carrying a mutation in the central transcriptional activator of molecular rhythms, the CLOCK gene, and found that the same compound attenuates locomotor hyperactivity in response to novelty. This study further demonstrates the use of inhibitors of GSK-3β in the treatment of manic episodes of bipolar/mood disorders, thus further validating GSK-3β as a relevant therapeutic target in the identification of new therapies for bipolar patients.
doi:10.1002/cmdc.201100188
PMCID: PMC3428230  PMID: 21732538
antimanic agents; bipolar disorder; circadian rhythms; CLOCK mutant mice; GSK-3 inhibitors
20.  Structure-Guided Design of a Highly Selective Glycogen Synthase Kinase-3β Inhibitor: a Superior Neuroprotective Pyrazolone Showing Antimania Effects 
ChemMedChem  2011;6(9):1587-1592.
doi:10.1002/cmdc.201100231
PMCID: PMC3428241  PMID: 21751402
bipolar disorders; GSK-3; kinase selectivity; mania; neuroprotection
21.  The effects of huperzine A and IDRA 21 on visual recognition memory in young macaques 
Neuropharmacology  2010;60(7-8):1262-1268.
Nootropic agents or cognitive enhancers are purported to improve mental functions such as cognition, memory, or attention. The aim of our study was to determine the effects of two possible cognitive enhancers, huperzine A and IDRA 21, in normal young adult monkeys performing a visual memory task of varying degrees of difficulty. Huperzine A is a reversible acetylcholinesterase (AChE) inhibitor, its administration results in regionally specific increases in acetylcholine levels in the brain. In human clinical trials, Huperzine A resulted in cognitive improvement in patients with mild to moderate form of Alzheimer's disease (AD) showing its potential as a palliative agent in the treatment of AD. IDRA 21 is a positive allosteric modulator of glutamate AMPA receptors. It increases excitatory synaptic strength by attenuating rapid desensitization of AMPA receptors and may thus have beneficial therapeutic effects to ameliorate memory deficits in patients with cognitive impairments, including AD. The present study evaluated the effects of the two drugs in normal, intact, young adult monkeys to determine whether they can result in cognitive enhancement in a system that is presumably functioning optimally.
Six young pigtail macaques (Macaca nemestrina) were trained on delayed non-matching-to-sample task, a measure of visual recognition memory, up to criterion of 90% correct responses on each of the four delays (10s, 30s, 60s, and 90s). They were then tested on two versions of the task: Task 1 included the four delays intermixed within a session and the monkeys performed it with the accuracy of 90%. Task 2 included, in each of 24 trials, a list of six objects presented in succession. Two objects from the list were then presented for choice paired with novel objects and following two of the four delays intermixed within a session. This task with a higher mnemonic demand yielded an average performance of 64% correct. Oral administration of huperzine A did not significantly affect the monkeys' performance on either task. However, a significant negative correlation was found between the baseline performance on each delay and the change in performance under huperzine A, suggesting that under conditions in which the subjects were performing poorly (55 – 69%), the drug resulted in improved performance, whereas no improvement was obtained when the baseline was close to 90%. In fact, when the subjects were performing very well, huperzine A tended to reduce the performance accuracy, indicating that in a system that functions optimally, the increased availability of acetylcholine does not improve performance or memory, especially when the animals are close to the maximum performance. In contrast, oral administration of IDRA 21 significantly improved performance on Task 2, especially on the longest delay. This finding supports the potential use of this drug in treatment of cognitive and memory disorders.
doi:10.1016/j.neuropharm.2010.12.018
PMCID: PMC3073152  PMID: 21185313
22.  RI-1: a chemical inhibitor of RAD51 that disrupts homologous recombination in human cells 
Nucleic Acids Research  2012;40(15):7347-7357.
Homologous recombination serves multiple roles in DNA repair that are essential for maintaining genomic stability. We here describe RI-1, a small molecule that inhibits the central recombination protein RAD51. RI-1 specifically reduces gene conversion in human cells while stimulating single strand annealing. RI-1 binds covalently to the surface of RAD51 protein at cysteine 319 that likely destabilizes an interface used by RAD51 monomers to oligomerize into filaments on DNA. Correspondingly, the molecule inhibits the formation of subnuclear RAD51 foci in cells following DNA damage, while leaving replication protein A focus formation unaffected. Finally, it potentiates the lethal effects of a DNA cross-linking drug in human cells. Given that this inhibitory activity is seen in multiple human tumor cell lines, RI-1 holds promise as an oncologic drug. Furthermore, RI-1 represents a unique tool to dissect the network of reaction pathways that contribute to DNA repair in cells.
doi:10.1093/nar/gks353
PMCID: PMC3424541  PMID: 22573178
23.  Synthesis and Evaluation of Technetium-99m- and Rhenium-Labeled Inhibitors of the Prostate-Specific Membrane Antigen (PSMA) 
Journal of Medicinal Chemistry  2008;51(15):4504-4517.
The prostate-specific membrane antigen (PSMA) is increasingly recognized as a viable target for imaging and therapy of cancer. We prepared seven 99mTc/Re-labeled compounds by attaching known Tc/Re chelating agents to an amino-functionalized PSMA inhibitor (lys-NHCONH-glu) with or without a variable length linker moiety. Ki values ranged from 0.17 to 199 nM. Ex vivo biodistribution and in vivo imaging demonstrated the degree of specific binding to engineered PSMA+ PC3 PIP tumors. PC3-PIP cells are derived from PC3 that have been transduced with the gene for PSMA. Despite demonstrating nearly the lowest PSMA inhibitory potency of this series, [99mTc(CO)3(L1)]+ (L1 = (2-pyridylmethyl)2N(CH2)4CH(CO2H)-NHCO-(CH2)6CO-NH-lys-NHCONH-glu) showed the highest, most selective PIP tumor uptake, at 7.9 ± 4.0% injected dose per gram of tissue at 30 min postinjection. Radioactivity cleared from nontarget tissues to produce a PIP to flu (PSMA-PC3) ratio of 44:1 at 120 min postinjection. PSMA can accommodate the steric requirements of 99mTc/Re complexes within PSMA inhibitors, the best results achieved with a linker moiety between the ε amine of the urea lysine and the chelator.
doi:10.1021/jm800111u
PMCID: PMC3336105  PMID: 18637669
24.  Dissociation between duration of action in the forced swim test and nicotinic acetylcholine receptor occupancy with sazetidine, varenicline, and 5-I-A85380 
Psychopharmacology  2011;217(2):199-210.
RATIONALE
Nicotinic acetylcholine receptor (nAChR) agonists, partial agonists and antagonists have antidepressant-like effects in rodent models and reduce symptoms of depression in humans.
OBJECTIVE
The aim of this study was to determine if the β2* partial agonist sazetidine-A (sazetidine) showed an antidepressant-like effect in the forced swim test that was mediated by β2* nAChRs activation or desensitization.
RESULTS
Sazetidine, the less selective β2* partial agonist varenicline and the full β2* agonist 5-I-A8350, exhibited acute antidepressant-like effects in the forced swim test. The role of β2* nAChRs was confirmed by results showing 1) reversal of sazetidine’s antidepressant-like effects in the forced swim test by nAChR antagonists mecamylamine and dihydro-β-erythroidine (DHβE); 2) no effect of sazetidine in mice lacking the β2 subunit of the nAChR; and 3) a high correspondence between behaviorally active doses of sazetidine and β2* receptor occupancy. β2* receptor occupancy following acute sazetidine, varenicline, and 5-I-A8350 extended beyond the duration of action in the forced swim test. The long lasting receptor occupancy of sazetidine did not diminish behavioral efficacy in the forced swim test following repeated dosing.
CONCLUSIONS
These results demonstrate that activation of β2* nAChRs mediate sazetidine’s antidepressant-like actions and suggest that ligands that activate β2* nAChRs would be promising targets for the development of a new class of antidepressant.
doi:10.1007/s00213-011-2271-y
PMCID: PMC3266849  PMID: 21487659
nicotinic receptor; antidepressant; sazetidine-A; AMOP-H-OH; varenicline; 5-I-A85380; receptor occupancy; forced swim
25.  Histone Deacetylase 6 and Heat Shock Protein 90 Control the Functions of Foxp3+ T-Regulatory Cells▿ 
Molecular and Cellular Biology  2011;31(10):2066-2078.
Foxp3+ T-regulatory cells (Tregs) are key to immune homeostasis such that their diminished numbers or function can cause autoimmunity and allograft rejection. Foxp3+ Tregs express multiple histone/protein deacetylases (HDACs) that regulate chromatin remodeling, gene expression, and protein function. Pan-HDAC inhibitors developed for oncologic applications enhance Treg production and Treg suppression function but have limited nononcologic utility given their broad actions and various side effects. We show, using HDAC6-deficient mice and wild-type (WT) mice treated with HDAC6-specific inhibitors, that HDAC6 inhibition promotes Treg suppressive activity in models of inflammation and autoimmunity, including multiple forms of experimental colitis and fully major histocompatibility complex (MHC)-incompatible cardiac allograft rejection. Many of the beneficial effects of HDAC6 targeting are also achieved by inhibition of the HDAC6-regulated protein heat shock protein 90 (HSP90). Hence, selective targeting of a single HDAC isoform, HDAC6, or its downstream target, HSP90, can promote Treg-dependent suppression of autoimmunity and transplant rejection.
doi:10.1128/MCB.05155-11
PMCID: PMC3133361  PMID: 21444725

Results 1-25 (52)