PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Small-Molecule Inhibition of the uPAR·uPA Interaction: Synthesis, Biochemical, Cellular, in vivo Pharmacokinetics and Efficacy Studies in Breast Cancer Metastasis 
Bioorganic & medicinal chemistry  2013;21(7):2145-2155.
The uPAR·uPA protein-protein interaction (PPI) is involved in signaling and proteolytic events that promote tumor invasion and metastasis. A previous study had identified 4 (IPR-803) from computational screening of a commercial chemical library and shown that the compound inhibited uPAR·uPA PPI in competition biochemical assays and invasion cellular studies. Here, we synthesize 4 to evaluate in vivo pharmacokinetic (PK) and efficacy studies in a murine breast cancer metastasis model. First, we show, using fluorescence polarization and saturation transfer difference (STD) NMR, that 4 binds directly to uPAR with sub-micromolar affinity of 0.2 μM. We show that 4 blocks invasion of breast MDA-MB-231, and inhibits matrix metalloproteinase (MMP) breakdown of the extracellular matrix (ECM). Derivatives of 4 also inhibited MMP activity and blocked invasion in a concentration-dependent manner. 4 also impaired MDA-MB-231 cell adhesion and migration. Extensive in vivo PK studies in NOD-SCID mice revealed a half-life of nearly 5 hours and peak concentration of 5 μM. Similar levels of the inhibitor were detected in tumor tissue up to 10 hours. Female NSG mice inoculated with highly malignant TMD-MDA-MB-231 in their mammary fat pads showed that 4 impaired metastasis to the lungs with only four of the treated mice showing severe or marked metastasis compared to ten for the untreated mice. Compound 4 is a promising template for the development of compounds with enhanced PK parameters and greater efficacy.
doi:10.1016/j.bmc.2012.12.047
PMCID: PMC3625246  PMID: 23411397
2.  Virtual Screening Targeting the Urokinase Receptor, Biochemical and Cell-Based Studies, Synthesis, Pharmacokinetic Characterization, and Effect on Breast Tumor Metastasis 
Journal of Medicinal Chemistry  2011;54(20):7193-7205.
Virtual screening targeting the urokinase receptor (uPAR) led to (3R)-4-cyclohexyl-3-(hexahydrobenzo[d][1,3]dioxol-5-yl)-N-((hexahydrobenzo[d][1,3]dioxol-5-yl)methyl)butan-1-aminium 1 (IPR-1) and 4-(4-((3,5-dimethylcyclohexyl)carbamoyl)-2-(4-isopropylcyclohexyl)pyrazolidin-3-yl)piperidin-1-ium 3 (IPR-69). Synthesis of an analog of 1, namely 2 (IPR-9), and 3 led to breast MDA-MB-231 invasion, migration and adhesion assays with IC50 near 30 μM. Both compounds blocked angiogenesis with IC50 of 3 μM. Compounds 2 and 3 inhibited cell growth with IC50 of 6 and 18 μM and induced apoptosis. Biochemical assays revealed lead-like properties for 3, but not 2. Compound 3 administered orally reached peak concentration of nearly 40 μM with a half-life of about 2 hours. In NOD-SCID mice inoculated with breast TMD-231 cells in their mammary fat pads, compound 3 showed a 20% reduction in tumor volumes and less extensive metastasis was observed for the treated mice. The suitable pharmacokinetic properties of 3 and the encouraging preliminary results in metastasis make it an ideal starting point for next generation compounds.
doi:10.1021/jm200782y
PMCID: PMC3280887  PMID: 21851064

Results 1-2 (2)