PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Labeled Nucleoside Triphosphates with Reversibly Terminating Aminoalkoxyl Groups 
Nucleosides, nucleotides & nucleic acids  2010;29(11):10.1080/15257770.2010.536191.
Nucleoside triphosphates having a 3′-ONH2 blocking group have been prepared with and without fluorescent tags on their nucleobases. DNA polymerases were identified that accepted these, adding a single nucleotide to the 3′-end of a primer in a template-directed extension reaction that then stops. Nitrite chemistry was developed to cleave the 3′-ONH2 group under mild conditions to allow continued primer extension. Extension-cleavage-extension cycles in solution were demonstrated with untagged nucleotides and mixtures of tagged and untagged nucleotides. Multiple extension-cleavage-extension cycles were demonstrated on an Intelligent Bio-Systems Sequencer, showing the potential of the 3′-ONH2 blocking group in “next generation sequencing”.
doi:10.1080/15257770.2010.536191
PMCID: PMC3858015  PMID: 21128174
triphosphate; aminooxy; mutant polymerases; sequencing technology; fluorescent nucleotide; oligonucleotide microarray; nitrous acid; primer elongation; alpha effect; synthesis; oxime
2.  Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists 
Journal of medicinal chemistry  2006;49(9):2689-2702.
An alternative approach to overcome the inherent lack of specificity of conventional agonist therapy can be the reengineering of the GPCRs and their agonists. A reengineered receptor (neoceptor) could be selectively activated by a modified agonist, but not by the endogenous agonist. Assisted by rhodopsin-based molecular modeling, we pinpointed mutations of the A3 adenosine receptor (AR) for selective affinity enhancement following complementary modifications of adenosine. Ribose modifications examined included, at 3′: amino, aminomethyl, azido, guanidino, ureido; and at 5′: uronamido, azidodeoxy. N6-variations included: 3-iodobenzyl, 5-chloro-2-methyloxybenzyl, and methyl. An N6-3-iodobenzyl-3′-ureido adenosine derivative 10 activated phospholipase C in COS-7 cells (EC50=0.18 μM) or phospholipase D in chick primary cardiomyocytes mediated by a mutant (H272E), but not the wild-type, A3AR. The affinity enhancements for 10 and the corresponding 3′-acetamidomethyl analogue 6 were >100-fold and >20-fold, respectively. 10 concentration-dependently protected cardiomyocytes transfected with the neoceptor against hypoxia. Unlike 10, adenosine activated the wild-type A3AR (EC50 of 1.0 μM), but had no effect on the H272E mutant A3AR (100 μM). Compound 10 was inactive at human A1, A2A, and A2BARs. The orthogonal pair comprising an engineered receptor and a modified agonist should be useful for elucidating signaling pathways and could be therapeutically applied to diseases following organ-targeted delivery of the neoceptor gene.
doi:10.1021/jm050968b
PMCID: PMC3471142  PMID: 16640329

Results 1-2 (2)