PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-15 (15)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Dihydrothiazolopyridone Derivatives as a Novel Family of Positive Allosteric Modulators of the Metabotropic Glutamate 5 (mGlu5) Receptor 
Journal of medicinal chemistry  2013;56(18):7243-7259.
Starting from a singleton chromanone high throughput screening (HTS) hit, we describe a focused medicinal chemistry optimization effort leading to the identification of a novel series of phenoxymethyl-dihydrothiazolopyridone derivatives as selective positive allosteric modulators (PAMs) of the metabotropic glutamate 5 (mGlu5) receptor. These dihydrothiazolopyridones potentiate receptor responses in recombinant systems. In vitro and in vivo drug metabolism and pharmacokinetic (DMPK) evaluation allowed us to select compound 16a for its assessment in a preclinical animal screen of possible antipsychotic activity. 16a was able to reverse amphetamine-induced hyperlocomotion in rats in a dose-dependent manner without showing any significant motor impairment or overt neurological side effects at comparable doses. Evolution of our medicinal chemistry program, structure activity, and properties relationships (SAR and SPR) analysis as well as a detailed profile for optimized mGlu5 receptor PAM 16a are described.
doi:10.1021/jm400650w
PMCID: PMC3924858  PMID: 23947773
2.  Discovery of the First Highly M5-Preferring Muscarinic Acetylcholine Receptor Ligand, an M5 Positive Allosteric Modulator Derived from a Series of 5-Trifluoromethoxy N-Benzyl Isatins 
Journal of medicinal chemistry  2009;52(11):10.1021/jm900286j.
This report describes the discovery and initial characterization of the first positive allosteric modulator of muscarinic acetylcholine receptor subtype 5 (mAChR5 or M5). Functional HTS, identified VU0119498, which displayed micromolar potencies for potentiation of acetylcholine at M1, M3, and M5 receptors in cell-based Ca2+ mobilization assays. Subsequent optimization led to the discovery of VU0238429, which possessed an EC50 of approximately 1.16 µM at M5 with >30-fold selectivity versus M1 and M3, with no M2 or M4 potentiator activity.
doi:10.1021/jm900286j
PMCID: PMC3875304  PMID: 19438238
3.  Discovery of N-Aryl Piperazines as Selective mGlu5 Potentiators with Efficacy in a Rodent Model Predictive of Anti-Psychotic Activity 
ACS medicinal chemistry letters  2010;1(8):433-438.
This Letter describes the discovery, SAR and in vitro and in vivo pharmacological profile of a novel non-MPEP derived mGlu5 positive allosteric modulator (PAM) based upon an N-aryl piperazine chemotype. This mGlu5 chemotype exhibits the ability to act as either a non-competitive antagonist/negative allosteric modulator (NAM) or potentiator of the glutamate response depending on the identity of the amide substituent, i.e., a ‘molecular switch’. A rapidly optimized PAM, 10e (VU0364289), was shown to be potent and specific for the rat mGlu5 receptor and subsequently demonstrated to be efficacious in a clinically relevant rodent model predictive of anti-psychotic activity, thus providing the first example of a centrally active mGluR5 PAM optimized from an HTS-derived mGluR5 competitive antagonist.
doi:10.1021/ml100181a
PMCID: PMC3539763  PMID: 23308336
mGluR; potentiator; positive allosteric modulator; schizophrenia; hyperlocomotion
4.  Discovery, Synthesis, SAR Development of a Series of N-4-(2,5-dioxopyrrolidin-1-yl)-phenylpicolinamides (VU0400195, ML182): Characterization of a Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 (mGlu4) with Oral Efficacy in an anti-Parkinsonian Animal Model 
Journal of medicinal chemistry  2011;54(21):7639-7647.
There is an increasing amount of literature data showing the positive effects on preclinical anti-Parkinsonian rodent models with selective positive allosteric modulators of metabotropic glutamate receptor 4 (mGlu4).1 However, most of the data generated utilize compounds that have not been optimized for drug-like properties and, as a consequence, they exhibit poor pharmacokinetic properties and thus do not cross the blood-brain barrier. Herein, we report on a series of N-4-(2,5-dioxopyrrolidin-1-yl)-phenylpicolinamides with improved PK properties with excellent potency and selectivity as well as improved brain exposure in rodents. Finally, ML182 was shown to be orally active in the haloperidol induced catalepsy model, a well-established anti-Parkinsonian model.
doi:10.1021/jm200956q
PMCID: PMC3226828  PMID: 21966889
metabotropic glutamate receptors; mGlu4; positive allosteric modulators; Parkinson’s disease; haloperidol-induced catalepsy; structure-activity relationship (SAR); oral efficacy; brain penetration
5.  (3-Cyano-5-fluorophenyl)biaryl negative allosteric modulators of mGlu5: Discovery of a new tool compound with activity in the OSS mouse model of addiction 
ACS chemical neuroscience  2011;2(8):471-482.
Glutamate is the major excitatory transmitter in the mammalian CNS, exerting its effects through both ionotropic and metabotropic glutamate receptors. The metabotropic glutamate receptors (mGlus) belong to family C of the G-protein-coupled receptors (GPCRs). The eight mGlus identified to date are classified into three groups based on their structure, preferred signal transduction mechanisms, and pharmacology (Group I: mGlu1 and mGlu5; Group II: mGlu2 and mGlu3; Group III: mGlu4, mGlu6, mGlu7, and mGlu8). Non-competitive antagonists, also known as negative allosteric modulators (NAMs), of mGlu5 offer potential therapeutic applications in diseases such as pain, anxiety, gastroesophageal reflux disease (GERD), Parkinson's disease (PD), fragile X syndrome, and addiction. The development of SAR in a (3-cyano-5-fluorophenyl)biaryl series using our functional cell-based assay is described in this communication. Further characterization of a selected compound, 3-fluoro-5-(2-methylbenzo[d]thiazol-5-yl)benzonitrile, in additional cell based assays as well as in vitro assays designed to measure its metabolic stability and protein binding indicated its potential utility as an in vivo tool. Subsequent evaluation of the same compound in a pharmacokinetic study using intraperitoneal dosing in mice showed good exposure in both plasma and brain samples. The compound was efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists. A new operant model of addiction termed operant sensation seeking (OSS) was chosen as a second behavioral assay. The compound also proved efficacious in the OSS model and constitutes the first reported example of efficacy with a small molecule mGlu5 NAM in this novel assay.
doi:10.1021/cn100099n
PMCID: PMC3172161  PMID: 21927650
mGlu5; negative allosteric modulator; non-competitive antagonist; addiction
6.  (3-Cyano-5-fluorophenyl)biaryl Negative Allosteric Modulators of mGlu5: Discovery of a New Tool Compound with Activity in the OSS Mouse Model of Addiction 
ACS Chemical Neuroscience  2011;2(8):471-482.
Glutamate is the major excitatory transmitter in the mammalian central nervous system (CNS), exerting its effects through both ionotropic and metabotropic glutamate receptors. The metabotropic glutamate receptors (mGlus) belong to family C of the G-protein-coupled receptors (GPCRs). The eight mGlus identified to date are classified into three groups based on their structure, preferred signal transduction mechanisms, and pharmacology (group I: mGlu1 and mGlu5; group II: mGlu2 and mGlu3; group III: mGlu4, mGlu6, mGlu7, and mGlu8). Noncompetitive antagonists, also known as negative allosteric modulators (NAMs), of mGlu5 offer potential therapeutic applications in diseases such as pain, anxiety, gastresophageal reflux disease (GERD), Parkinson’s disease (PD), fragile X syndrome, and addiction. The development of structure−activity relationships (SAR) in a (3-cyano-5-fluorophenyl)biaryl series using our functional cell-based assay is described in this communication. Further characterization of a selected compound, 3-fluoro-5-(2-methylbenzo[d]thiazol-5-yl)benzonitrile, in additional cell based assays as well as in vitro assays designed to measure its metabolic stability and protein binding indicated its potential utility as an in vivo tool. Subsequent evaluation of the same compound in a pharmacokinetic study using intraperitoneal dosing in mice showed good exposure in both plasma and brain samples. The compound was efficacious in a mouse marble burying model of anxiety, an assay known to be sensitive to mGlu5 antagonists. A new operant model of addiction termed operant sensation seeking (OSS) was chosen as a second behavioral assay. The compound also proved efficacious in the OSS model and constitutes the first reported example of efficacy with a small molecule mGlu5 NAM in this novel assay.
doi:10.1021/cn100099n
PMCID: PMC3172161  PMID: 21927650
mGlu5; negative allosteric modulator; noncompetitive antagonist; addiction
7.  Determination of 3-methoxysalicylamine levels in mouse plasma and tissue by liquid chromatography-tandem mass spectrometry: application to in vivo pharmacokinetics studies 
We report the development of a sensitive liquid chromatography–tandem mass spectrometric assay to quantitate 3-methoxysalicylamine (3-MoSA) in biological samples. Derivatization with 1,1’-thiocarbonyldiimidazole followed by C18 reverse-phase chromatography allowed the detection of both analyte and internal standard (hexylsalicylamine) using electrospray ionization and selected reaction monitoring (SRM) in positive ion mode. We monitored the transitions from m/z 196.7 to 65.1 and from m/z 250.1 to 77.1 for 3-MoSA and HxSA, respectively. The method is validated with respect to linearity (r2 = 0.995), precision (< 17% RSD), recovery (100% for 3-MoSA and HxSA), and stability (77 % after storage up to 7 month at −80°C). The LOD and LOQ were 16.12 and 48.87 µg/l, respectively and the LLOQ of 1 pg/ml. In addition, we used this assay to analyze the pharmacokinetics of 3-MoSA in mouse plasma and tissues following both intraperitoneal or oral administration, providing new information regarding the distribution of this compound in vivo.
doi:10.1016/j.jchromb.2011.03.026
PMCID: PMC3091354  PMID: 21489890
3-Methoxysalicylamine (3-MoSA); Hexylsalicylamine (HxSA); LC-MS/MS; 1,1’-Thiocarbonyldiimidazole (TCDI); Mouse tissue; Pharmacokinetics
8.  Discovery, Synthesis, and Structure Activity Relationship Development of a Series of N-(4-acetamido)phenylpicolinamides as Positive Allosteric Modulators of Metabotropic Glutamate Receptor 4 (mGlu4) with CNS Exposure in Rats 
Journal of medicinal chemistry  2011;54(4):1106-1110.
Herein we report the discovery, synthesis and evaluation of a series of N-(4-acetamido)-phenylpicolinamides as positive allosteric modulators of mGlu4.a Compounds from the series show submicromolar potency at both human and rat mGlu4. In addition, pharmacokinetic studies utilizing subcutaneous dosing demonstrated good brain exposure in rats.
doi:10.1021/jm101271s
PMCID: PMC3166797  PMID: 21247167
9.  Discovery and characterization of novel subtype-selective allosteric agonists for the investigation of M1 receptor function in the central nervous system 
ACS chemical neuroscience  2010;1(2):104-121.
Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M1-M5. Of the mAChR subtypes, M1 is among the most heavily expressed in regions that are critical for learning and memory, and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M1 and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M1. Using a functional HTS screen and subsequent diversity-oriented synthesis approach we have discovered a novel series of highly selective M1 allosteric agonists. These compounds activate M1 with EC50 values in the 150 nM to 500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M1 receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M1 allosteric agonists provides critical research tools to allow dissection of M1-mediated effects in the CNS and potential leads for novel treatments for Alzheimer’s disease and schizophrenia.
doi:10.1021/cn900003h
PMCID: PMC3180826  PMID: 21961051
mAChR; muscarinic; allosteric; agonist; cognition
10.  Design, Synthesis and Biological Evaluation of Halogenated N-(2-(4-Oxo-1-phenyl-1,3,8-triazaspiro[4.5]decan-8-yl)ethylbenzamides: Discovery of an Isoform-Selective Small Molecule Phospholipase D2 (PLD2) Inhibitor 
Journal of medicinal chemistry  2010;53(18):6706-6719.
Phospholipase D (PLD) catalyzes the conversion of phosphatidylcholine to the lipid second messenger phosphatidic acid. Two mammalian isoforms of PLD have been identified, PLD1 and PLD2, which share 53% sequence identity and are subject to different regulatory mechanisms. Inhibition of PLD enzymatic activity leads to increased cancer cell apoptosis, decreased cancer cell invasion and decreased metastasis of cancer cells; therefore, the development of isoform-specific, PLD inhibitors is a novel approach for the treatment of cancer. Previously, we developed potent dual PLD1/PLD2, PLD1-specific (>1,700-fold selective) and moderately PLD2 preferring (>10-fold preferring) inhibitors. Here, we describe a matrix library strategy that afforded the most potent (PLD2 IC50 = 20 nM) and selective (75-fold selective versus PLD1) PLD2 inhibitor to date, N-(2(1-(3-fluorophenyl)-4-oxo-1,3,8-triazaspiro[4.5]decan-8-yl)ethyl)-2-naphthamide (22a), with an acceptable DMPK profile. Thus, these new isoform-selective PLD inhibitors will enable researchers to dissect the signaling roles and therapeutic potential of individual PLD isoforms to an unprecedented degree.
doi:10.1021/jm100814g
PMCID: PMC3179181  PMID: 20735042
phospholipase D; PLD; cancer; isoform; allosteric
11.  3-Cyano-5-fluoro-N-arylbenzamides as negative allosteric modulators of mGlu5: Identification of easily prepared tool compounds with CNS exposure in rats 
Development of SAR in a 3-cyano-5-fluoro-N-arylbenzamide series of non-competitive antagonists of mGlu5 using a functional cell-based assay is described in this letter. Further characterization of selected potent compounds in in vitro assays designed to measure their metabolic stability and protein binding is also presented. Subsequent evaluation of two new compounds in pharmacokinetic studies using intraperitoneal dosing in rats demonstrated good exposure in both plasma and brain samples.
doi:10.1016/j.bmcl.2010.06.064
PMCID: PMC2905502  PMID: 20598884
12.  Discovery and Characterization of Novel Subtype-Selective Allosteric Agonists for the Investigation of M1 Receptor Function in the Central Nervous System 
ACS Chemical Neuroscience  2009;1(2):104-121.
Cholinergic transmission in the forebrain is mediated primarily by five subtypes of muscarinic acetylcholine receptors (mAChRs), termed M1−M5. Of the mAChR subtypes, M1 is among the most heavily expressed in regions that are critical for learning and memory and has been viewed as the most critical mAChR subtype for memory and attention mechanisms. Unfortunately, it has been difficult to develop selective activators of M1 and other individual mAChR subtypes, which has prevented detailed studies of the functional roles of selective activation of M1. Using a functional high-throughput screening and subsequent diversity-oriented synthesis approach, we have discovered a novel series of highly selective M1 allosteric agonists. These compounds activate M1 with EC50 values in the 150−500 nM range and have unprecedented, clean ancillary pharmacology (no substantial activity at 10 μM across a large panel of targets). Targeted mutagenesis revealed a potentially novel allosteric binding site in the third extracellular loop of the M1 receptor for these allosteric agonists. Optimized compounds, such as VU0357017, provide excellent brain exposure after systemic dosing and have robust in vivo efficacy in reversing scopolamine-induced deficits in a rodent model of contextual fear conditioning. This series of selective M1 allosteric agonists provides critical research tools to allow dissection of M1-mediated effects in the CNS and potential leads for novel treatments for Alzheimer’s disease and schizophrenia.
doi:10.1021/cn900003h
PMCID: PMC3180826  PMID: 21961051
mAChR; muscarinic; allosteric; agonist; cognition
13.  Synthesis and Evaluation of a Series of Heterobiaryl Amides that are Centrally Penetrant Metabotropic Glutamate Receptor 4 (mGluR4) Positive Allosteric Modulators (PAMs) 
Journal of medicinal chemistry  2009;52(14):4115-4118.
We report the synthesis and evaluation of a series of heterobiaryl amides as positive allosteric modulators of mGluR4. Compounds 9b and 9c showed submicromolar potency at both human and rat mGluR4. In addition, both 9b and 9c were shown to be centrally penetrant in rats using nontoxic vehicles, a major advance for the mGluR4 field.
doi:10.1021/jm9005065
PMCID: PMC2765192  PMID: 19469556
14.  A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning 
M1 muscarinic acetylcholine receptors (mAChRs) may represent a viable target for treatment of disorders involving impaired cognitive function. However, a major limitation to testing this hypothesis has been a lack of highly selective ligands for individual mAChR subtypes. We now report the rigorous molecular characterization of a novel compound, BQCA, which acts as a potent, highly selective positive allosteric modulator (PAM) of the rat M1 receptor. This compound does not directly activate the receptor, but acts at an allosteric site to increase functional responses to orthosteric agonists. Radioligand binding studies revealed that BQCA increases M1 receptor affinity for acetylcholine. We found that activation of the M1 receptor by BQCA induces a robust inward current and increases spontaneous excitatory postsynaptic currents in medial prefrontal cortex (mPFC) pyramidal cells, effects which are absent in acute slices from M1 receptor knockout mice. Furthermore, to determine the effect of BQCA on intact and functioning brain circuits, multiple single-unit recordings were obtained from the mPFC of rats that showed BQCA increases firing of mPFC pyramidal cells in vivo. BQCA also restored discrimination reversal learning in a transgenic mouse model of Alzheimer's disease and was found to regulate non-amyloidogenic APP processing in vitro, suggesting that M1 receptor PAMs have the potential to provide both symptomatic and disease modifying effects in Alzheimer's disease patients. Together, these studies provide compelling evidence that M1 receptor activation induces a dramatic excitation of PFC neurons and suggest that selectively activating the M1 mAChR subtype may ameliorate impairments in cognitive function.
doi:10.1523/JNEUROSCI.3930-09.2009
PMCID: PMC2811323  PMID: 19906975
GPCR; muscarinic; acetylcholine receptor (AChR); prefrontal cortex; cognition; Alzheimer's disease
15.  Centrally Active Allosteric Potentiators of the M4 Muscarinic Acetylcholine Receptor Reverse Amphetamine-Induced Hyperlocomotor Activity in Ratss 
Previous clinical and animal studies suggest that selective activators of M1 and/or M4 muscarinic acetylcholine receptors (mAChRs) have potential as novel therapeutic agents for treatment of schizophrenia and Alzheimer’s disease. However, highly selective centrally penetrant activators of either M1 or M4 have not been available, making it impossible to determine the in vivo effects of selective activation of these receptors. We previously identified VU10010 [3-amino-N-(4-chlorobenzyl)-4, 6-dimethylthieno[2,3-b]pyridine-2-carboxamide] as a potent and selective allosteric potentiator of M4 mAChRs. However, unfavorable physiochemical properties prevented use of this compound for in vivo studies. We now report that chemical optimization of VU10010 has afforded two centrally penetrant analogs, VU0152099 [3-amino-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide] and VU0152100 [3-amino-N-(4-methoxybenzyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide], that are potent and selective positive allosteric modulators of M4. VU0152099 and VU0152100 had no agonist activity but potentiated responses of M4 to acetylcholine. Both compounds were devoid of activity at other mAChR subtypes or at a panel of other GPCRs. The improved physiochemical properties of VU0152099 and VU0152100 allowed in vivo dosing and evaluation of behavioral effects in rats. Interestingly, these selective allosteric potentiators of M4 reverse amphetamine-induced hyperlocomotion in rats, a model that is sensitive to known antipsychotic agents and to nonselective mAChR agonists. This is consistent with the hypothesis that M4 plays an important role in regulating midbrain dopaminergic activity and raises the possibility that positive allosteric modulation of M4 may mimic some of the antipsychotic-like effects of less selective mAChR agonists.
doi:10.1124/jpet.108.140350
PMCID: PMC2745822  PMID: 18772318

Results 1-15 (15)