PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Treatment of Murine Cerebral Malaria by Artemisone in Combination with Conventional Antimalarial Drugs: Antiplasmodial Effects and Immune Responses 
The decreasing effectiveness of antimalarial therapy due to drug resistance necessitates constant efforts to develop new drugs. Artemisinin derivatives are the most recent drugs that have been introduced and are considered the first line of treatment, but there are already indications of Plasmodium falciparum resistance to artemisinins. Consequently, drug combinations are recommended for prevention of the induction of resistance. The research here demonstrates the effects of novel combinations of the new artemisinin derivative, artemisone, a recently described 10-alkylamino artemisinin derivative with improved antimalarial activity and reduced neurotoxicity. We here investigate its ability to kill P. falciparum in a high-throughput in vitro assay and to protect mice against lethal cerebral malaria caused by Plasmodium berghei ANKA when used alone or in combination with established antimalarial drugs. Artemisone effects against P. falciparum in vitro were synergistic with halofantrine and mefloquine, and additive with 25 other drugs, including chloroquine and doxycycline. The concentrations of artemisone combinations that were toxic against THP-1 cells in vitro were much higher than their effective antimalarial concentration. Artemisone, mefloquine, chloroquine, or piperaquine given individually mostly protected mice against cerebral malaria caused by P. berghei ANKA but did not prevent parasite recrudescence. Combinations of artemisone with any of the other three drugs did completely cure most mice of malaria. The combination of artemisone and chloroquine decreased the ratio of proinflammatory (gamma interferon, tumor necrosis factor) to anti-inflammatory (interleukin 10 [IL-10], IL-4) cytokines in the plasma of P. berghei-infected mice. Thus, artemisone in combinations with other antimalarial drugs might have a dual action, both killing parasites and limiting the potentially deleterious host inflammatory response.
doi:10.1128/AAC.01553-13
PMCID: PMC4135990  PMID: 24913162
2.  Dihydroquinazolinone Inhibitors of Proliferation of Blood and Liver Stage Malaria Parasites 
Drugs that target both the liver and blood stages of malaria will be needed to reduce the disease's substantial worldwide morbidity and mortality. Evaluation of a 259-member library of compounds that block proliferation of the blood stage of malaria revealed several scaffolds—dihydroquinazolinones, phenyldiazenylpyridines, piperazinyl methyl quinolones, and bis-benzimidazoles—with promising activity against the liver stage. Focused structure-activity studies on the dihydroquinazolinone scaffold revealed several molecules with excellent potency against both blood and liver stages. One promising early lead with dual activity is 2-(p-bromophenyl)-3-(2-(diethylamino)ethyl)-2,3-dihydroquinazolin-4(1H)-one with 50% effective concentrations (EC50s) of 0.46 μM and 0.34 μM against liver stage Plasmodium berghei ANKA and blood stage Plasmodium falciparum 3D7 parasites, respectively. Structure-activity relationships revealed that liver stage activity for this compound class requires a 3-dialkyl amino ethyl group and is abolished by substitution at the ortho-position of the phenyl moiety. These compounds have minimal toxicity to mammalian cells and are thus attractive compounds for further development.
doi:10.1128/AAC.02148-13
PMCID: PMC3957893  PMID: 24366746
3.  Synthesis and evaluation of 7-substituted 4-aminoquinoline analogs for antimalarial activity 
Journal of medicinal chemistry  2011;54(20):7084-7093.
We previously reported that substituted 4-aminoquinolines with a phenylether substituent at the 7-position of the quinoline ring and the capability of intramolecular hydrogen bonding between the protonated amine on the side chain and a hydrogen bond acceptor on the amine’s alkyl substituents exhibited potent antimalarial activity against the multi-drug resistant strain P. falciparum W2. We employed a parallel synthetic method to generate diaryl ether, biaryl, and alkylaryl 4-aminoquinoline analogs, in the background of a limited number of side chain variations that had previously afforded potent 4-aminoquinolines. All subsets were evaluated for their antimalarial activity against the chloroquine-sensitive strain 3D7 and the chloroquine-resistant K1 and cytotoxicity mammalian cell lines. While all three arrays showed good antimalarial activity, only the biaryl-containing subset showed consistently good potency against the drug-resistant K1strain good selectivity with regard to mammalian cytotoxicity. Overall, our data indicate that the biaryl-containing series contains promising candidates for further study.
doi:10.1021/jm200636z
PMCID: PMC3697074  PMID: 21910466
4.  Global Phenotypic Screening for Antimalarials 
Chemistry & biology  2012;19(1):116-129.
Malaria, a devastating infectious disease caused by Plasmodium spp., leads to roughly 655,000 deaths per year, mostly of African children. To compound the problem, drug resistance has emerged to all classical antimalarials and may be emerging for artemisinin-based combination therapies. To address the need for new antimalarials with novel mechanisms, several groups carried out phenotypic screening campaigns to identify compounds inhibiting growth of the blood stages of Plasmodium falciparum. In this review, we describe the characterization of these compounds, explore currently ongoing strategies to develop lead molecules, and endorse the concept of a “malaria box” of publicly accessible active compounds.
doi:10.1016/j.chembiol.2012.01.004
PMCID: PMC3269778  PMID: 22284359
5.  Optimization of Propafenone Analogues as Anti-Malarial Leads 
Journal of medicinal chemistry  2011;54(21):7477-7485.
Propafenone, a class Ic antiarrythmic drug, inhibits growth of cultured Plasmodium falciparum. While the drug’s potency is significant, further development of propafenone as an antimalarial would require divorcing the antimalarial and cardiac activities as well as improving the pharmacokinetic profile of the drug. A small array of propafenone analogs was designed and synthesized to address the cardiac ion channel and PK liabilities. Testing of this array revealed potent inhibitors of the 3D7 (drug sensitive) and K1 (drug resistant) strains of P. falciparum that possessed significantly reduced ion channel effects and improved metabolic stability. Propafenone analogues are unusual among antimalarial leads in that they are more potent against the multi-drug resistant K1 strain of P. falciparum compared to the 3D7 strain.
doi:10.1021/jm2005546
PMCID: PMC3208124  PMID: 21955244
propafenone; malaria; microwave epoxide ring opening; hERG
6.  Evaluation of Diarylureas for Activity Against Plasmodium falciparum 
ACS medicinal chemistry letters  2010;1(9):460-465.
A library of diarylurea IGFR inhibitors was screened for activity against chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The 4-aminoquinaldine-derived diarylureas displayed promising antimalarial potency. Further exploration of the B ring of 4-aminoquinaldinyl ureas allowed identification of several quinaldin-4-yl ureas 4{13, 39} and 4{13, 58} sufficiently potent against both 3D7 and K1 strains to qualify as bone fide leads.
doi:10.1021/ml100083c
PMCID: PMC3019604  PMID: 21243104
Malaria; diarylurea
7.  Evaluation of Diarylureas for Activity Against Plasmodium falciparum 
ACS Medicinal Chemistry Letters  2010;1(9):460-465.
A library of diarylurea insulin-like growth factor 1 receptor inhibitors was screened for activity against chloroquine-sensitive (3D7) and chloroquine-resistant (K1) strains of Plasmodium falciparum. The 4-aminoquinaldine-derived diarylureas displayed promising antimalarial potency. Further exploration of the B ring of 4-aminoquinaldinyl ureas allowed identification of several quinaldin-4-yl ureas 4{13, 39} and 4{13, 58} sufficiently potent against both 3D7 and K1 strains to qualify as bone fide leads.
doi:10.1021/ml100083c
PMCID: PMC3019604  PMID: 21243104
Malaria; diarylurea
8.  Synthesis and Structure-Activity Relationships of Antimalarial 4-oxo-3-carboxyl quinolones 
Bioorganic & medicinal chemistry  2010;18(7):2756-2766.
Malaria is endemic in tropical and subtropical regions of Africa, Asia, and the Americas. The increasing prevalence of multi-drug-resistant Plasmodium falciparum drives the ongoing need for the development of new antimalarial drugs. In this light, novel scaffolds to which the parasite has not been exposed are of particular interest. Recently, workers at the Swiss Tropical Institute discovered two novel 4-oxo-3-carboxyl quinolones active against the intra-erythrocytic stages of P. falciparum while carrying out rationally directed low-throughput screening of potential antimalarial agents as part of an effort directed by the World Health Organization. Here we report the design, synthesis, and preliminary pharmacologic characterization of a series of analogues of 4-oxo-3-carboxyl quinolones. These studies indicate that the series has good potential for preclinical development.
doi:10.1016/j.bmc.2010.02.013
PMCID: PMC2850272  PMID: 20206533
9.  Chemical genetics of Plasmodium falciparum 
Nature  2010;465(7296):311-315.
Malaria caused by Plasmodium falciparum is a catastrophic disease worldwide (880,000 deaths yearly). Vaccine development has proved difficult and resistance has emerged for most antimalarials. In order to discover new antimalarial chemotypes, we have employed a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library, many of which exhibited potent in vitro activity against drug resistant strains, and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in multiple organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Overall, our findings provide the scientific community with new starting points for malaria drug discovery.
doi:10.1038/nature09099
PMCID: PMC2874979  PMID: 20485428

Results 1-9 (9)