PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Identification of (R)-N-(4-(4-methoxyphenyl)thiazol-2-yl)-1-tosylpiperidine-2-carboxamide, ML277, as a novel, potent and selective Kv7.1 (KCNQ1) potassium channel activator 
A high-throughput screen utilizing a depolarization-triggered thallium influx through KCNQ1 channels was developed and used to screen the MLSMR collection of over 300,000 compounds. An iterative medicinal chemistry approach was initiated and from this effort, ML277 was identified as a potent activator of KCNQ1 channels (EC50 = 260 nM). ML277 was shown to be highly selective against other KCNQ channels (>100-fold selectivity versus KCNQ2 and KCNQ4) as well as against the distantly related hERG potassium channel.
doi:10.1016/j.bmcl.2012.07.060
PMCID: PMC3433560  PMID: 22910039
KCNQ1 activator; MLPCN probe; Potassium channels; Voltage-gated ion channels; ML277
2.  Discovery, Synthesis, SAR Development of a Series of N-4-(2,5-dioxopyrrolidin-1-yl)-phenylpicolinamides (VU0400195, ML182): Characterization of a Novel Positive Allosteric Modulator of the Metabotropic Glutamate Receptor 4 (mGlu4) with Oral Efficacy in an anti-Parkinsonian Animal Model 
Journal of medicinal chemistry  2011;54(21):7639-7647.
There is an increasing amount of literature data showing the positive effects on preclinical anti-Parkinsonian rodent models with selective positive allosteric modulators of metabotropic glutamate receptor 4 (mGlu4).1 However, most of the data generated utilize compounds that have not been optimized for drug-like properties and, as a consequence, they exhibit poor pharmacokinetic properties and thus do not cross the blood-brain barrier. Herein, we report on a series of N-4-(2,5-dioxopyrrolidin-1-yl)-phenylpicolinamides with improved PK properties with excellent potency and selectivity as well as improved brain exposure in rodents. Finally, ML182 was shown to be orally active in the haloperidol induced catalepsy model, a well-established anti-Parkinsonian model.
doi:10.1021/jm200956q
PMCID: PMC3226828  PMID: 21966889
metabotropic glutamate receptors; mGlu4; positive allosteric modulators; Parkinson’s disease; haloperidol-induced catalepsy; structure-activity relationship (SAR); oral efficacy; brain penetration
3.  Selective inhibition of the Kir2 family of inward rectifier potassium channels by a small molecule probe: the discovery, SAR and pharmacological characterization of ML133 
ACS chemical biology  2011;6(8):845-856.
The Kir inward rectifying potassium channels have a broad tissue distribution and are implicated in a variety of functional roles. At least seven classes (Kir1 – Kir7) of structurally related inward rectifier potassium channels are known, and there are no selective small molecule tools to study their function. In an effort to develop selective Kir2.1 inhibitors, we performed a high-throughput screen (HTS) of more than 300,000 small molecules within the MLPCN for modulators of Kir2.1 function. Here we report one potent Kir2.1 inhibitor, ML133, which inhibits Kir2.1 with IC50 of 1.8 μM at pH 7.4 and 290 nM at pH 8.5, but exhibits little selectivity against other members of Kir2.x family channels. However, ML133 has no effect on Kir1.1 (IC50 > 300 μM), and displays weak activity for Kir4.1 (76 μM) and Kir7.1 (33 μM), making ML133 the most selective small molecule inhibitor of the Kir family reported to date. Due to the high homology within the Kir family, the channels share a common design of a pore region flanked by two transmembrane domains, identification of site(s) critical for isoform specificity would be an important basis for future development of more specific and potent Kir inhibitors. Using chimeric channels between Kir2.1 and Kir1.1 and site-directed mutagenesis, we have identified D172 and I176 within M2 segment of Kir2.1 as molecular determinants critical for the potency of ML133 mediated inhibition. Double mutation of the corresponding residues of Kir1.1 to those of Kir2.1 (N171D and C175I) transplants ML133 inhibition to Kir1.1. Together, the combination of a potent, Kir2 family selective inhibitor and identification of molecular determinants for the specificity provides both a tool and a model system to enable further mechanistic studies of modulation of Kir2 inward rectifier potassium channels.
doi:10.1021/cb200146a
PMCID: PMC3177608  PMID: 21615117
Kir2.1; inward rectifying potassium channel; ion channel; mutagenesis; structure-activity-relationship; medicinal chemistry; ion works; patch clamp; high throughput screening; MLPCN
4.  Recent Progress on the Identification of Metabotropic Glutamate 4 Receptor Ligands and Their Potential Utility as CNS Therapeutics 
ACS Chemical Neuroscience  2011;2(8):433-449.
This Review describes recent activity in the advancement of ligands for the metabotropic glutamate 4 receptor subtype and their potential utility as central nervous system (CNS) therapeutics. Until recently, there was a paucity of compounds with suitable selectivity and druglike properties to elucidate the value of this target. The search for selective entities has led several groups to the investigation of allosteric modulators as a path to optimization of potential ligands. Recent efforts, discussed here, have afforded a variety of derivatives with improvements in potency, solubility, and pharmacokinetic properties that garner support for continued investigation and optimization.
doi:10.1021/cn200043e
PMCID: PMC3369748  PMID: 22860170
Metabotropic glutamate receptor 4; orthosteric ligand; allosteric modulator; Parkinson’s disease; anxiety; pain; cognitive disorders; psychiatric disorders; neurodegenerative disorders; Class C GPCR
5.  Discovery of Molecular Switches within the ADX-47273 mGlu5 PAM scaffold that modulate modes of pharmacology to afford potent mGlu5 NAMs, PAMs and partial antagonists 
This Letter describes a chemical lead optimization campaign directed at a weak mGlu5 NAM discovered while developing SAR for the mGlu5 PAM, ADX-47273. An iterative parallel synthesis effort discovered multiple, subtle molecular switches that afford potent mGlu5 NAMs, mGlu5 PAMs as well as mGlu5 partial antagonists.
doi:10.1016/j.bmcl.2010.11.119
PMCID: PMC3179182  PMID: 21183344
6.  Discovery, Synthesis, and Structure Activity Relationship Development of a Series of N-(4-acetamido)phenylpicolinamides as Positive Allosteric Modulators of Metabotropic Glutamate Receptor 4 (mGlu4) with CNS Exposure in Rats 
Journal of medicinal chemistry  2011;54(4):1106-1110.
Herein we report the discovery, synthesis and evaluation of a series of N-(4-acetamido)-phenylpicolinamides as positive allosteric modulators of mGlu4.a Compounds from the series show submicromolar potency at both human and rat mGlu4. In addition, pharmacokinetic studies utilizing subcutaneous dosing demonstrated good brain exposure in rats.
doi:10.1021/jm101271s
PMCID: PMC3166797  PMID: 21247167
7.  Synthesis and SAR of novel, 4-(phenylsulfamoyl)phenylacetamide mGlu4 positive allosteric modulators (PAMs) identified by functional high-throughput screening (HTS) 
Herein we disclose the synthesis and SAR of a series of 4-(phenylsulfamoyl)phenylacetamide compounds as mGlu4 positive allosteric modulators (PAMs) that were identified via a functional HTS. An iterative parallel approach to these compounds culminated in the discovery of VU0364439 (11) which represents the most potent (19.8 nM) mGlu4 PAM reported to date.
doi:10.1016/j.bmcl.2010.07.007
PMCID: PMC2922490  PMID: 20667732
8.  Synthesis and Evaluation of a Series of Heterobiaryl Amides that are Centrally Penetrant Metabotropic Glutamate Receptor 4 (mGluR4) Positive Allosteric Modulators (PAMs) 
Journal of medicinal chemistry  2009;52(14):4115-4118.
We report the synthesis and evaluation of a series of heterobiaryl amides as positive allosteric modulators of mGluR4. Compounds 9b and 9c showed submicromolar potency at both human and rat mGluR4. In addition, both 9b and 9c were shown to be centrally penetrant in rats using nontoxic vehicles, a major advance for the mGluR4 field.
doi:10.1021/jm9005065
PMCID: PMC2765192  PMID: 19469556
9.  Synthesis, SAR and Unanticipated Pharmacological Profiles of Analogs of the mGluR5 Ago-potentiator ADX-47273 
ChemMedChem  2009;4(4):505-511.
An iterative analogue library synthesis strategy rapidly developed comprehensive SAR for the mGluR5 ago-potentiator ADX-47273. This effort identified key substitutents in the 3-position of oxadiazole that engendered either mGluR5 ago-potentiation or pure mGluR5 positive allosteric modulation. The mGluR5 positive allosteric modulators identified possessed the largest fold shifts (up to 27.9-fold) of the glutamate CRC reported to date as well as providing improved physiochemical properties.
doi:10.1002/cmdc.200800357
PMCID: PMC2865690  PMID: 19197923
mGluR5; ago-potentiator; positive allosteric modulator (PAM); negative allosteric modulator (NAM); schizophrenia; glutamate

Results 1-9 (9)