PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Pro-angiogenic Hematopoietic Progenitor Cells and Endothelial Colony Forming Cells in Pathological Angiogenesis of Bronchial and Pulmonary Circulation 
Angiogenesis  2011;14(4):411-422.
Dysregulation of angiogenesis is a common feature of many disease processes. Vascular remodeling is believed to depend on the participation of endothelial progenitor cells, but the identification of endothelial progenitors in postnatal neovascularization remains elusive. Current understanding posits a role for circulating pro-angiogenic hematopoietic cells, which interact with local endothelial cells to establish an environment that favors angiogenesis in physiologic and pathophysiologic responses. In the lung, increased and dysregulated angiogenesis is a hallmark of diseases of the bronchial and pulmonary circulations, manifested by asthma and pulmonary arterial hypertension (PAH), respectively. In asthma THelper-2 immune cells produce angiogenic factors that mobilize and recruit pro-inflammatory and pro-angiogenic precursors from the bone marrow into the airway wall where they induce angiogenesis and fuel inflammation. In contrast, in PAH, upregulation of hypoxia-inducible factor (HIF) in vascular cells leads to the production of bone marrow-mobilizing factors that recruit pro-angiogenic progenitor cells to the pulmonary circulation where they contribute to angiogenic remodeling of the vessel wall. This review focuses on current knowledge of pro-angiogenic progenitor cells in the pathogenesis of asthma and PAH.
doi:10.1007/s10456-011-9228-y
PMCID: PMC3725463  PMID: 21796417
angiogenesis; progenitors; endothelium; lung; asthma; pulmonary arterial hypertension
2.  Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists 
Journal of medicinal chemistry  2006;49(9):2689-2702.
An alternative approach to overcome the inherent lack of specificity of conventional agonist therapy can be the reengineering of the GPCRs and their agonists. A reengineered receptor (neoceptor) could be selectively activated by a modified agonist, but not by the endogenous agonist. Assisted by rhodopsin-based molecular modeling, we pinpointed mutations of the A3 adenosine receptor (AR) for selective affinity enhancement following complementary modifications of adenosine. Ribose modifications examined included, at 3′: amino, aminomethyl, azido, guanidino, ureido; and at 5′: uronamido, azidodeoxy. N6-variations included: 3-iodobenzyl, 5-chloro-2-methyloxybenzyl, and methyl. An N6-3-iodobenzyl-3′-ureido adenosine derivative 10 activated phospholipase C in COS-7 cells (EC50=0.18 μM) or phospholipase D in chick primary cardiomyocytes mediated by a mutant (H272E), but not the wild-type, A3AR. The affinity enhancements for 10 and the corresponding 3′-acetamidomethyl analogue 6 were >100-fold and >20-fold, respectively. 10 concentration-dependently protected cardiomyocytes transfected with the neoceptor against hypoxia. Unlike 10, adenosine activated the wild-type A3AR (EC50 of 1.0 μM), but had no effect on the H272E mutant A3AR (100 μM). Compound 10 was inactive at human A1, A2A, and A2BARs. The orthogonal pair comprising an engineered receptor and a modified agonist should be useful for elucidating signaling pathways and could be therapeutically applied to diseases following organ-targeted delivery of the neoceptor gene.
doi:10.1021/jm050968b
PMCID: PMC3471142  PMID: 16640329
3.  Modulation of adenosine receptor affinity and intrinsic efficacy in adenine nucleosides substituted at the 2-position 
Bioorganic & medicinal chemistry  2004;12(11):2995-3007.
We studied the structural determinants of binding affinity and efficacy of adenosine receptor (AR) agonists. Substituents at the 2-position of adenosine were combined with N6-substitutions known to enhance human A3AR affinity. Selectivity of binding of the analogues and their functional effects on cAMP production were studied using recombinant human A1, A2A, A2B, and A3ARs. Mainly sterically small substituents at the 2-position modulated both the affinity and intrinsic efficacy at all subtypes. The 2-cyano group decreased hA3AR affinity and efficacy in the cases of N6-(3-iodobenzyl) and N6-(trans-2-phenyl-1-cyclopropyl), for which a full A3AR agonist was converted into a selective antagonist; the 2-cyano-N6-methyl analogue was a full A3AR agonist. The combination of N6-benzyl and various 2-substitutions (chloro, trifluoromethyl, and cyano) resulted in reduced efficacy at the A1AR. The environment surrounding the 2-position within the putative A3AR binding site was explored using rhodopsin-based homology modeling and ligand docking.
doi:10.1016/j.bmc.2004.03.031
PMCID: PMC3463103  PMID: 15142558
Purines; Cyclic AMP; Binding; Antagonists; Agonists; GPCR; Molecular modeling
4.  (N)-Methanocarba 2,N6-Disubstituted Adenine Nucleosides as Highly Potent and Selective A3 Adenosine Receptor Agonists 
Journal of medicinal chemistry  2005;48(6):1745-1758.
A series of ring-constrained (N)-methanocarba-5′-uronamide 2,N6-disubstituted adenine nucleosides have been synthesized via Mitsunobu condensation of the nucleobase precursor with a pseudosugar ring containing a 5′-ester functionality. Following appropriate functionalization of the adenine ring, the ester group was converted to the 5′-N-methylamide. The compounds, mainly 2-chloro substituted derivatives, were tested in both binding and functional assays at human adenosine receptors (ARs), and many were found to be highly potent and selective A3AR agonists. Selected compounds were compared in binding to the rat A3AR to assess their viability for testing in rat disease models. The N6-(3-chlorobenzyl) and N6-(3-bromobenzyl) analogues displayed Ki values at the human A3AR of 0.29 and 0.38 nM, respectively. Other subnanomolar affinities were observed for the following N6 derivatives: 2,5-dichlorobenzyl, 5-iodo-2-methoxybenzyl, trans-2-phenyl-1-cyclopropyl, and 2,2-diphenylethyl. Selectivity for the human A3AR in comparison to the A1AR was (fold): the N6-(2,2-diphenylethyl) analogue 34 (1900), the N6-(2,5-dimethoxybenzyl) analogue 26 (1200), the N6-(2,5-dichlorobenzyl) and N6-(2-phenyl-1-cyclopropyl) analogues 20 and 33 (1000), and the N6-(3-substituted benzyl) analogues 17, 18, 28, and 29 (700–900). Typically, even greater selectivity ratios were obtained in comparison with the A2A and A2BARs. The (N)-methanocarba-5′-uronamide analogues were full agonists at the A3AR, as indicated by the inhibition of forskolin-stimluated adenylate cyclase at a concentration of 10 µM. The N6-(2,2-diphenylethyl) derivative was an A3AR agonist in the (N)-methanocarba-5′-uronamide series, although it was an antagonist in the ribose series. Thus, many of the previously known groups that enhance A3AR affinity in the 9-riboside series, including those that reducing intrinsic efficacy, may be adapted to the (N)-methanocarba nucleoside series of full agonists.
doi:10.1021/jm049580r
PMCID: PMC3463111  PMID: 15771421
5.  Pulmonary artery endothelium resident endothelial colony-forming cells in pulmonary arterial hypertension 
Pulmonary Circulation  2011;1(4):475-486.
Proliferative pulmonary vascular remodeling is the pathologic hallmark of pulmonary arterial hypertension (PAH) that ultimately leads to right heart failure and death. Highly proliferative endothelial cells known as endothelial colony-forming cells (ECFC) participate in vascular homeostasis in health as well as in pathological angiogenic remodeling in disease. ECFC are distinguished by the capacity to clonally proliferate from a single cell. The presence of ECFC in the human pulmonary arteries and their role in PAH pathogenesis is largely unknown. In this study, we established a simple technique for isolating and growing ECFC from cultured pulmonary artery endothelial cells (PAEC) to test the hypothesis that ECFC reside in human pulmonary arteries and that the proliferative vasculopathy of PAH is related to greater numbers and/or more proliferative ECFC in the pulmonary vascular wall. Flow cytometric forward and side scatter properties and aggregate correction were utilized to sort unmanipulated, single PAEC to enumerate ECFC in primary PAEC cultures derived from PAH and healthy lungs. After 2 weeks, wells were assessed for ECFC formation. ECFC derived from PAH PAEC were more proliferative than control. A greater proportion of PAH ECFC formed colonies following subculturing, demonstrating the presence of more ECFC with high proliferative potential among PAH PAEC. Human androgen receptor assay showed clonality of progeny, confirming that proliferative colonies were single cell-derived. ECFC expressed CD31, von Willebrand factor, endothelial nitric oxide synthase, caveolin-1 and CD34, consistent with an endothelial cell phenotype. We established a simple flow cytometry method that allows ECFC quantification using unmanipulated cells. We conclude that ECFC reside among PAEC and that PAH PAEC contain ECFC that are more proliferative than ECFC in control cultures, which likely contributes to the proliferative angiopathic process in PAH.
doi:10.4103/2045-8932.93547
PMCID: PMC3329078  PMID: 22530103
endothelium; endothelial colony forming cell; endothelial progenitor cell; pulmonary arterial hypertension; angiogenesis
6.  A Neoceptor Approach to Unraveling Microscopic Interactions between the Human A2A Adenosine Receptor and Its Agonists 
Chemistry & biology  2005;12(2):237-247.
Summary
Strategically mutated neoceptors, e.g., with anionic residues in TMs 3 and 7 intended for pairing with positively charged amine-modified nucleosides, were derived from the antiinflammatory A2A adenosine receptor (AR). Adenosine derivatives functionalized at the 5′, 2, and N6 positions were synthesized. The T88D mutation selectively enhanced the binding of the chain-length-optimized 5′-(2-aminoethyl)uronamide but not 5′-(2-hydroxyethyl)uronamide, suggesting a critical role of the positively charged amine. Combination of this modification with the N6-(2-methylbenzyl) group enhanced affinity at the Q89D- and N181D- but not the T88D-A2AAR. Amino groups placed near the 2- or N6-position only slightly affected the binding to mutant receptors. The 5′-hydrazide MRS3412 was 670-and 161-fold enhanced, in binding and functionally, respectively, at the Q89D-A2AAR compared to the wild-type. Thus, we identified and modeled pairs of A2AAR-derived neoceptor-neoligand, which are pharmacologically orthogonal with respect to the native species.
doi:10.1016/j.chembiol.2004.12.010
PMCID: PMC3122079  PMID: 15734651
7.  Semi-Rational Design of (N)-Methanocarba Nucleosides as Dual Acting A1 and A3Adenosine Receptor Agonists: Novel Prototypes for Cardioprotection 
Journal of medicinal chemistry  2005;48(26):8103-8107.
Ring-constrained adenosine analogues have been designed to act as dualagonists at tissue-protective A1 and A3 adenosine receptors (ARs). 9-Ribosides transformed into the ring-constrained (N)-methanocarba-2-chloro-5′-uronamides consistently lost affinity at A1/A2AARs and gained at A3AR. Among 9-riboside derivatives, only N6-cyclopentyl and 7-norbornyl moieties were extrapolated for mixed A1/A3 selectivity and rat/human A3AR equipotency. Consequently, 2 was balanced in affinity and potency at A1/A3ARs as envisioned and dramatically protected in an intact heart model of global ischemia and reperfusion.
doi:10.1021/jm050726b
PMCID: PMC2597460  PMID: 16366590
8.  Progression of Epididymal Maldevelopment Into Hamartoma-like Neoplasia in VHL Disease1 
Neoplasia (New York, N.Y.)  2008;10(10):1146-1153.
Inactivation of the von Hippel-Lindau (VHL) gene and activation of the hypoxia-inducible factor (HIF) in susceptible cells precedes formation of tumorlets and frank tumor in the epididymis of male VHL patients. We performed detailed histologic and molecular pathologic analysis of tumor-free epididymal tissues from VHL patients to obtain further insight into early epididymal tumorigenesis. Four epididymides from two VHL patients were serially sectioned to allow for three-dimensional visualization of morphologic changes. Areas of interest were genetically analyzed by tissue microdissection, immunohistochemistry for HIF and markers for mesonephric differentiation, and in situ hybridization for HIF downstream target vascular endothelial growth factor. Structural analysis of the epididymides revealed marked deviations from the regular anatomic structure resulting from impaired organogenesis. Selected efferent ductules were represented by disorganized mesonephric cells, and the maldeveloped mesonephric material was VHL-deficient by allelic deletion analysis. Furthermore, we observed maldeveloped mesonephric material near cystic structures, which were also VHL-deficient and were apparent derivatives of maldeveloped material. Finally, a subset of VHL-deficient cells was structurally integrated in regular efferent ductules; proliferation of intraductular VHL-deficient cells manifests itself as papillary growth into the ductular lumen. Furthermore, we clarify that that there is a pathogenetic continuum between microscopic tumorlets and formation of tumor. In multiple locations, three-dimensional reconstruction revealed papillary growth to extend deeply into ductular lumina, indicative of progression into early hamartoma-like neoplasia. We conclude epididymal tumorigenesis in VHL disease to occur in two distinct sequential steps: maldevelopment of VHL-deficient mesonephric cells, followed by neoplastic papillary proliferation.
PMCID: PMC2546591  PMID: 18813354

Results 1-8 (8)