Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Role of Omega-3 Fatty Acids in the Treatment of Depressive Disorders: A Comprehensive Meta-Analysis of Randomized Clinical Trials 
PLoS ONE  2014;9(5):e96905.
Despite omega-3 polyunsaturated fatty acids (PUFA) supplementation in depressed patients have been suggested to improve depressive symptomatology, previous findings are not univocal.
To conduct an updated meta-analysis of randomized controlled trials (RCTs) of omega-3 PUFA treatment of depressive disorders, taking into account the clinical differences among patients included in the studies.
A search on MEDLINE, EMBASE, PsycInfo, and the Cochrane Database of RCTs using omega-3 PUFA on patients with depressive symptoms published up to August 2013 was performed. Standardized mean difference in clinical measure of depression severity was primary outcome. Type of omega-3 used (particularly eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) and omega-3 as mono- or adjuvant therapy was also examined. Meta-regression analyses assessed the effects of study size, baseline depression severity, trial duration, dose of omega-3, and age of patients.
Meta-analysis of 11 and 8 trials conducted respectively on patients with a DSM-defined diagnosis of major depressive disorder (MDD) and patients with depressive symptomatology but no diagnosis of MDD demonstrated significant clinical benefit of omega-3 PUFA treatment compared to placebo (standardized difference in random-effects model 0.56 SD [95% CI: 0.20, 0.92] and 0.22 SD [95% CI: 0.01, 0.43], respectively; pooled analysis was 0.38 SD [95% CI: 0.18, 0.59]). Use of mainly EPA within the preparation, rather than DHA, influenced final clinical efficacy. Significant clinical efficacy had the use of omega-3 PUFA as adjuvant rather than mono-therapy. No relation between efficacy and study size, baseline depression severity, trial duration, age of patients, and study quality was found. Omega-3 PUFA resulted effective in RCTs on patients with bipolar disorder, whereas no evidence was found for those exploring their efficacy on depressive symptoms in young populations, perinatal depression, primary disease other than depression and healthy subjects.
The use of omega-3 PUFA is effective in patients with diagnosis of MDD and on depressive patients without diagnosis of MDD.
PMCID: PMC4013121  PMID: 24805797
2.  Identification of Small-Molecule Enhancers of Arginine Methylation Catalyzed by Coactivator-Associated Arginine Methyltransferase 1 
Journal of medicinal chemistry  2012;55(22):9875-9890.
Arginine methylation is a common post-translational modification that is crucial in modulating gene expression at multiple critical levels. The arginine methyltransferases (PRMTs) are envisaged as promising druggable targets but their role in physiological and pathological pathways is far from being clear, due to the limited number of modulators reported to date. In this effort, enzyme activators can be invaluable tools useful as gain-of-function reagents to interrogate the biological roles in cells and in vivo of PRMTs. Yet the identification of such molecules is rarely pursued. Herein we describe a series of aryl ureido acetamido indole carboxylates (dubbed “uracandolates”), able to increase the methylation of histone- (H3) or non-histone (polyadenylate-binding protein 1, PABP1) substrates induced by coactivator-associated arginine methyltransferase 1 (CARM1), both in in vitro and cellular settings. To the best of our knowledge, this is the first report of compounds acting as CARM1 activators.
PMCID: PMC3508294  PMID: 23095008
CARM1 activator; PRMT inhibitors; arginine methyltransferase; histone modifying enzyme; epigenetics
3.  Role of the Transforming-Growth-Factor-β1 Gene in Late-Onset Alzheimer’s Disease: Implications for the Treatment 
Current Genomics  2013;14(2):147-156.
Late-onset Alzheimer's disease (LOAD) is the most common form of dementia in the elderly. LOAD has a complex and largely unknown etiology with strong genetic determinants. Genetics of LOAD is known to involve several genetic risk factors among which the Apolipoprotein E (APOE) gene seems to be the major recognized genetic determinant. Recent efforts have been made to identify other genetic factors involved in the pathophysiology of LOAD such as genes associated with a deficit of neurotrophic factors in the AD brain. Genetic variations of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF), and transforming-growth-factor-β1 (TGF-β1) are known to increase the risk to develop LOAD and have also been related to depression susceptibility in LOAD. Transforming-Growth-Factor-β1 (TGF-β1) is a neurotrophic factor that exerts neuroprotective effects against ß-amyloid-induced neurodegeneration. Recent evidence suggests that a specific impairment in the signaling of TGF-β is an early event in the pathogenesis of AD. TGF-β1 protein levels are predominantly under genetic control, and the TGF-β1 gene, located on chromosome 19q13.1–3, con-tains several single nucleotide polymorphisms (SNPs) upstream and in the transcript region, such as the SNP at codon +10 (T/C) and +25 (G/C), which is known to influence the level of expression of TGF-β1. In the present review, we summarize the current literature on genetic risk factors for LOAD, focusing on the role of the TGF-β1 gene, finally discussing the possible implications of these genetic studies for the selection of patients eligible for neuroprotective strategies in AD.
PMCID: PMC3637679  PMID: 24082824
Alzheimer’s disease; Depression; Drugs; Genetic polymorphism; Risk factor; Transforming-growth-factor-β1.
4.  Enhancement of lysine acetylation accelerates wound repair 
In physiopathological conditions, such as diabetes, wound healing is significantly compromised and chronic complications, including ulcers, may occur. In a mouse model of skin repair, we recently reported that wound treatment with Sirtuin activators and class I HDAC inhibitors induced keratinocyte proliferation and enhanced healing via a nitric oxide (NO) dependent mechanism. We observed an increase in total protein acetylation in the wound area, as determined by acetylation of α-tubulin and histone H3 Lysine 9. We reasoned that this process activated cell function as well as regulated gene expression to foster tissue repair. We report here that the direct activation of P300/CBP-associated factor (PCAF) by the histone acetylase activator pentadecylidenemalonate 1b (SPV-106) induced Lysine acetylation in the wound area. This intervention was sufficient to enhance repair process by a NO-independent mechanism. Hence, an impairment of PCAF and/or other GCN5 family acetylases may delay skin repair in physiopathological conditions.
PMCID: PMC3829946  PMID: 24265859
Lysine acetylation; epigenetics; PCAF; wound healing; nitric oxide; keratinocyte
5.  p300/CBP-associated factor selectively regulates the extinction of conditioned fear 
It is well established that the activity of chromatin-modifying enzymes is crucial for regulating gene expression associated with hippocampal-dependent memories. However, very little is known about how these epigenetic mechanisms influence the formation of cortically-dependent memory, particularly when there is competition between opposing memory traces such as that which occurs during the acquisition and extinction of conditioned fear. Here we demonstrate, in C57/Bl6 mice, that the activity of p300/CBP-associated factor (PCAF) within the infralimbic prefrontal cortex is required for long-term potentiation and is necessary for the formation of memory associated with fear extinction, but not for fear acquisition. Further, systemic administration of the PCAF activator SPV106 enhances memory for fear extinction and prevents fear renewal. The selective influence of PCAF on fear extinction is mediated, in part, by a transient recruitment of the repressive transcription factor ATF4 to the promoter of the immediate early gene zif268, which competitively inhibits its expression. Thus, within the context of fear extinction, PCAF functions as a transcriptional co-activator, which may facilitate the formation of memory for fear extinction by interfering with reconsolidation of the original memory trace.
PMCID: PMC3466419  PMID: 22933779
PCAF; fear extinction; infralimbic prefrontal cortex; ATF4; zif268; memory; H3-CoA-20-Tat; SPV106
6.  Novel 3,5-Bis(bromohydroxybenzylidene)piperidin-4-ones as Coactivator-associated Arginine Methyltransferase 1 Inhibitors: Enzyme Selectivity and Cellular Activity 
Journal of medicinal chemistry  2011;54(13):4928-4932.
Coactivator-associated arginine methyltransferase 1 (CARM1) represents a valuable target for hormone-dependent tumors such as prostate and breast cancers. Here we report the enzyme and cellular characterization of the 1-benzyl-3,5-bis(3-bromo-4-hydroxybenzylidene) piperidin-4-one (7g) and its analogues 8a-l. Among them, 7g, 8e, and 8l displayed high and selective CARM1 inhibition, with lower or no activity against a panel of different PRMTs or HKMTs. In human LNCaP cells, 7g showed a significant dose-dependent reduction of the PSA promoter activity.
PMCID: PMC3487391  PMID: 21612300
7.  Diversity Through a Branched Reaction Pathway: Generation of Multicyclic Scaffolds and Identification of Antimigratory Agents 
Chemistry (Weinheim an der Bergstrasse, Germany)  2010;17(2):10.1002/chem.201002195.
A library of 91 heterocyclic compounds composed of 16 distinct scaffolds has been synthesized through a sequence of phosphine-catalyzed ring-forming reactions, Tebbe reactions, Diels–Alder reactions, and, in some cases, hydrolysis. This effort in diversity-oriented synthesis produced a collection of compounds that exhibited high levels of structural variation both in terms of stereochemistry and the range of scaffolds represented. A simple but powerful sequence of reactions thus led to a high-diversity library of relatively modest size with which to explore biologically relevant regions of chemical space. From this library, several molecules were identified that inhibit the migration and invasion of breast cancer cells and may serve as leads for the development of antimetastatic agents.
PMCID: PMC3045630  PMID: 21207585
antimigratory agents; chemical biology; diversity-oriented synthesis; heterocycles; synthesis design
8.  Small-Molecule Inhibitors of Protein Geranylgeranyltransferase Type I 
Small molecules that inhibit the geranylgeranylation of K-Ras4B and RhoA by protein geranylgeranyltransferase type I (GGTase-I) were identified from chemical genetic screens of heterocycles synthesized through phosphine catalysis of allenes. To further improve the efficacy of the GGTase-I inhibitors (GGTIs), 4288 related compounds bearing core dihydropyrrole/pyrrolidine and tetrahydropyrdine/piperidine scaffolds were synthesized on SynPhase Lanterns in a split-pool manner through phosphine-catalyzed [3+2] and [4+2] annulations of resin-bound allenoates. Testing of the 4288 analogs resulted in several GGTIs exhibiting submicromolar IC50 values. Because proteins such as Ras and Rho GTPases are implicated in oncogenesis and metastasis, these GGTIs might ultimately lead to the development of novel antitumor therapeutics.
PMCID: PMC2543057  PMID: 17439124

Results 1-8 (8)